BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

48
Klaus Honscheid 1 Ohio State University BTeV – A Dedicated B Physics Experiment at the Tevatron Collider Klaus Honscheid The Ohio State University DPF 2002, May 24, 2001

description

BTeV – A Dedicated B Physics Experiment at the Tevatron Collider. Klaus Honscheid The Ohio State University DPF 2002, May 24, 2001. Belarussian State- D .Drobychev, A. Lobko, A. Lopatrik, R. Zouversky UC Davis - P. Yager Univ. of Colorado- J. Cumalat Fermi National Lab - PowerPoint PPT Presentation

Transcript of BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Page 1: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 1Ohio State University

BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus HonscheidThe Ohio State UniversityDPF 2002, May 24, 2001

Page 2: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 2Ohio State University

BTeV Collaboration

Belarussian State- D .Drobychev,

A. Lobko, A. Lopatrik, R. Zouversky

UC Davis - P. Yager

Univ. of Colorado-J. Cumalat

Fermi National Lab

J. Appel, E. Barsotti, C. N. Brown ,

J. Butler, H. Cheung, G. Chiodini,

D. Christian, S. Cihangir, R. Coluucia,

I. Gaines, P. Garbincius, L. Garren,

E. Gottschalk, A. Hahn, P. Kasper,

P. Kasper, R. Kutschke, S. Kwan,

P. Lebrun, P. McBride, M. Votava,

M. Wang, J. Yarba

Univ. of Florida at Gainesville

P. Avery

University of Houston

M. Bukhari, K. Lau, B. W. Mayes,

V. Rodriguez, S. Subramania

Illinois Institute of Technology

R. A. Burnstein, D. M. Kaplan,

L. M. Lederman, H. A. Rubin,

C. White

Univ. of Illinois- M. Haney,

D. Kim, M. Selen, J. Wiss Univ. of Insubria in Como-P. Ratcliffe, M. Rovere

INFN - Frascati- M. Bertani,L. Benussi, S. Bianco, M. Caponero,F. Fabbri, F. Felli, M. Giardoni, A. La Monaca, E. Pace, M. Pallotta,A. Paolozzi

INFN - Milano - G. Alimonti, P. D’Angelo, L. Edera, S. Magni, D. Menasce, L. Moroni, D. Pedrini, S.Sala, L. Uplegger

INFN - Pavia - G. Boca, G. Liguori, & P. Torre

INFN - Torino – R. Arcidiacono, S. Argiro,S. Bagnasco, N. Cartiglia, R. Cester,F. Marchetto, E. Menichetti,R. Mussa, N. Pastrone

IHEP Protvino, Russia A. Derevschikov, Y. Goncharenko,V. Khodyrev, V. Kravtsov, A. Meschanin, V. Mochalov,

D. Morozov, L. Nogach, K. Shestermanov, L. Soloviev, A. Uzunian, A. Vasiliev

University of Iowa C. Newsom, & R. Braunger

University of Minnesota V. V. Frolov, Y. Kubota, R. Poling, & A. Smith Nanjing Univ. (China)T. Y. Chen, D. Gao, S. Du, M. Qi, B. P. Zhang, Z. Xi Zhang, J. W. Zhao

Ohio State UniversityK. Honscheid, & H. Kagan Univ. of PennsylvaniaW. Selove

Univ. of Puerto Rico A. Lopez, & W. Xiong

Univ. of Science & Tech. of China - G. Datao, L. Hao, Ge Jin, T. Yang, & X. Q. Yu Shandong Univ. (China)- C. F. Feng, Yu Fu, Mao He, J. Y. Li, L. Xue, N. Zhang, & X. Y. Zhang

Southern Methodist University - T. Coan

SUNY Albany - M. Alam

Syracuse University

M. Artuso, S. Blusk, C. Boulahouache, O. Dorjkhaidav, K. Khroustalev, R.Mountain, N. Raja, T. Skwarnicki, S. Stone, J. C. Wang

Univ. of Tennessee T. Handler, R. Mitchell

Vanderbilt University W. Johns, P. Sheldon, K. Stenson, E. Vaandering, & M. Webster

Univ. of Virginia:

M. Arenton, S. Conetti, B. Cox,

A. Ledovskoy

Wayne State UniversityG. Bonvicini, & D. Cinabro,

A. Shreiner

University of Wisconsin M. Sheaff

York University

S. Menary

Page 3: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 3Ohio State University

CKM, CP and all that

MagnitudesBd, Bs Mixing Phases

From Hocker et al:Current constraints on bd CKM triangle

From Peskin:Many independentchecks are needed

Page 4: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 4Ohio State University

Some crucial measurements

PhysicsQuantity

Decay Mode VertexTrigger

K/sep

det Decaytime

Lep-ton Id

sin(2) Bo

cos(2) Bo

sign(sin(2)) Bo & Bo

sin() Bs Ds K

sin() B+ Do K

sin() B K

sin() BoBs K

K

sin(2) Bs J/ J/

sin(2) Bo J/Ks

sin(2) BoKs,Ks, o

cos(2) Bo J/K* & Bs J/

xs Bs Ds

for Bs Bs

J/ KK

Ds

Page 5: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 5Ohio State University

B Physics at Hadron Colliders

• The Opportunity– Lot’s of b’s

(a few times 1011 b-pairs per year at the Tevatron)

– “Broadband, High Luminosity B Factory”(Bd, Bu, Bs, b-baryon, and Bc )

– Tevatron luminosity will increase to at least 5x1032

– Cross sections at the LHC will be 5 times larger

– Because you are colliding gluons, it is intrinsically asymmetric so time evolution studies are possible (and integrated asymmetries are nonzero)

• The Challenge– Lot’s of background

(S/N 1:500 to 1:1000) – Complicated underlying

event– No stringent kinematic

constraints that one has at an e+e- machine

– Multiple interactions

These lead to questions about thetriggering, tagging, and reconstruction efficiency and the background rejection that can be achieved at a hadron collider

Page 6: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 6Ohio State University

The Tevatron as a b & c sourceThe Tevatron as a b & c source

Value

Luminosityb cross-section# of b’s per 107 secb fractionc cross-sectionBunch SpacingLuminous region lengthLuminous region widthInteractions/crossing

2 x 1032

100 b4 x 1011

10-3

>500b132 nsz = 10-20 cm

x ~ y ~ 50 m

<2.0>

property

Page 7: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 7Ohio State University

b production angle

Characteristics of hadronic b production

The higher momentum b’s are at larger ’s

b production peaks at large angles with large bb correlation

b production angle

BTeV BTeV

CentralDetectorsMean ~0.75

Page 8: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 8Ohio State University

A simulated BTeV Event

Page 9: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 9Ohio State University

Page 10: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 10Ohio State University

The BTeV Spectrometer (revised)

• Single Arm• Full Pixel Detector• Full Trigger and DAQReduce costsNew baseline cost ~M$100

• Use extra bandwidth to loosen trigger• Better lepton id

Re-gain some performanceNew baseline performanceabout 70% of original two-arm spectrometer

Page 11: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 11Ohio State University

Key Design Features of BTeV

A dipole magnet (1.6 T) and 2 1 spectrometer arms A precision vertex detector based on planar pixel arrays A detached vertex trigger at Level I High resolution tracking system (straws and silicon strips) Excellent particle identification based on a Ring Imaging

Cerenkov counter. A lead tungstate electromagnetic calorimeter for photon and

0 reconstruction Excellent identification of muons A very high capacity data acquisition system which frees us

from making excessively specific choices at the trigger level

Page 12: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 12Ohio State University

Pixel Vertex Detector

Reasons for Pixel Detector:• Superior signal to noise• Excellent spatial resolution -- 5-10 microns depending on angle, etc• Very low occupancy• Very fast • Radiation hardSpecial features:• It is used directly in the L1 trigger• Pulse height is measured on every channel with a 3 bit FADC• It is inside a dipole and gives a crude standalone momentum

Page 13: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 13Ohio State University

Pixels – Close up of 3/31 stations

•50m x 400m pixels - 30 million total•Two pixel planes per station (supported on a single substrate)•Detectors in vacuum•Half planes move together when Tevatron beams are stable.

10 cm

Page 14: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 14Ohio State University

Pixel Readout Chip

FPIX1

•Different problem than LHC pixels:132 ns crossing time (vs. 25ns) easierVery fast readout required harder

•R&D started in 1997

•Two generations of prototype chips(FPIX0 & FPIX1) have been designed& tested, with & without sensors,including a beam test (1999) inwhich resolution <9 was demonstrated.

•New “deep submicron” radiationhard design (FPIX2):Three test chipdesigns have been produced & tested.Expect to submit the final design~Dec. 2001

A pixel

7.2 mm Test outputs

8 mm

Readout

Page 15: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 15Ohio State University

Pixel Test Beam Results

Track angle (mr)

No changeafter 33 Mrad(10 years, worst case, BTeV)

Analog output of pixel amplifier before and after 33 Mrad irradiation.0.25 CMOS design verified radiationhard with both and protons.

Page 16: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 16Ohio State University

Pixel detectors are hybrid assemblies

•Sensors & readout “bump bonded” to one another.•Readout chip is wire bondedto a “high density interconnect”which carries bias voltages,control signals, and output data.

Micrograph of FPIX1: bump bonds are visible

Sensor

Readout chip

HDI

HDI

Sensor(5 readout chips underneath)

Wire bonds

Page 17: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 17Ohio State University

Distribution in L/ of Reconstructed Bs

Primary-secondary vertex separationMinus generated. = 138

proper (reconstructed) - proper (generated)= 46 fs

Mean = 44

Physics Performance of Pixel Detector

Page 18: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 18Ohio State University

The BTeV Level I Detached Vertex Trigger

Three Key Requirements:– Reconstruct every beam crossing, run at 7.6 MHz– Find primary vertex– Find evidence for a B decaying downstream of primary

vertex

Five Key Ingredients:– A vertex detector with excellent spatial resolution, fast

readout, and low occupancy– A heavily pipelined and parallel processing architecture well

suited to tracking and vertex fining– Inexpensive processing nodes, optimized for specific tasks

within the overall architecture ~3000 CPUs– Sufficient memory to buffer the vent data while calculations

are carried out ~1 Terabyte– A switching and control network to orchestrate the data

movement through the system

Page 19: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 19Ohio State University

Information available to the L1 vertex trigger

pp pp

Page 20: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 20Ohio State University

Track segments found by the L1 vertex trigger

“entering” track segment“exiting” track segment

Page 21: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 21Ohio State University

FPGAAssociative

MemoryDSP

Track Farm(4 DSPs per crossing)Average

Latency:0.4 s

AverageLatency:55 s

DSPVertex Farm

(1 DSP per crossing)

AverageLatency:77 s

Level 1 Vertex Trigger:FPGAs: ~ 500Track Farm DSPs: ~ 2000Vertex Farm DSPs: ~ 500Level 2/3 Trigger2500 high performanceLINUX processors

PixelSystem

PatternRecognition

TrackReconstruction

VertexReconstruction

Block Diagram of the Level 1 Vertex Trigger

Page 22: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 22Ohio State University

Pixel Trigger Performance

Select number (N) of detached trackstypically pt> 0.5 GeV, N = 2

Select impact parameter (b) w.r.t. primary vertex

typically (b) = 6Options include cuts on vertex, vertex mass etc.

74%

1%

N=1

N=2

N=3

N=4

N=1

N=2

N=3

N=4

Page 23: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 23Ohio State University

Trigger Simulation Results

• L1 acceptance: 1% 2%• Profile of accepted events

• 4 % from b quarks including 50-70% of all “analyzable” b events• 10 % from c quarks• 40 % from s quarks• 45 % pure fakes

• L2/L3 acceptance: 4 %• 4000 Hz output rate• 200 Mbytes/s

Level 1 Efficiency on Interesting Physics States

Page 24: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 24Ohio State University

Trigger/DAQ

BTeV Data Acquisition Overview

Page 25: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 25Ohio State University

Importance of Particle Identification

Cherenkov angle vs Mom. P

Gas

Liquid

Page 26: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 26Ohio State University

• Two identical RICH detectors• Components:

– Gaseous Radiator (C4F10 )– Liquid Radiator (C5F12 )– Spherical mirrors – Photo-detectors (PM + HPD)– Vessel to contain gas volume

Cherenkov photons from Bo+ and rest of the beam collision

Ring Imaging Cherenkov (RICH)

Page 27: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 27Ohio State University

RICH Readout: Hybrid Photodiodes (HPD)

• Commercial supplier from Holland (DEP)

• A number of prototypes was successfully produced and tested for CMS

• New silicon diode customized for BTeV at DEP (163 pixels per HPD)

• Challenges:– high voltages (20 kV!) – Signal ~5000e- need

low noise electronics (Viking)

– In the hottest region up to 40 channels fire per tube

– About 2000 tubes total (cost)

Page 28: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 28Ohio State University

Use of RICH to extend Lepton Identification

• While the full detector aperture is 300 mr, the acceptance of the electromagnetic calorimeter and muon detector is only 200mr

• The RICH, however, has both electron-pion and muon-pion discrimination at low momentum. The wide angle particles are mostly at low momentum!

This gains us afactor of 2.4 for single lepton id and 3.9 if we require bothleptons to be identified

Page 29: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 29Ohio State University

Electromagnetic Calorimeter

The main challenges include• Can the detector survive the high radiation environment ?• Can the detector handle the rate and occupancy ?• Can the detector achieve adequate angle and energy resolution ?BTeV now plans to use a PbWO4 calorimeter• Developed by CMS for use at the LHC• Large granularity

Block size 2.7 x 2.7 x 22 cm3 (25 Xo)~11000 crystals

• Photomultiplier readout (no magnetic field)• Pre-amp based on QIE chip (KTeV)• Energy resolution

Stochastic term 1.8%Constant term 0.33%

• Position resolution E/32.3x mm mm28.0

Page 30: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 30Ohio State University

PbWO4 Calorimeter Properties

Property ValueDensity(gm/cm2) 8.28Radiation Length(cm) 0.89Interaction Length(cm) 22.4Light Decay time(ns) 5(39%) (3components) 15(60%)

100(1%)Refractive index 2.30Max of light emission 440nmTemperature Coefficient (%/oC) -2Light output/Na(Tl)(%) 1.3Light output(pe/MeV) into 2” PMT 10

Property ValueTransverse block size 2.7cm X 2.7 cmBlock Length 22 cmRadiation Length 25Front end Electronics PMTInner dimension +/-9.8cm (X,Y)Energy Resolution: Stochastic term 1.8% Constant term 0.33%Spatial Resolution: Outer Radius 140 cm--215 cm

$ drivenTotal Blocks/arm 11,500

E/32.3x mm

mm28.0

Page 31: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 31Ohio State University

Electromagnetic Calorimeter Tests

• Lead Tungstate Crystals from Shanghai, Bogoroditsk, other vendors• Verify resolution, test radiation hardness (test beam at Protvino)• Test uniformity

Block from China’s Shanghai Institute

5X5 stack of blocks from Russia readyfor testing at Protvino

Page 32: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 32Ohio State University

Preliminary Testbeam Results

• Resolution (energy and position) close to expectations• Some non-uniformity in light output• more Radiation Hardness studies

Position Resolution

Energy Resolution

Page 33: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 33Ohio State University

EM calorimetry

*

CLEObarrel=89%

radius

Page 34: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 34Ohio State University

Muon System

track from IP

toroid(s) / iron

~3 m

2.4 m halfheight

• Provides Muon ID and Trigger– Trigger for interesting

physics states– Check/debug pixel trigger

• fine-grained tracking + toroid– Stand-alone mom./mass trig.– Momentum “confirmation”

• Basic building block: Proportional tube “Planks”

Page 35: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 35Ohio State University

Physics Reach (CKM) in 107 s

J/+-

Reaction B (B)(x10-6) # of Events S/B Parameter Error or (Value)

Bo+- 4.5 14,600 3 Asymmetry 0.030

Bs Ds K- 300 7500 7 8o

BoJ/KS J/l+ l- 445 168,000 10 sin(2) 0.017

Bs Ds- 3000 59,000 3 xs (75)

B-Do (K+-) K- 0.17 170 1

B-Do (K+K-) K- 1.1 1,000 >10 13o

B-KS - 12.1 4,600 1 <4o +

Bo K+- 18.8 62,100 20 theory errors

Bo+- 28 5,400 4.1

Booo 5 780 0.3 ~4o

BsJ/ 330 2,800 15

BsJ/ 670 9,800 30 0.024

Page 36: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 36Ohio State University

Concluding Remarks

PAC Recommendation“ … BTeV has designed and prototyped an ambitious trigger that will use B decay displaced vertices as its primary criterion. This capability, together with BTeV’s excellent electromagnetic calorimetry and particle ID and enormous yields, will allow this experiment to study a broad array of B and Bs decays. BTeV has a broader physics reach than LHCb and should provide definitive measurements of CKM parameters and the most sensitive tests for new physics in the flavor sector.”

C0 Hall at the Tevatron

Page 37: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 37Ohio State University

Additional Transparencies

Page 38: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 38Ohio State University

Changes wrt Proposal in Event Yields & Sensitivities

• We lost one arm, factor = 0.5• We gained on dileptons

– From RICH ID– in proposal we used only +-, now we include e+e-

– factor = 2.4 (or 3.9), depending on whether analysis used single (dilepton) id

• We gained on bandwidth, factor = 1.15

• Gained on D2 for Bs only, factor = 1.3

Page 39: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 39Ohio State University

Examples

mode Yield prop

Yield factor

Yieldone-arm

quan/Errprop (D2)

quan/Errone arm(D2)

BoJ/ Ks 80,500 0.5*3.9*1.15=2.24

168,000 sin(2)/ 0.025 (0.10)

sin(2)/0.017 (0.10)

BsJ/() 9,940

0.5*2.4*1.15=1.38

12,600 sin(2)/0.033 (0.10)

sin(2)/0.024 (0.13)

Bs Ds K- 13,100 0.5*1.15

=0.58 7,500 /

6o (0.10)

/ 8o (0.13)

Page 40: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 40Ohio State University

Reconstructed Events in New Physics Modes: Comparison of BTeV with B-factories

Mode BTeV (107s) B-fact (500 fb-1)

Yield Tagged S/B Yield Tagged S/B

BsJ/ 12650 1645

>15 - -

B-K- 11000 11000 >10 700 700 4

BoKs 2000 200 5.2 250 75 4

BoK*+- 2530 2530 11 ~50 ~50 3

Bs +- 6 0.7 >15 0

Bo+- 1 0.1 >10 0

D*++Do, DoK+ ~108 ~108 large 8x105 8x105 large

Page 41: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 41Ohio State University

Comparisons with LHCb

• Advantages of LHCb b 5x larger at LHC, while t is only 1.6x larger

– The mean number of interactions per beam crossing is 3x lower at LHC, when the FNAL bunch spacing is 132 ns

• Advantages of BTeV (machine specific)– The 25 ns bunch spacing at LHC causes increased

electronic noise. It makes 1st level detached vertex triggering more difficult; in fact LHCb only does vertexing in level 2

Page 42: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 42Ohio State University

Comparisons with LHCb II

– The 7x larger LHC beam energy causes problems: much larger range of track momenta that need to be analyzed and large increase in track multiplicity, which causes triggering and tracking problems

– The long interaction region at FNAL, =30 cm compared with 5 cm at LHC, somewhat compensates for the larger number of interactions per crossing, since the interactions are well separated

– There is an ion-trapping problem that stops them from moving their silicon closer than ~1 cm (compared to 6 mm for BTeV)

Page 43: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 43Ohio State University

Comparisons with LHCb III

• Advantages of BTeV (detector specific)– BTeV has vertex detector in magnetic field which allows

rejection of high multiple scattering (low p) tracks in the trigger– BTeV is designed around a pixel vertex detector which has

much less occupancy, and allows for a detached vertex trigger in the first trigger level.

• Important for accumulation of large samples of rare hadronic decays and charm physics.

• Allows BTeV to run with multiple interactions per crossing, L in excess of 2x1032 cm-2 s-1

– BTeV will have a much better EM calorimeter– BTeV is planning to read out 5x as many b's/second

Page 44: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 44Ohio State University

Specific Comparisons with LHC-b

Yields in important final states

Mode BRYield S/B

Yield S/B

Bs Ds K- 3.0x10-4 7530 7 7660 7

Bo+- 2.8x10-5 5400 4.1 2140 0.8

Booo 0.5x10-5 776 0.3 880 not known

BTeV LHC-b

Page 45: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 45Ohio State University

Fundamentals: Decay Time Resolution

• Excellent decay time resolution– Reduces background– Allows detached vertex

trigger• The average decay distance

and the uncertainty in the average decay distance are functions of B momentum:

<L> = c

= 480 m x pB/mB

from b

L/ L/

direct

CDF/D0region LHC-b

region

Page 46: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 46Ohio State University

Trigger

Page 47: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 47Ohio State University

Page 48: BTeV – A Dedicated B Physics Experiment at the Tevatron Collider

Klaus Honscheid 48Ohio State University