Biotechnology in Industrial Waste water Treatment

31
PRESENTED BY SHUAIBU MUSA GEZAWA {20122215} BIOTECHNOLOGY IN INDUSTRIAL WASTEWATER TREATMENT CYPRUS INTERNATIONAL UNIVERSITY BIOTECHNOLOGY (ENE614)

Transcript of Biotechnology in Industrial Waste water Treatment

PRESENTED BY

SHUAIBU MUSA GEZAWA{20122215}

BIOTECHNOLOGY IN INDUSTRIAL WASTEWATER TREATMENT

CYPRUS INTERNATIONAL UNIVERSITY

BIOTECHNOLOGY(ENE614)

ContentsContents Introduction Benefits Industrial Contaminants & their Impact Treatment Technologies Bioremediation Technology Bioremediation Principles & Mechanism Factors Influencing Bioremediation Advantages & Disadvantages of Bioremediation Conclusions

Industrial Wastewater Industrial Wastewater CharacteristicsCharacteristicsIndustrial wastewater is a type of wastewater produced by

industrial activity, such as that of factories, mills and mines.

It is characterized by its large volume, high temperature, high concentration of biodegradable organic matter and suspended solids, high alkalinity or acidity, and by variations of flow.

The degree of treatment varies according to the means of disposal, which may be to a municipal sewer system, a receiving body of water, such as a stream, an estuary, or a large body of fresh water, or recovery for reuse.

BenefitsBenefits Used to develop method for the treatment of

toxic compounds. Improving the design and operation of

biomechanical treatment system used for degradation of toxic compounds.

Improvement of public health, sanitation, soil integrity and the conservation of fresh water resources.

How to accomplish waste How to accomplish waste TreatmentTreatment

Trickling Filter Rotating

Biological Contactor

Activated Sludge Process

Lagoons Oxidation Ponds

Major PlayersMajor Players Microorganisms are

used to destroy waste materials.

Microorganisms include: Bacteria (aerobic

and anaerobic) Fungi Algae Actinomycetes

(filamentous bacteria).

Overall Treatment ProcessesOverall Treatment Processes

3 stages of treatment.3 stages of treatment.  

Primary. This is only a physical separation to remove solid matter.

Effluent is allowed to settle for a few hours. 

Secondary.The organic and nutrient load is decreased by microbial

activity Up to 95% so that the effluent is of a quality

to be able to go into rivers. 

Tertiary.This is a complete treatment, but it is very expensive

and not used much. 

Secondary TreatmentSecondary Treatment..

Can be divided into

1.Anaerobic2. Aerobic treatment processes

AnaerobicAnaerobicComplex series of digestive and fermentative reactions by a mixture of bacteria. It can remove 95% BOD. This is the choice if there is a lot of insoluble matter cellulose, industrial waste. Degradation is carriead out in large tanks – sludge digestors or bioreactors.  Molecular components are digested and fermented to FA, H2, CO2. FA then to acetate, CO2 and H2. These are substrates for methanogenic bacteria to make methane. Major products are methane and CO2. Used or burnt off.  

Anaerobic Sludge DigesterAnaerobic Sludge Digester

Anaerobic sludge digestionAnaerobic sludge digestion

Anaerobic sludge digestionAnaerobic sludge digestion

AerobicAerobic

There are several kinds of aerobic decomposition processes. Trickling filter and activated sludge are the most common.Trickling filter is a bed of crushed rock, ~2m thick. Wastewater is sprayed on the top (UWI plant). Liquid slowly passes through the rock, organic matter absorbs to the rock and microbial growth takes place. Complete mineralization of organic matter takes place.  Most common is activated sludge. Wastewater is mixed and aerated in a large tank

TricklingTrickling FilterFilter

Trickling FilterTrickling Filter

Aeration tank, activated sludgeAeration tank, activated sludge

Bioremediation Technology

Bioremediation is the use of micro-organism metabolism to remove pollutants. Technologies can be generally classified as in situ or ex situ. In situ bioremediation involves treating the contaminated material at the site, while ex situ involves the removal of the contaminated material to be treated elsewhere

Bioremediation Technology

Bioreactors technologically are the most sophisticated category of environmental bioremediation.

Bioreactors offer a much faster means of waste biodegradation than land treatment and more control over reaction conditions and effluent quality than simple biofilters.

Biological Treatment Process1. The microorganisms are used to convert the organic matter (colloidal and

dissolved) into various gases and into cell tissue.2. The contaminant of organic substances is ingested and digested as food along with other energy source by the cell.

GOAL: Degrade organic substances that are hazardous to living organisms and convert the organic contaminants into inert products.

Microorganisms eat organic contaminant

Microorganisms digest and convert waste to CO2 and H2OMicroorganisms give off CO2

and H2O

Factors Influencing Bioremediation For bioremediation of harmful chemicals following factors are required to be monitored in the effluent: Required microorganism Temperature pH level Dissolved oxygen concentration Inorganic nutrient.These conditions allow microbes to grow and multiply—and eat more

chemicals. When conditions are not right, microbes grow too slowly or die or they can create more harmful chemicals.

Activated SludgeActivated Sludge

Microbial activity in activated sludge.

Slime forming bacteria like Zoogloea grow and form flocs. Small animals and protozoa attach to these.

Process of oxidation is similar to the trickling bed. Effluent containing flocs goes to settling tanks. Flocs settle.

Some floc material is recirculated. Water spends 5-10 hours in sludge tank, too short for complete oxidation.

Main process is absorption of organic matter to the floc. BOD of liq waste is reduced by ~95%.

Most BOD is in the flocs. BOD reduction then takes place by digestion of the flocs in the sludge digestor.

Oxidation ponds or lagoons.Oxidation ponds or lagoons.

This is very simple treatment used in rural areas, particularly suited for tropical areas (Portmore sewage treatment Plant). Take up a large area, are less than 3m deep (allow light to penetrate). There are odour problems and the process can take over a week.

Three components are essential for the functioning of the oxidation pond. They are:

Bacteria Algae Sunlight

Oxidation ponds or lagoons.Oxidation ponds or lagoons.

The bacteria in the pond oxidise the various organic material producing carbondioxide, ammonia and water.

The algae grow by utilizing the inorganic material and carbon dioxide in the presence of sunlight.

The oxygen requirement for oxidation of the organic matter by bacteria is satisfied mainly by oxygen released by the algae. Also some oxygen is provided by the contact with the atmosphere. Sunlight is an important factor in the functioning of the oxidation pond

LagoonLagoon

Comparing advantages.Comparing advantages. Anaerobic treatment has advantages over aerobic. Anaerobic treatment has advantages over aerobic.

Reduction of excess sludge production up to 90% Production of energy in the form of methane gas No or very little use of chemicals Lower treatment costs High flexibility, since it can be applied to very different types of

effluents (higher and lower loading rates, mesophilic or thermophilic conditions, more or less complex wastewaters, etc.) 

Anaerobic organisms can be preserved unfed for a long time, which makes it possible to treat wastewaters that are generated with longer (seasonal production) or shorter (holidays and weekends) pauses in between .

ConclusionsConclusions Bioremediation continues to be the favored approach for processing

biological wastes. Bioremediation utilizes microbes such as bacteria, fungi, yeast, algae, and

some plants. Three categories of bioremediation techniques have been identified: in

situ land treatment (treatment of contaminated material on site), biofiltration, and bioreactors.

Bioremediation is highly efficient system, if proper conditions are maintained example pH, temperature, nutrients.

Bioremediation is cost-efficient and helps chemical and physical methods of managing wastes and environmental pollutants.