C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 -...

36
1 H E A T T R A N S HEAT TRANSFER HEAT TRANSFER S F E R C H A P T E R HEAT TRANSFER HEAT TRANSFER SME 4453 SME 4453 LECTURER: PM DR MAZLAN ABDUL WAHID http://www.fkm.utm.my/~mazlan 3 Dr Mazlan H E A T T R A N S Chapter hapter 3 Steady Steady-State State S F E R C H A P T E R Steady Steady-State State One Dimensional One Dimensional Heat Conduction Heat Conduction 3 Dr Mazlan PM Dr Mazlan Abdul Wahid UTM Faculty of Mechanical Engineering Universiti Teknologi Malaysia www.fkm.utm.my/~mazlan

Transcript of C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 -...

Page 1: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

1

HEAT

TRANS HEAT TRANSFERHEAT TRANSFERSFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

HEAT TRANSFERHEAT TRANSFERSME 4453SME 4453

LECTURER: PM DR MAZLAN ABDUL WAHIDhttp://www.fkm.utm.my/~mazlan

33333333

Dr Mazlan

HEAT

TRANS

CChapter hapter 33SteadySteady --State State S

FER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

SteadySteady --State State One Dimensional One Dimensional Heat ConductionHeat Conduction

33333333

Dr Mazlan

PM Dr Mazlan Abdul Wahid

UTM Faculty of Mechanical EngineeringUniversiti Teknologi Malaysiawww.fkm.utm.my/~mazlan

Page 2: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

2

HEAT

TRANS

One-Dimensional Steady-State Conduction

• Conduction problems may involve multiple directions and time-

dependent conditions

• Inherently complex – Difficult to determine temperature distributionsSFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

• Inherently complex – Difficult to determine temperature distributions

• One-dimensional steady-state models can represent accurately

numerous engineering systems

• In this chapter we will:

� Learn how to obtain temperature profiles for common geometries

33333333

Dr Mazlan

� Learn how to obtain temperature profiles for common geometries

with and without heat generation.

� Introduce the concept of thermal resistance and thermal circuits

� Introduce to the analysis of one dimensional conduction analysis

on extended surfaces

HEAT

TRANS

Assumptions

- 1 dimensional heat transfer

- Isothermal surfaces

- Steady stateSFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

- Steady state

33333333

Dr Mazlan

Page 3: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

3

HEAT

TRANS

Fourier’s law

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANS

Thermal Resistance concept

- Conduction

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRRThermal world

33333333

Dr Mazlan

Electrical world

Page 4: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

4

HEAT

TRANS

Thermal Resistance concept- Convection

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANS

The Plane Wall

Consider a simple case of one-dimensional conduction in a plane wall, separating two fluids of different temperature, without energy

1,∞T22, ,hT∞

Cold fluid

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

temperature, without energy generation

• Temperature is a function of x

• Heat is transferred in the x-direction

Must consider– Convection from hot fluid to wall

– Conduction through wall

qx

1,sT

2,sT

2,∞T11, ,hT∞

33333333

Dr Mazlan

– Conduction through wall

– Convection from wall to cold fluid

� Begin by determining temperature distribution within the wall x

x=0 x=LHot fluid

Page 5: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

5

HEAT

TRANS

Temperature Distribution

0= dT

kd

t

Tcq

z

Tk

yy

Tk

yx

Tk

x p ∂∂=+

∂∂

∂∂+

∂∂

∂∂+

∂∂

∂∂ •

ρ

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

• Heat diffusion equation in the x-direction for steady-state conditions, with no energy generation:

0=

dx

kdx

• Boundary Conditions:2,1, )(,)0( ss TLTTT ==

� qx is constant

33333333

Dr Mazlan

• Temperature profile, assuming constant k:

1,1,2, )()( sss TL

xTTxT +−=

� Temperature varies linearly with x

(3.1)

HEAT

TRANS

Thermal Resistance

Based on the previous solution, the conduction heat transfer rate can be calculated:

( ) ( )kAL

TTTT

L

kA

dx

dTkAq ss

ssx /2,1,

2,1,

−=−=−= (3.2a)

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

( )kALLdx ssx /2,1,

Similarly for heat convection, Newton’s law of cooling applies:

hA

TTTThAq S

Sx /1

)()( ∞

∞−=−=

And for radiation heat transfer:TT

TTAhq surs )()(

−=−=

(3.2b)

(3.2c)

33333333

Dr Mazlan

� Recall electric circuit theory - Ohm’s law for elect rical resistance:

Resistance

e DifferencPotentialcurrent Electric =

Ah

TTTTAhq

r

surssursrrad /1

)()(

−=−= (3.2c)

Page 6: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

6

HEAT

TRANS

Thermal Resistance

• We can use this electrical analogy to represent heat transfer problems using the concept of a thermal circuit (equivalent to an electrical circuit).

∆TForce Driving OverallSFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

� Compare with equations 3.2a-3.2c� The temperature difference is the “potential” or driving force for the

heat flow and the combinations of thermal conductivity, convection coefficient, thickness and area of material act as a resistance to this

∑∆==

R

Tq overall

Resistance

Force Driving Overall

33333333

Dr Mazlan

coefficient, thickness and area of material act as a resistance to this flow:

AhR

hAR

kA

LR

rradtconvtcondt

1,

1, ,,, ===

HEAT

TRANS

Thermal Resistance for Plane Wall

1,∞T

1,sT

22, ,hT∞

Cold fluid

TTTTTTq ssss 2,2,2,1,1,1, ∞∞ −

=−

=−

=SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

In terms of overall temperature difference:qx

2,sT

2,∞T

x=0 x=L

11, ,hT∞

Hot fluidR

TTqx

2,1, −= ∞∞

Ah

TT

kAL

TT

Ah

TTq ssss

x2

2,2,2,1,

1

1,1,

/1//1∞∞ −

=−

=−

=

33333333

Dr Mazlan

xx=0 x=L

AhkA

L

AhR

R

tot

totx

21

11 ++=

Page 7: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

7

HEAT

TRANS

Composite Walls

Express the following geometry in terms of a an equivalent thermal circuit.

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANS

Composite Walls

What is the heat transfer rate for this system?

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

AlternativelyUAq

TRR

TUAq

ttot

x

1=∆==

∆=

where U is the overall heat transfer coefficient and ∆T the overall

33333333

Dr Mazlan

where U is the overall heat transfer coefficient and ∆T the overall temperature difference.

)]/1()/()/()/()/1[(

11

41 hkLkLkLhARU

CCBBAAtot ++++==

Page 8: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

8

HEAT

TRANS

Thermal Resistance concept- Convection & Radiation

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANSSFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

Page 9: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

9

HEAT

TRANS

Example – single layer wall

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANS

Example – multi layer wall

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

Page 10: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

10

HEAT

TRANSSFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANS

Example – single layer window

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

Page 11: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

11

HEAT

TRANS

Example – two layer window

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANS

Composite Walls – with parallel resistances

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

(a) Surfaces normal to the x-direction are isothermal

� For resistances in series: R =R +R +…+R

33333333

Dr Mazlan

(b) Surfaces parallel to x-direction are adiabatic

Rtot=R1+R2+…+Rn

� For resistances in parallel:1/Rtot=1/R1+1/R2+…+1/Rn

Page 12: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

12

HEAT

TRANS

Composite Walls – with parallel resistances

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANS

� For resistances in series: Rtot=R1+R2+…+Rn

� For resistances in parallel:1/Rtot=1/R1+1/R2+…+1/Rn

Composite Walls – with parallel resistances

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

Page 13: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

13

HEAT

TRANS

Parallel heat conduction

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANSSFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

AttentionThe result obtained will be somewhat approximate, since the surfaces of thethird layer will probably not be isothermal, and heat transfer between the firsttwo layers is likely to occur.

33333333

Dr Mazlan

two layers is likely to occur.

Page 14: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

14

HEAT

TRANS

Heat loss through a composite wall

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANS

Contact Resistance

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

Page 15: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

15

HEAT

TRANS

Contact Resistance

The temperature drop across the interface between materials may be appreciable, due to surface roughness S

FER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

surface roughness effects, leading to air pockets. We can define thermal contact resistance:

intTAhq c ∆=33333333

Dr Mazlan

AhTR cc /int∆=

intTAhq cx ∆=

HEAT

TRANSSFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

Page 16: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

16

HEAT

TRANSSFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

Thermal contact resistance is observed to decrease with decreasing surface roughness and increasing interface pressure, as expected.

33333333

Dr Mazlan

expected.

Most experimentally determined values of the thermal contact resistance fall between 0.000005 and 0.0005 m2 · °C/W (the corresponding range of thermal contact conductance is 2000 to 200,000 W/m2 · °C).

HEAT

TRANSSFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

Page 17: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

17

HEAT

TRANS

Contact resistance of transistors

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANSSFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

Page 18: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

18

HEAT

TRANS

Composite Walls – with contact resistances

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANS

Radial Systems-Cylindrical Coordinates

Consider a hollow cylinder, whose inner and outer surfaces are exposed to fluids at different temperatures

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

Temperature distribution

33333333

Dr Mazlan

Temperature distribution

Page 19: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

19

HEAT

TRANS

• Heat diffusion equation (eq. 2.5) in the r-direction for steady-state conditions, with no energy

t

Tcq

z

Tk

z

Tk

rr

Tkr

rr p ∂∂=+

∂∂

∂∂+

∂∂

∂∂+

∂∂

∂∂ •

ρφφ2

11

01 =

dr

dTkr

dr

d

r 0

1 =

dr

dTr

dr

d

r

for constant k

Temperature Distribution - Thermal resistance for cylinder

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

state conditions, with no energy generation:

drdrr

• Boundary Conditions: 2,21,1 )(,)( ss TrTTrT ==

• Fourier’s law: constdr

dTrLk

dr

dTkAqr =−=−= )2( π

0=

drr

drr

33333333

Dr Mazlan

• Temperature profile, assuming constant k:

2,221

2,1, ln)/ln(

)()( s

ss Tr

r

rr

TTrT +

−= � Logarithmic temperature

distribution

HEAT

TRANS

2,221

2,1, ln)/ln(

)()( s

ss Tr

r

rr

TTrT +

−=

Temperature Distribution - thermal resistance for cylinder

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

dr

dTrLk

dr

dTkAqr −=−= )2( π

221

)/ln(

)(2

12

21

rr

TTkLq r

−= π

33333333

Dr Mazlan

12

kLrr

TTq r

π2/)/ln( 12

21 −=

kLrrR cyl π2/)/ln( 12=therefore

Page 20: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

20

HEAT

TRANS

Temperature Distribution - thermal resistance for cylinder

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANS

Thermal resistance for cylinder

Based on the previous solution, the conduction hear transfer rate can be calculated:

• Fourier’s law: constdT

rLkdT

kAq =π−=−= )2(SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

( ) ( ) ( )condt

ssssssx R

TT

Lkrr

TT

rr

TTLkq

,

2,1,

12

2,1,

12

2,1,

)2/()/ln()/ln(

2 −=

−=

−=

ππ

� In terms of equivalent thermal circuit:

2,1, TTq

−= ∞∞

• Fourier’s law: constdr

rLkdr

kAqr =π−=−= )2(

33333333

Dr Mazlan

)2(

1

2

)/ln(

)2(

1

22

12

11

2,1,

LrhkL

rr

LrhR

R

TTq

tot

totx

πππ++=

−= ∞∞

Page 21: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

21

HEAT

TRANS

Composite Walls

Express the following geometry in terms of a an equivalent S

FER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

a an equivalent thermal circuit.

33333333

Dr Mazlan

HEAT

TRANS

Composite Walls

What is the heat transfer rate?

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

where U is the overall heat transfer coefficient. If A=A1=2πr1L:

44

1

3

41

2

31

1

21

1

1lnlnln

11

hr

r

r

r

k

r

r

r

k

r

r

r

k

r

h

U

CBA

++++=

33333333

Dr Mazlan

alternatively we can use A2=2πr2L, A3=2πr3L etc. In all cases:

∑====

tRAUAUAUAU

144332211

Page 22: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

22

HEAT

TRANS

Spherical Coordinates

• Fourier’s law:

dTkAqsph −=S

FER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR• Starting from Fourier’s law, acknowledging that q r is constant,

independent of r, and assuming that k is constant, derive the

dr

dTrk

drkAqsph

)4( 2π−=

−=

33333333

Dr Mazlan

independent of r, and assuming that k is constant, derive the equation describing the conduction heat transfer ra te. What is the thermal resistance?

HEAT

TRANS dTkrdrq ∫∫ −=2/4/ π

Temperature Distribution - thermal resistance for sphere

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

dTkrdrqsph ∫∫ −=2/4/ π

)/1()/1(

)(4

21

21

rr

TsTskq sph −

−= π

33333333

Dr Mazlan

)11

(4

1

21 rrkR sph −=

π

Page 23: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

23

HEAT

TRANS

Conduction with Generation

Thermal energy may be generated or consumed due to conversion from some other energy form.

� If thermal energy is generated in the material at the expense of some other energy form, we have a source: is +veq

.SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

other energy form, we have a source: is +ve– Deceleration and absorption of neutrons in a nuclear reactor– Exothermic reactions – Conversion of electrical to thermal energy:

V

RI

V

Eq eg

2

==&

where I is the current, Re the electrical resistance, V the volume of the medium

q

.

.33333333

Dr Mazlan

� If thermal energy is consumed we have a sink: is -ve– Endothermic reactions

q

24

.

HEAT

TRANS

The Plane WallConsider one-dimensional, steady-state conduction in a plane wall ofconstant k, with uniform generation, and asymmetric surface conditions:

• Heat diffusion equation (eq. 2.3) :2 qTd .

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

02

2

=+k

q

dx

Td

• General Solution:

212

2CxCx

k

qT ++−=

.

.

33333333

Dr Mazlan

• Boundary Conditions:

2,1, )(,)( ss TLTTLT ==−

2k

25

Page 24: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

24

HEAT

TRANS

Temperature Profile

22

)(1

2)( 2,1,1,2,

2

22ssss TT

L

xTT

L

x

k

qLxT

++

−+

−= (3.3)

.

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

� Profile is parabolic. � Heat flux not independent of x

What happens when:

?0 increases, ,0 <= qqq. . .

33333333

Dr Mazlan 26

HEAT

TRANS

Symmetrical Distribution• When both surfaces are maintained at a

common temperature, Ts,1= Ts,2 = Ts

TxqL

xT +

−=22

1)( (3.4a).

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

sTLk

xT +

−=2

12

)(

What is the location of the maximum temperature?

(3.4a)

33333333

Dr Mazlan

2

max

max)(

=−

−∴L

x

TT

TxT

s

(3.4b)

27

Page 25: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

25

HEAT

TRANS

Symmetrical Distribution

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

� Note that at the plane of symmetry:

0q" 00

0

=⇒=

=

=x

xdx

dT

33333333

Dr Mazlan

� Equivalent to adiabatic surface

28

HEAT

TRANS

Calculation of surface temperature T s

In equations (3.4a) and (3.4b) the surface temperature, Ts is needed.� Boundary condition at the wall:

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

)( ∞=

−=− TThdx

dTk s

Lx

Substituting (dT/dx)x=L from equation(3.4a):

qL.

33333333

Dr Mazlan

h

qLTTs += ∞

(3.5)

29

.

Page 26: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

26

HEAT

TRANS

ExampleThe steady-state temperature distribution in a composite plane wall of three different materials, each of constant thermal conductivity, is shown in the schematic below.

a) Does heat generation occur in any of sections A,B, or C?SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

a) Does heat generation occur in any of sections A,B, or C?b) Based on the schematic, what is the boundary condition at location (4)?c) Comment on the relative magnitudes of q2” and q3” .

d) Comment on the relative magnitudes of kA and kB.

33333333

Dr Mazlan 30

HEAT

TRANS

Example

A plane wall of thickness 0.1 m and thermal conductivity 25 W/m.K having uniform volumetric heat generation of 0.3 MW/m3 is insulated on one side, while the other side is exposed to a fluid at 92°C. The convection heat transfer coefficient between the wall and the fluid is S

FER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

convection heat transfer coefficient between the wall and the fluid is 500 W/m2.K. Determine the maximum temperature in the wall.

33333333

Dr Mazlan 31

Page 27: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

27

HEAT

TRANS

Radial Systems

Cylindrical (Tube) Wall Spherical Wall (Shell)

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

Solid Cylinder (Circular Rod) Solid Sphere

33333333

Dr Mazlan 32

HEAT

TRANS

Radial Systems• Heat diffusion equation in

the r-direction for steady-state conditions:

01 =+

k

q

dr

dTkr

dr

d

r

2 ln CrCrq

T ++−=

.

.SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

• Boundary Conditions: sor

TrTdr

dT ===

)( ,00

• Temperature profile:

o Trqr

rT +

−=22

1)(

hT ,∞

• General Solution: 212 ln

2CrCr

k

qT ++−=

.

33333333

Dr Mazlan

so

o Tr

r

k

qrrT +

−=

21

4)(

L

))(2()( 2∞−= TTLrhLrq soo ππ

h

qrTT o

s 2+= ∞

• Calculation of surface temperature:

and

(3.53)

33

Page 28: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

28

HEAT

TRANS

Example

A cylindrical shell of inner and outer radii ri and ro, respectively, is filled with a heat-generating material that provides a uniform volumetric generation rate. The inner surface is insulated, while the outer surface of the shell is exposed to a fluid with a convection coefficient h.

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

of the shell is exposed to a fluid with a convection coefficient h.a) Obtain an expression for the steady-state temperature distribution T(r)

in the shell.b) Determine an expression for the heat rate q’ (ro) at the outer radius of

the shell in terms of the heat generation rate and the shell dimensions

33333333

Dr Mazlan 34

HEAT

TRANSSFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

Page 29: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

29

HEAT

TRANS

Critical radius of insulation

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANS

Optimum thickness of insulation

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

Page 30: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

30

HEAT

TRANS

Extended Surfaces (Fins)

An extended surface (also know as a combined conduction-convection system or a fin) is a solid within which heat transfer by conduction is assumed to be one dimensional, while heat is also transferred by convection (and/or radiation) from the surface in a direction transverse S

FER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

convection (and/or radiation) from the surface in a direction transverse to that of conduction

33333333

Dr Mazlan 35

HEAT

TRANS

Extended Surfaces (Fins)

Extended surfaces may exist in many situations but are commonly used as fins to enhance heat transfer by increasing the surface area available for convection (and/or radiation). They are particularly beneficial when h is small, as for a gas and natural convection.

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

beneficial when h is small, as for a gas and natural convection.

33333333

Dr Mazlan

� Solutions for various fin geometries can be found in the literature (see for example in textbook).

36

Page 31: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

31

HEAT

TRANS

Extended surfacesExtended surfaces-- FinsFins

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

There are two waysto increase the rate of heat transfer: to increase the convection heat transfer coefficient h or to increase the surface area A.

33333333

Dr Mazlan

to increase the surface area A.

Fins enhance heat transfer from a surface by exposing a larger surface area toconvection and radiation.

HEAT

TRANS

Fin equation

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

or

Page 32: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

32

HEAT

TRANS

Infinitely long fin

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANS

Negligible heat loss from the fin tip

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

Page 33: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

33

HEAT

TRANS

Fin efficiency

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANS

Efficiency of fins (I)

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

Page 34: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

34

HEAT

TRANS

Efficiency of fins (II)

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANS

Fin effectiveness (I)

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

Page 35: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

35

HEAT

TRANS

Fin effectiveness (II)

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANS

Proper length of a fin

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

Page 36: C 3 Steady --State One Dimensional Heat Conductionmazlan/?download=Heat Transfer Chapter 3 - Stea… · - 1 dimensional heat transfer - Isothermal surfaces-Steady state F E R CCCC

36

HEAT

TRANS

Thermal resistance

SFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan

HEAT

TRANSSFER

CCCCCCCCHHHHHHHH

AAAAAAAA

PPPPPPPP

TTTTTTTT

EEEEEEEE

RRRRRRRR

33333333

Dr Mazlan