Calculos termodinamicos motor diesel

9
Chapter I - Introducton t o t h e Four-Stroke Engine hence: bmep = imep +  pmep + fmep) = 17.84 + (-4.46) = 13.38 b a r (1.9.6) I f E q . 1.9.5 i s applied i n this fashion t o a l l o f the simulations conducted in Sec. 1.9.1.6, where t h e A F R i s varied widely from rich t o lean settings, then a n equivalent s e t o f simulation output becomes available which i s related to brake, rather than indicated, data. S o, o n Figs. 1.57-1.59 ar e drawn a ll of t h e simulation output a s brake data t o b e compared a n d contrasted with t h e indicated data. This output may also b e compared with data typical of production s i engines in order t o assess h o w closely this simple simulation i s approaching reality. T h e simu- lation output of brake-relatedvalues i s f or brake mean effective pressure in Fig. 1.57, f o r brake thermal efficiency i n Fig. 1.58, a n d f o r brake specific fuel consumption i n Fig. 1.59. I n Fig. 1.57, t h e friction a n d pumping loss a t a combined 4.46 b a r i s seen drawn on t h e graph, giving a constant difference o f 4.46 b a r between t h e imep a nd bmep lines. When this i s translated into brake thermal efficiency, n b , i t ca n b e seen that t h e effect i s n o longer a hnear shift from indicated thermal efficiency, lit. T h e brake thermal efficiency profile is n o w very much flatter through t h e stoichiometric region, a trend that would b e very typical o f real s i engines. This same trend i s also seen i n thebsfc graph i n Fig. 1.59. T h e peak bmep is n o w observed t o b e around 1 5 bar, a value that i s still o n t h e high side f o r a real s i engine with a delivery ratio of 1.0, b u t that i s n o t s o hugely different from practice. T h e bestbsfc point o f about 2 2 0 g/kWh i s about 14 t o o optimistic compared to o n e of today s production s i automobile engines. Even Closer to Reality I t will b recalled that these simulation data incorporate input data f o r t h e indices o com- pression a n d expansion a t t he ideal value o f 1.4, which i s equal t o t h e ratio o f specific heats f o r air. Recalling t h e discussion i n Sec. 1.9.1.4 above, i f these indices a r e each shifted b y 0.1, t o 1 . 3 a n d 1.5, respectively, a n d t h e present simulationrerun a t a stoichiometric AFR, t he bmep becomes 11.62 b a r a n d t h e bsfc increases t o 2 4 7 g/kWh, both o f which numbers would b e well i n line with current practice. 1.9.2 Power Cycle Analysis o f t h e Diesel Engine Some Fundamental Differences between t h e Diesel a n d t h e Otto Cycles Fig. 1.60 shows t h e measured cylinder traces from a n Otto engine a n d a diesel engine. They ar e roughly a t t h e same imep. T h e diesel engine i s a 6 . 0 liter, six-cylinder, turbocharged, D I unit, a n d t h e Otto engine i s a 2 . 0 liter, four-cylinder, naturally aspirated unit with electronic fuel injection (EFI). Because o n e h as a cylinder swept volume that is twice t h e other, a n d t he diesel engine h a s a C R of 1 7 while t h e Otto engine a CR o f 1 0 , t h e volume scale i s drawn a s volume ratio so that th e engines m a y b e readily compared. T h e higher C R of th e diesel engine shows up during compression a s a volume ratio that i s about half that o f t h e Otto engine. T h e Otto engine would appear t o have combustion a t constant volume, although from t he foregoing above w e know that n o t to b e t h e case. O n the other hand, t h e diesel engine h a s a much higher endof compression pressure and, more importantly i n design terms, temperature. T h e diesel burn also seems to b e a t constant volume, b ut these first impressions will be dis- pelled below. 1 09

Transcript of Calculos termodinamicos motor diesel

Page 1: Calculos termodinamicos motor diesel

7/25/2019 Calculos termodinamicos motor diesel

http://slidepdf.com/reader/full/calculos-termodinamicos-motor-diesel 1/8

C h a p t e r

I

-

I n t r o d u c t o n t o

t h e F o u r - S t r o k e

E n g i n e

h e n c e :

b m e p

=

i m e p

+

  p m e p

+

f m e p )

=

1 7 . 8 4 +

( - 4 . 4 6 )

=

1 3 . 3 8 b a r

( 1 . 9 . 6 )

I f E q .

1 . 9 . 5

i s

a p p l i e d

i n

t h i s

f a s h i o n

t o a l l o f t h e s i m u l a t i o n s c o n d u c t e d i n S e c .

1 . 9 . 1 . 6 ,

w h e r e

t h e

AFR

i s

v a r i e d

w i d e l y

f r o m

r i c h

t o

l e a n

s e t t i n g s ,

t h e n

a n

e q u i v a l e n t

s e t

o f

s i m u l a t i o n

o u t p u t b e c o m e s a v a i l a b l e

w h i c h i s r e l a t e d t o

b r a k e ,

r a t h e r

t h a n

i n d i c a t e d ,

d a t a .

S o ,

o n

F i g s .

1 . 5 7 - 1 . 5 9 a r e

d r a w n

a l l o f t h e s i m u l a t i o n

o u t p u t

a s

b r a k e d a t a

t o b e

c o m p a r e d

a n d c o n t r a s t e d

w i t h

t h e

i n d i c a t e d

d a t a .

T h i s

o u t p u t

m a y

a l s o b e

c o m p a r e d

w i t h

d a t a

t y p i c a l

o f

p r o d u c t i o n

s i

e n g i n e s

i n o r d e r t o a s s e s s

h o w

c l o s e l y

t h i s

s i m p l e

s i m u l a t i o n

i s

a p p r o a c h i n g

r e a l i t y .

T h e s i m u -

l a t i o n

o u t p u t

o f b r a k e - r e l a t e d v a l u e s

i s

f o r b r a k e mean

e f f e c t i v e

p r e s s u r e

i n

F i g . 1 . 5 7 ,

f o r

b r a k e

t h e r m a l

e f f i c i e n c y

i n

F i g . 1 . 5 8 ,

a n d f o r

b r a k e

s p e c i f i c

f u e l

c o n s u m p t i o n

i n

F i g .

1 . 5 9 .

I n

F i g .

1 . 5 7 ,

t h e

f r i c t i o n

a n d

p u m p i n g

l o s s a t

a

c o m b i n e d

4 . 4 6

b a r i s s e e n d r a w n o n

t h e

g r a p h ,

g i v i n g

a

c o n s t a n t

d i f f e r e n c e o f

4 . 4 6

b a r b e t w e e n

t h e

i m e p

a n d

b m e p

l i n e s . When

t h i s i s

t r a n s l a t e d

i n t o

b r a k e t h e r m a l

e f f i c i e n c y ,

n b ,

i t

c a n

b e

s e e n

t h a t

t h e

e f f e c t

i s n o

l o n g e r

a

h n e a r

s h i f t f r o m i n d i c a t e d

t h e r m a l

e f f i c i e n c y ,

l i t .

T h e

b r a k e

t h e r m a l

e f f i c i e n c y

p r o f i l e

i s

now

v e r y

m u c h

f l a t t e r

t h r o u g h

t h e

s t o i c h i o m e t r i c

r e g i o n ,

a t r e n d

t h a t

w o u l d

b e

v e r y t y p i c a l

o f

r e a l

s i

e n g i n e s . T h i s s a m e

t r e n d

i s a l s o s e e n

i n

t h e b s f c

g r a p h

i n

F i g .

1 . 5 9 .

T h e

p e a k b m e p

i s now

o b s e r v e d

t o b e

a r o u n d

1 5

b a r ,

a

v a l u e

t h a t i s

s t i l l o n

t h e

h i g h

s i d e f o r

a

r e a l

s i

e n g i n e

w i t h a

d e l i v e r y

r a t i o

o f

1 . 0 ,

b u t t h a t i s

n o t

s o

h u g e l y

d i f f e r e n t

f r o m p r a c t i c e .

T h e b e s t b s f c

p o i n t

o f

a b o u t

2 2 0

g / k W h

i s a b o u t

1 4

t o o

o p t i m i s t i c c o m p a r e d

t o o n e

o f

t o d a y s

p r o d u c t i o n

s i

a u t o m o b i l e

e n g i n e s .

E v e n

C l o s e r

t o

R e a l i t y

I t

w i l l

b e

r e c a l l e d

t h a t

t h e s e

s i m u l a t i o n d a t a

i n c o r p o r a t e i n p u t

d a t a

f o r

t h e

i n d i c e s

o f

c o m -

p r e s s i o n

a n d

e x p a n s i o n

a t

t h e

i d e a l

v a l u e

o f

1 . 4 ,

w h i c h

i s

e q u a l

t o

t h e

r a t i o o f

s p e c i f i c

h e a t s

f o r

a i r .

R e c a l l i n g

t h e d i s c u s s i o n

i n

S e c .

1 . 9 . 1 . 4

a b o v e ,

i f

t h e s e i n d i c e s

a r e e a c h

s h i f t e d

b y 0 . 1 ,

t o

1 . 3 a n d 1 . 5 ,

r e s p e c t i v e l y ,

a n d

t h e

p r e s e n t

s i m u l a t i o n r e r u n

a t

a

s t o i c h i o m e t r i c

A F R ,

t h e

b m e p

b e c o m e s

1 1 . 6 2

b a r

a n d

t h e b s f c i n c r e a s e s

t o

2 4 7

g / k W h ,

b o t h

o f

w h i c h n u m b e r s w o u l d

b e

w e l l

i n

l i n e

w i t h

c u r r e n t

p r a c t i c e .

1 . 9 . 2 P o w e r

C y c l e A n a l y s i s

o f

t h e

D i e s e l

E n g i n e

S o m e F u n d a m e n t a l

D i f f e r e n c e s

b e t w e e n t h e D i e s e l a n d t h e O t t o

C y c l e s

F i g .

1 . 6 0 s h o w s t h e

m e a s u r e d

c y l i n d e r

t r a c e s

f r o m

a n

O t t o

e n g i n e

a n d

a

d i e s e l

e n g i n e .

T h e y

a r e

r o u g h l y

a t

t h e

s a m e

i m e p .

T h e

d i e s e l

e n g i n e

i s a

6 . 0

l i t e r ,

s i x - c y l i n d e r ,

t u r b o c h a r g e d ,

D I

u n i t ,

a n d t h e O t t o

e n g i n e

i s a 2 . 0

l i t e r , f o u r - c y l i n d e r ,

n a t u r a l l y a s p i r a t e d u n i t

w i t h

e l e c t r o n i c

f u e l

i n j e c t i o n ( E F I ) .

B e c a u s e

o n e

h a s

a

c y l i n d e r s w e p t

v o l u m e

t h a t i s t w i c e

t h e

o t h e r , a n d t h e

d i e s e l

e n g i n e

h a s a CR

o f

1 7

w h i l e t h e

O t t o

e n g i n e

a

CR

o f

1 0 ,

t h e

v o l u m e

s c a l e

i s

d r a w n a s

v o l u m e r a t i o s o

t h a t

t h e

e n g i n e s may b e r e a d i l y c o m p a r e d .

T h e h i g h e r

CR

o f t h e d i e s e l

e n g i n e

s h o w s

u p d u r i n g c o m p r e s s i o n a s

a

v o l u m e r a t i o t h a t i s a b o u t

h a l f

t h a t o f t h e

O t t o

e n g i n e .

T h e

O t t o

e n g i n e w o u l d a p p e a r

t o

h a v e

c o m b u s t i o n

a t c o n s t a n t

v o l u m e ,

a l t h o u g h f r o m t h e

f o r e g o i n g

a b o v e

we

k n o w

t h a t

n o t

t o

b e

t h e

c a s e .

On

t h e o t h e r

h a n d , t h e d i e s e l

e n g i n e

h a s a

m u c h

h i g h e r

e n d o f

c o m p r e s s i o n

p r e s s u r e

a n d ,

m o r e

i m p o r t a n t l y

i n

d e s i g n

t e r m s , t e m p e r a t u r e .

T h e

d i e s e l

b u r n

a l s o

s e e m s

t o

b e

a t

c o n s t a n t

v o l u m e ,

b u t

t h e s e

f i r s t

i m p r e s s i o n s

w i l l

b e

d i s -

p e l l e d

b e l o w .

1 0 9

Page 2: Calculos termodinamicos motor diesel

7/25/2019 Calculos termodinamicos motor diesel

http://slidepdf.com/reader/full/calculos-termodinamicos-motor-diesel 2/8

D e s i g n

a n d S i m u l a t i o n

o f

F o u r - S t r o k e

E n g i n e s

1 4 0

6 . O L

1 6 4 V

TC D I

D I E S E L

s a

1 2 0

I M E P = 1 2 . 4 3

b a r

L i

a

1 0 0

2 . O L

1 4

4 V

NA

S i

O T T O

  I

8 0 I M E P = 1 4 . 2 6 b a r

C O

w

8 0

a -

c

6 0

 

MEASURED

C Y L I N D E R

PRESSURES

2 0

0

 S

0 . 0 0 . 1

0 . 2

0 . 3 0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

CYLINDER

VOLUME

RATIO

F i g .

1 6

M e a s u r e d p -

V

d i a g r a m s f o r

a

d i e s e l

a n d a n O t t o

e n g i n e .

T h e r e

i s

n o

d e n y i n g

t h a t

t h e

t w o

p - V d i a g r a m s

a r e

n o t

a l i k e ,

e i t h e r

i n

s h a p e

o r

c h a r a c t e r .

T h e O t t o

d i a g r a m

i s s h o r t

a n d

s q u a t

c o m p a r e d

t o

t h e

l o n g e r ,

l e a n e r

D i e s e l

d i a g r a m .

T h e

D e f i n i t i o n

o f

t h e

I d e a l

D i e s e l

C y c l e

T h e

i d e a l

D i e s e l

c y c l e

i s

p r e s e n t e d

i n

s o m e

t h e o r e t i c a l

d e t a i l

i n A p p e n d i x A l

. 1 ,

S e c . A . 1 .

1 . 0 .

I t

i s i l l u s t r a t e d

t h e r e

b y F i g s .

A.4

a n d

A 1 . 5 ,

s h o w i n g

p r e s s u r e - v o l u m e c h a r a c t e r i s t i c s a n d

t e m p e r a t u r e - v o l u m e

c h a r a c t e r i s t i c s ,

r e s p e c t i v e l y .

T h e r e i s

a

common

b o n d

i n

f u n d a m e n t a l

t h e r m o d y n a m i c

t h i n k i n g

b e t w e e n

t h e i d e a l

D i e s e l

a n d t h e i d e a l

O t t o

c y c l e ,

t h e

l a t t e r

b e i n g

d e s c r i b e d i n S e c .

1 . 6 . 9 . T h e

e l e m e n t s o f t h e

i d e a l D i e s e l

c y c l e

a r e ,

r e f e r r i n g

t o

F i g s .

A 1 . 4 a n d

A 1 . 5 :

( a )

A d i a b a t i c

a n d

i s e n t r o p i c c o m p r e s s i o n

f r o m s t a t e c o n d i t i o n 1 - 2

( b )

C o n s t a n t v o l u m e

c o m b u s t i o n

a s h e a t

t r a n s f e r f r o m

2 - 3

( c ) C o n s t a n t

p r e s s u r e

c o m b u s t i o n a s

h e a t

t r a n s f e r

f r o m 3 - 4

( d )

A d i a b a t i c

a n d

i s e n t r o p i c

c o m p r e s s i o n

f r o m

s t a t e

c o n d i t i o n

4 - 5

( e )

C o n s t a n t

v o l u m e h e a t

r e j e c t i o n

t o

r e p r e s e n t e x h a u s t

p r o c e s s f r o m 5 - 1

T h u s , t h e r e i s a n e x t r a

h e a t a d d i t i o n

p r o c e s s f o r

d i e s e l

c o m b u s t i o n

c o m p a r e d t o t h e

i d e a l

O t t o

c y c l e ,

o t h e r w i s e

t h e

t w o

c y c l e s

a r e

i d e n t i c a l .

T h e

o r i g i n a l

d e f i n i t i o n

o f

t h e

i d e a l D i e s e l

c y c l e

w a s

t h a t i t

h a d

o n l y

c o n s t a n t

p r e s s u r e

c o m b u s t i o n w h e r e a s

t h a t

d e s c r i b e d

a b o v e i s

o f t e n

c a l l e d t h e

D u a l

c y c l e

[ 1 . 2 ] .

I

d e f i n e

e i t h e r ,

o r

b o t h ,

a s a n i d e a l

D i e s e l

c y c l e .

A p p e n d i x A I . 1 , S e c . A l . 1 . 1 0

c o n t a i n s a l l

o f t h e

t h e r m o d y n a m i c t h e o r y

r e q u i r e d t o r e s o l v e

a

g i v e n

d e s i g n

i n t e r m s o f

i t s

p e r f o r m a n c e

c h a r a c t e r i s t i c s ,

o r

i t s s t a t e

c o n d i t i o n s

a t

p o i n t s 1 - 5

t h r o u g h o u t

t h e

c y c l e .

T h i s

t h e o r y

w i l l

b e u s e d

b e l o w

t o

e x a m i n e a

t e s t

c a s e

f o r t h e

i d e a l D i e s e l

c y c l e .

1 1 0

Page 3: Calculos termodinamicos motor diesel

7/25/2019 Calculos termodinamicos motor diesel

http://slidepdf.com/reader/full/calculos-termodinamicos-motor-diesel 3/8

C h a p t e r

1

-

I n t r o d u c t i o n

t o

t h e F o u r - S t r o k e

E n g i n e

T h e

T e s t

E n g i n e

U s e d a s

t h e

C o m p r e s s i o n - I g n i t i o n E n g i n e

E x a m p l e

T h r o u g h o u t

t h i s s e c t i o n

o n

t h e

d i e s e l

e n g i n e ,

a

s i n g l e c y l i n d e r

u n i t o f

9 9 7 . 5

c m 3

c a p a c i t y ,

r u n n i n g

a t 1 8 0 0

r p m ,

i s u s e d

t o

i l l u s t r a t e

t h e

t h e r m o d y n a m i c

p o i n t s

t o b e m a d e .

I t

i s ,

i n

f a c t ,

o n e

c y l i n d e r

o f

a

s i x - c y l i n d e r

t u r b o c h a r g e d

D I d i e s e l

t r u c k

e n g i n e

o f 6 l i t e r s n o m i n a l

c a p a c i t y .

I t

h a s

a

b o r e

o f 1 0 0

mm,

a

s t r o k e

o f 1 2 7

mm,

a n d

a

c o n n e c t i n g

r o d

w i t h

2 1 7

mm c e n t e r s . T h e

g u d g e o n

p i n

o f f s e t

i s

z e r o . F r o m t h e

b o r e

a n d

s t r o k e

v a l u e s ,

i t

i s

s e e n t o b e a n

  u n d e r - s q u a r e

e n g i n e ,

t h e

common

f e a t u r e

o f w h i c h h a s

a l r e a d y

b e e n

c o m m e n t e d

o n i n S e c .

1 . 8 . 1 .

T h e

p i s t o n

p o s i t i o n

a t

a n y p o i n t

o n

t h e r o t a t i o n o f t h e

c r a n k i s f o u n d

u s i n g

t h e

t h e o r y

o f

S e c .

1 . 4 . 4

a n d

t h e

c y l i n d e r v o l u m e b y

E q .

1 . 4 . 1 . T h e

s w e p t

v o l u m e i s 9 9 7 . 5

c m 3 ,

b u t i s

u s e d

i n a l l

t h e r m o d y -

n a m i c e q u a t i o n s

a s

9 9 7 5 x

1 0 - 6

m 3 .

 

c o m p r e s s i o n

r a t i o o f

1 7

i s

u s e d ,

s o

t h e c l e a r a n c e v o l u m e i s o b t a i n e d f r o m

E q .

1 . 4 . 3 . T h i s

c l e a r a n c e

v o l u m e i s

6 2 . 3

c m 3 ,

b u t

i s

u s e d

i n

a l l

t h e r m o d y n a m i c e q u a t i o n s

a s 6 2 . 3

x

1 0 - 6

m 3 .

T h e m a x i m u m a n d

m i n i m u m

c y l i n d e r

v o l u m e s ,

i . e . ,

a t

b d c a n d

t d c ,

f o r

t h i s

d i e s e l

e n g i n e

a r e

1 0 5 9 . 8

a n d

6 2 . 3

c m 3 ,

t o

b e

u s e d

i n

s t r i c t

S I

u n i t s

a s

1 0 5 9 . 8

x

1 0 - 6

a n d

6 2 . 3

x

1 0 - 6

m 3 .

T h e

f u e l

i s

d o d e c a n e

w i t h

a d e c l a r e d

c a l o r i f i c v a l u e

o f

4 3 . 5

M J / k g .

F r o m

E q .

1 . 6 . 1 7 ,

t h e

c a l c u l a t e d s t o i c h i o m e t r i c

a k r - f u e l

r a t i o

f o r d o d e c a n e i s

1 4 . 9 5 . T h e t e s t

e n g i n e

i s

t o b e e x a m -

i n e d a t

a

l i g h t

l o a d

p o i n t ,

w h e r e

t h e

e q u i v a l e n c e

r a t i o , X ,

i s

2 . 9 5 .

C o n s e q u e n t l y ,

t h e a i r - f u e l

r a t i o

i n t h e c h a m b e r

i s

4 4 . 1 .

L e t

i t

b e a s s u m e d t h a t 1 0 o f t h e f u e l

i s

t o b e

b u r n e d a t

c o n s t a n t

v o l u m e , l e a v i n g 90

f o r c o m b u s t i o n

a t c o n s t a n t

p r e s s u r e .

T h e

w o r k i n g

f l u i d

w i t h i n

t h e

e n g i n e

c y l i n d e r

i s

c o n s i d e r e d

t o b e

a i r

w i t h t h e

p r o p e r t i e s

g i v e n

i n

A p p e n d i x

Al

 

l ,

S e c s .

A 1 .

1 .

I

a n d A 1 . 1 . 2 .

A s s t a t e d b e f o r e

i n

S e c .

1 . 9 . 1 ,

I

d e f i n e

t h a t

a t

b d c

t h e

s w e p t

v o l u m e i s

r e g a r d e d

t o

b e

f i l l e d w i t h

  f r e s h

a i r

b e c a u s e t h e c l e a r a n c e

v o l u m e

i s

c o n s i d e r e d

t o

b e f i l l e d w i t h a g a s t h a t i s

i n e r t , e x h a u s t ,

b u t t h a t

a l s o h a s t h e p r o p e r t i e s

o f a i r .

I n

s h o r t ,

o n l y

t h e

s w e p t

v o l u m e

a t

b d c

i s

d e f i n e d

t o

c o n t a i n

a

t r u e

  f r e s h

a i r . B e c a u s e

m a n y

o f

t h e d a t a c a l c u l a t e d

b y

t h e

s i m p l e

s i m u l a t i o n s b e l o w

a r e

t o b e

c o m p a r e d w i t h m e a s u r e d

d a t a

f r o m

a

f i r i n g e n g i n e ,

t h e

s t a t e

c o n d i t i o n s s e l e c t e d

a t

b d c

a t

t h e o n s e t

o f

t h e c o m p r e s s i o n s t r o k e

r e f l e c t t h e

r e a l i t y

o f

t u r b o c h a r g i n g

a

d i e s e l

e n g i n e , c o m p a r e d

t o

t h e s t a n d a r d

r e f e r e n c e

p r e s -

s u r e a n d

t e m p e r a t u r e

c o n d i t i o n s s e l e c t e d f o r t h e

n a t u r a l l y a s p i r a t e d

s p a r k - i g n i t i o n

u n i t .

T h e

s t a t e

c o n d i t i o n s t o b e u s e d

a t p o i n t

I

i n F i g s .

A 1 . 4

a n d A l . 5

i n A p p e n d i x A l . 1

a r e

2 . 3 3

b a r a n d

7 0 ° C .

T h e

p r e s s u r e

i s k n o w n f r o m t h e

m e a s u r e d

c y l i n d e r p r e s s u r e

d a t a

t o

b e

2 . 3 3

b a r ,

b u t

t h e

t e m p e r a t u r e

I

h a v e h a d t o e s t i m a t e

b a s e d o n

e x p e r i e n c e , d u e t o t h e a b s e n c e o f

r e a l

d a t a .

1 . 9 . 2 . 1

T h e r m o d y n a m i c

N a v i g a t i o n

a r o u n d

t h e

I d e a l D i e s e l

C y c l e

I n i t i a l

V a l u e s f o r

T o t a l

M a s s ,

A i r

M a s s ,

D e n s i t y ,

D R ,

a n d

H e a t f r o m

F u e l

a t

S t a t e

P o i n t

1

T h e

e n g i n e

i s

t u r b o c h a r g e d

s o t h e s t a t e

c o n d i t i o n

1

i s

a t 2 . 3 3

b a r

a n d

7 0 ° C .

F r o m

t h e s t a t e

e q u a t i o n ,

E q .

A l . 5 , m a s s

o f

g a s

i n

c y l i n d e r ,

m l :

= p 1 V 1

_

2 . 3 3

x

1 0 5

x

1 0 5 9 . 8

x

1 0

= 2 5 . 0 8 4 x 10 k g

R T 1

2 8 7

x

3 4 3

1 1 1

Page 4: Calculos termodinamicos motor diesel

7/25/2019 Calculos termodinamicos motor diesel

http://slidepdf.com/reader/full/calculos-termodinamicos-motor-diesel 4/8

D e s i g n

a n d S i m u l a t i o n

o f

F o u r - S t r o k e

E n g i n e s

T h e

m a s s

o f

a i r

t r a p p e d

i n

c y l i n d e r ,

m t a :

m t a = P l V s v

=

2 . 3 3 x 1 0 5 x

9 9 7 . 5

x

1 0

=23.61x10

k g

R T ,

2 8 7

x

3 4 3

F r o m

E q . 1 . 6 . 1 ,

r e f e r e n c e

m a s s ,

m d r e f ,

f o r

D R

i s :

p=

P a t

-

1 0 1 3 2 5

= 1 . 2 0 5 k g / n 3

a

R T a t

2 8 7

x

2 9 3

F r o m

E q s .

1 . 6 . 3 a n d

1 . 6 . 4 ,

d e l i v e r y

r a t i o i s :

DR-

m a s

Mt a

=

2 3 . 6 1 x

1 0

=

1 . 9 6

m d r e f

P a t V s v

1 . 2 0 5

x

9 9 7 . 5

x

1 0 4

T h e

d e l i v e r y r a t i o , D R ,

i s

1 . 9 6

a n d

s h o w s

t h e c o n s i d e r a b l e

a m o u n t

o f

a i r

b l o w n

i n t o

t h e

e n g i n e

f r o m t h e

c o m p r e s s o r

s e c t i o n

o f

t h e

t u r b o c h a r g e r .

F r o m

E q .

1 . 6 . 2 0 ,

t h e

m a s s

o f f u e l

t r a p p e d ,

m t f :

m t f = t a

2 3 . 6 1

x

1 0

-

5 . 3 5 4 x 1 0 5

k g

F r o m

E q . 1 . 6 . 2 1 ,

t o t a l

h e a t t r a n s f e r

a r o u n d

t d c

i s

e q u i v a l e n t

t o

h e a t

e n e r g y

i n

f u e l :

Q R

=

T l C m t f C f l

= 1 . 0 x 5 . 3 5 4

x 1 0 x

4 3 . 5 x

1 0 6

=

2 3 2 9 J

As t h e

bum

p r o p o r t i o n

a t c o n s t a n t

v o l u m e ,

k c v ,

i s d e c i d e d a t

0 . 1 ,

t h e n

f r o m

E q .

A 1 . 7 6 :

Q 3 =

kVQR

=

0 . 1

X

2 3 2 9

=

2 3 2 9

J

Q

=

  1 - k C V ) Q R

= 0 . 9

x

2 3 2 9

=

2 0 9 6 . 1

J

P r o c e s s

1 - 2 ,

A d i a b a t i c

a n d

I s e n t r o p i c

C o m p r e s s i o n

F r o m

E q s .

A 1 . 2 6

a n d

A 1 . 5 0 , p r e s s u r e

a t

e n d

o f

c o m p r e s s i o n ,

P 2 :

P 2

= p 4

2 - J

=

p l C R Y

=

2 . 3 3 x 1 0 5

x

1 7

= 2 . 3 3 x 1 0 5

x 5 2 . 8

=

1 2 3 . 0 2

x 1 0

P a

  i e . ,

1 2 3 . 0 2

b a r )

1 1 2

Page 5: Calculos termodinamicos motor diesel

7/25/2019 Calculos termodinamicos motor diesel

http://slidepdf.com/reader/full/calculos-termodinamicos-motor-diesel 5/8

C h a p t e r

I

-

I n t r o d u c t i o n t o

t h e

F o u r - S t r o k e E n g i n e

F r o m E q . A 1 . 5 5 ,

t e m p e r a t u r e

a t e n d o f

c o m p r e s s i o n ,

T 2 :

T _ _

  V I .

)

= C R ) Y -

T 2

=

3 4 3 x 3 . 1 0 6

=

1 0 6 5 . 4

K

F r o m E q s .

A 1 . 2 1

a n d

A 1 . 2 3 ,

t h e

w o r k d o n e d u r i n g c o m p r e s s i o n

i s

n e g a t i v e :

W I

=

- m C v ( T 2

 

T = - 2 5 . 0 8 4

x

7 1 8

x

  1 0 6 5 . 4

 

3 4 3

=

- 1 3 0 1 . 1 J

F r o m

E q .

A 1 . 2 3 , t h e c h a n g e

o f

i n t e m a l e n e r g y d o n e

d u r i n g c o m p r e s s i o n

i s

p o s i t i v e :

U2

-

U l

=

m l C v ( T 2

-

T i )

=

2 5 . 0 8 4

x

1 0 4

x 7 1 8

x

( 1 0 6 5 . 4

-

3 4 3 )

=

1 3 0 1 . 1

J

P r o c e s s

2 - 3 ,

C o n s t a n t

C o l u m e

C o m b u s t i o n

T h e

f i r s t

l a w

o f

t h e r m o d y n a m i c s

i s

a p p l i e d

t o

t h e

c o n s t a n t

v o l u m e c o m b u s t i o n p r o c e s s

w h e r e

t h e

w o r k

o u t p u t

i s

z e r o .

Q 2

=

U 3

 

U 2

+ w 2

=

m l C v T 3 - T 2

+ 0

t h e n

s o l v i n g

f o r

T 3 :

T 3 = T 2 +

Q 2

1065.4232.9

= 1 1 9 4 . 7

K

m I C V

2 5 . 0 8 4

x

1 0 4

x 7 1 8

U s i n g

t h e

s t a t e

e q u a t i o n ,

a s

i n

E q . A 1 . 4 4 ,

s o l v i n g

f o r

p 3 :

P 3

P 2

x

2

T 3

T 3

=

1 2 3 . 0 2

x

1 0 5

x

1

9 4 . 7

=

1 3 7 . 9 5

x

1 0 5

P a

-

=TPp X

- l = 3 P O 2 X l -

1 0 6 5 . 4

  i . e . ,

1 3 7 . 9 5

b a r )

C h a n g e

o f

i n t e r n a l

e n e r g y d u r i n g

t h e

p r o c e s s

f r o m

2 - 3 :

U 3

-

U 2

=

Q2=2329

J

1 1 3

Page 6: Calculos termodinamicos motor diesel

7/25/2019 Calculos termodinamicos motor diesel

http://slidepdf.com/reader/full/calculos-termodinamicos-motor-diesel 6/8

D e s i g n

a n d

S i m u l a i o n

o f F o u r - S t r o k e

E n g i n e s

P r o c e s s

3 - 4

C o n s t a n t

P r e s s u r e

C o m b u s t i o n

T h e

f i r s t

l a w

o f

t h e r n o d y n a m i c s

i s

a p p l i e d

t o t h e

c o n s t a n t

p r e s s u r e

c o m b u s t i o n

p r o c e s s .

F r o m

E q .

A 1 . 7 7 ,

s o l v i n g

f o r

T 4 :

  _ _

2 0 9 6 . 1

= 2 2 .

T4=T3+

= 1 1 9 4 . 7 +

2 0 2 6 . 1

K

m , C p

2 5 . 0 8 4 x

1 0 - 4

x 1 0 0 5

F r o m

E q .

A 1 . 7 8 , s o l v i n g

f o r

p 4 :

N

=

P 3

  i e . ,

1 3 7 . 9 5

b a r

F r o m

E q .

A 1 . 7 9 :

T 4

4~

2 0 2 6 . 1

3

V 4

=

V 3

4= 6 2 . 3 x l O

x

= 1 0 5 . 6 6 x I 0 m

T 3

1 1 9 4 . 7

T h e

c h a n g e

o f

i n t e r n a l

e n e r g y

d u r i n g

t h e

p r o c e s s

f r o m 3 - 4

i s

a n a l y z e d u s i n g

t h e

f i r s t

l a w

o f

t h e r m o d y n a m i c s

f o r

t h e

c l o s e d

s y s t e m ,

f r o m

E q s .

A 1 . 7 7

a n d

A l . 8 3 :

U4

-

U 3

=

m Cv ( T 4

-

T 3 )

=

2 5 . 0 8 4

x

1 0 4

x 7 1 8x 2 0 2 6 . I - 1 1 9 4 . 7 ) =

1 4 9 7 . 4

J

B y

E q .

A 1 . 8 4

t h e w o r k

o u t p u t

i s

g i v e n b y :

4

=

m j R ( T 4

-

T 3 )

=

2 5 . 0 8 4

x

1 0 - 4 x 2 8 7

x

( 2 0 2 6 . 1

 

1 1 9 4 . 7 )

=

5 9 8 . 5

J

P r o c e s s

4 - 5 ,

A d i a b a t i c a n d

I s e n t r o p i c E x p a n s i o n

F r o m

E q .

A 1 . 8 0 , t e m p e r a t u r e

a t

e n d o f

e x p a n s i o n ,

T 5 ,

a f t e r

p r o c e s s

3 - 4 :

__ _

 -. Y

 

-0.4

T4

V T

T 6l

1059 8

x l1 0

5 5 = 6 2 0 2 6 . 1 0

= 8 0 5 . 6

K

F r o m

E q .

A 1 . 8 1 , p r e s s u r e

a t

e n d o f

e x p a n s i o n , p 5 :

V 4

1 7 . 9 5

1 0 5 [ 1 0 5 . 6 6 x I 1

0

=

5 . 4 7

x

1 0 5 P a

( w h i c h

i s 5 . 4 7

b a r )

1 3 7 9

i 0 V 5

1 0 5 9 . 8

x

1 0 4

=

t ) O S 9 . 8 x l O ~ ~ ~ ~ J

= 7Xi5P

wihi

.7br

1 1 4

Page 7: Calculos termodinamicos motor diesel

7/25/2019 Calculos termodinamicos motor diesel

http://slidepdf.com/reader/full/calculos-termodinamicos-motor-diesel 7/8

C h a p t e r

1

-

I n t r o d u c t i o n

t o

t h e

F o u r - S t r o k e

E n g i n e

F r o m

E q s .

A l . 8 4 ,

t h e

w o r k

d o n e

d u r i n g

e x p a n s i o n

i s

p o s i t i v e :

W 5 =

-mCv(T

-

T 4 ) =

- 2 5 . 0 8 4 x

1 0 4

x

7 1 8 x

( 8 0 5 . 6

-

2 0 2 6 . 1 )

=

2 1 9 8

J

F r o m

E q . A 1 . 2 3 ,

t h e

c h a n g e

o f

i n t e r n a l

e n e r g y

d o n e

d u r i n g

e x p a n s i o n

i s

n e g a t i v e :

U 5 - U 4 = m i C v T

-

T 4 )

=

2 5 . 0 8 4

x

1 0 4

x

7 1 8

x

( 8 0 5 . 6

-

2 0 2 6 . 1 )

=

- 2 1 9 8 J

P r o c e s s

5 - 1 ,

t o

C o m p l e t e

t h e

C y c l e b y

C o n s t a n t

V o l u m e

H e a t

R e j e c t i o n

F r o m t h e f i r s t

l a w

o f

t h e r m o d y n a m i c s , a s i n

E q .

A 1 . 8 5 :

Q ,

=

m I C V 4 T i

-

T 5 )

=

2 5 . 0 8 4

x

1 0 4

x

7 1 8

x

( 3 4 3

 

8 0 5 . 6 )

=

- 8 3 3 . 1

J

C h a n g e

o f

i n t e r n a l

e n e r g y

d u r i n g

h e a t

r e j e c t i o n

f r o m

4 - 1 :

U 1

-

U 5

=

Q

=

m l C v T

 

T 5 )

=

- 8 3 3 . 1

J

O b t a i n i n g

N e t

V a l u e s

f o r

t h e

C y c l e

N e t w o r k o u t p u t

f r o m

t h e

c y c l e ,

f r o m

E q s .

A 1 . 7 0 a n d

A 1 . 7 1 :

W n e t

=

W 2

+

W 3

+

W 5 = - 1 3 0 1 . 1 +

5 9 8 . 5

+

2 1 9 8

=

1 4 9 5 . 4 J

I d e a l D i e s e l

c y c l e

t h e r m a l

e f f i c i e n c y

i s

g i v e n

b y E q .

A l . 7 1 :

n e t

w o r k

=

n

-

1 4 9 5 . 4

h e a t

i n p u t

Q R

2 3 2 9

T h e m e a n

e f f e c t i v e

p r e s s u r e ,

i m e p ,

c a n

b e f o u n d

u s i n g

E q .

1 . 6 . 3 1

o r

E q .

A 1 . 8 6 :

m e - -

1 4 9 5 . 4

5

imVp

9 9 7 . 5 x 1 0 @

= 1 4 . 9 9 x 1 0 5 P a ( i . e . , 1 4 . 9 9 b a r )

V S V

9 9 7 . 5

x

1 0 4

T h e

p o w e r o u t p u t

o f

o n e

e n g i n e

c y l i n d e r

c a n

b e

f o u n d

u s i n g E q .

1 . 6 . 3 3 :

r p m

5

1 8 0 0

W = W n e t

X

= 1 4 9 5 . 4

x

=

2 2 . 4 3

x

1 0 3

 

i . e . ,

2 2 . 4 3

k W )

1 2 0

1 2 0

1 1 5

Page 8: Calculos termodinamicos motor diesel

7/25/2019 Calculos termodinamicos motor diesel

http://slidepdf.com/reader/full/calculos-termodinamicos-motor-diesel 8/8

D e s i g n

a n d S i m u l a t i o n

o f

F o u r S t r o k e

E n g i n e s

T h e

f u e l

c o n s u m p t i o n

r a t e

p e r c y l i n d e r

m i i f

i s

f o u n d f r o m :

r n f =

m a s s p e r

p o w e r c y c l e x

p o w e r c y c l e s p e r s e c o n d

 

1 8 0 0

=

0 . 8 0 3

x

1 0 3

k g /

s

  2 x 0

=535x FX12

F r o m

E q .

1 . 6 . 3 6 t h e

s p e c i f i c

f u e l

c o n s u m p t i o n

c a n b e c a l c u l a t e d :

iffimf

0 . 8 0 3

x 1 0 3

 xl kgW

i s f c

  iLOS l

= 3 . 5 8 x 1 o 8

k g / W s

 

2 2 . 4 3

x

1 0 3

H o w e v e r

i n m o r e c o n v e n t i o n a l

u n i t s o f

k g / k W h

t h i s b e c o m e s :

i s f c

=

3 . 5 8

x

1 0 8

k g

3 . 5 8

x

1 0 8

x

1 0 3

x

3 6 0 0

k g

W

s

 

1 2 9

k g / k W h

Ws

Ws

kW h

G r a p h i c a l

O u t p u t f f r o m

a

C o m p u t e r

S i m u l a t i o n

o f

t h e I d e a l

D i e s e l

C y c l e

F i g s .

A 1 . 4 a n d

A l . 5

i n A p p e n d i x A l . l

s h o w t h e r e s u l t s

o f

t h e

a b o v e c a l c u l a t i o n s

f o r

t h e

i d e a l

O t t o

c y c l e

b u t d e r i v e d o n

a

c o m p u t e r .

T h e

p r o c e d u r e

a n d c o m m e n t s

t h a t

a r e

g i v e n

i n

S e c . 1 . 9 . 1 . 1

p e r t a i n i n g

t o s i m i l a r

c o m p u t a t i o n s

f o r

t h e i d e a l O t t o

c y c l e

a r e

e q u a l l y g e r m a n e

h e r e

s o

t h e y

d o n o t

n e e d t o b e

r e p e a t e d .

B e c a u s e

F i g s .

A A . 4

a n d

A 1 . 5

a r e

d r a w n

t o

s c a l e

t h e

n u m b e r s

f o r

p r e s s u r e t e m p e r a t u r e

a n d v o l u m e

w h i c h

a r e d e r i v e d a b o v e c a n

b e

s e e n a t

t h e

r e l e v a n t

s t a t e

p o s i t i o n s

n u m b e r e d a s

1 5 .

F i g .

1 . 6 1

s h o w s

t h e

c u m u l a t i v e

w o r k

h e a t

t r a n s f e r

a n d i n t e r n a l

e n e r g y d i a g r a m s

f o r t h i s

i d e a l D i e s e l

c y c l e .

T h e

1 0

j u m p

i n h e a t

t r a n s f e r

a n d a c c u m u l a t e d i n t e r n a l

e n e r g y

c a n b e

s e e n a t t h e t d c

p o i n t

w h e r e t h e c o n s t a n t v o l u m e h e a t

i n p u t

t a k e s

p l a c e .

T h e

e x t r a w o r k

r e q u i r e d

t o

c o m p r e s s

t h e

a i r

i n t h e D i e s e l

c y c l e c o m p a r e d

t o t h a t

f o r

t h e O t t o

c y c l e

i n

F i g .

1 . 4 0

i s

e v i d e n t .

I t

t o o k

j u s t

2 1 3 J o f

w o r k

t o

c o m p r e s s

t h e

O t t o

c y c l e c h a r g e

a t

a

c o m p r e s s i o n

r a t i o

o f

1 0

b u t

i t

t o o k

1 3 0 1

J

i n

t h e

d i e s e l

e n g i n e

w i t h

t h e m u c h

h i g h e r

c o m p r e s s i o n

r a t i o o f 1 7 .

A l t h o u g h

t h e d i e s e l

e n g i n e

i s

d o u b l e t h e

c a p a c i t y

o f t h e

g a s o l i n e e n g i n e

t h a t s t i l l

t r a n s l a t e s

t o

a b o u t

t h r e e t i m e s

t h e

c o m p r e s s i o n

w o r k

f o r

a n

e q u i v a l e n t

d i e s e l

u n i t .

T h i s e x p l a i n s

w h y

a

m u c h

m o r e r o b u s t

s t a r t e r

m o t o r a n d

b a t t e r y

a r e

r e q u i r e d

t o

s u p p l y

t h e

n e c e s s a r y e n e r g y

t o

g e t

a c a r

d i e s e l

e n g i n e

g o i n g

a s

c o m p a r e d

t o i t s

s p a r k i g n i t i o n c o u n t e r p a r t .

I g n i t i o n

o f t h e f u e l

i n

t h e

d i e s e l

e n g i n e

o c c u r s

b y

h e a t i n g

t h e

i n j e c t e d l i q u i d

t o

v a p o r

a n d

t h e n

h e a t i n g

t h a t

v a p o r

t o

i t s

s e l f i g n i t i o n t e m p e r a t u r e .

T h e e n d

o f

c o m p r e s s i o n

t e m p e r a t u r e

c a l c u l a t e d

a b o v e

a s

T 2

i s

1 0 6 5 . 4

K

o r 7 9 2 . 4 ° C .

A

t e m p e r a t u r e

a t t h i s l e v e l i s

m o r e

t h a n

s u f f i

c i e n t t o

c a r r y

o u t t h e

t w o

h e a t i n g p r o c e s s e s d e s c r i b e d

a n d

t o i n i t i a t e i g n i t i o n .

H o w e v e r

u n d e r

n o r m a l c o l d s t a r t

c o n d i t i o n s t h e

i n i t i a l

t e m p e r a t u r e a t

b d c w o u l d b e m o r e l i k e

2 0 ° C a n d a

r e c a l c u l a t i o n

o f t h e

e n d o f

c o m p r e s s i o n

t e m p e r a t u r e g i v e s 9 1 0 K o r

6 3 7 ° C ; s t a r t i n g i s now

m o r e

p r o b l e m a t i c .

U n d e r

a r c t i c a i r

c o n d i t i o n s o f   3 0 ° C

t h e e q u i v a l e n t

e n d o f

c o m p r e s s i o n

1 1 6