Integrated Waste Treatment including Residue Utilization · Integrated Waste Treatment including...

16
269 Integrated Waste Treatment including Residue Utilization Integrated Waste Treatment including Residue Utilization Andreas Richter Waste Treatment, Principles Based on the existing guideline 89/369/EWG the main purpose of waste incineration plants was defined as listed below: Waste incineration plants are industrial premises which shall be designed for the main purpose of treatment of municipal waste incl. recovery systems for generated thermal energy. History Waste Incineration Plants: First discontinuous stoker-fired furnace for waste incineration 1876 in Manchester (GB) and 1894 in Hamburg (D). Development of continuous stoker-fired systems starting in 1920. Currently, worldwide more than 1.000 waste incineration plants with combustion grate, fluidized bed as well as rotary kiln technologies have been realized. Today, various companies in grate combustion, fluidized bed, rotary kiln, boiler design and fabrication technology as well as operators of complex environmental facilities build on 100 years of tradition in construction and operation of waste incineration plants. Due to development of environmental movement the term waste incineration plant was afflicted with overtones. Hence the term Waste to Energy was developed in the past to substitute the old definition and to rebrand WtE projects with positive green public image. During the last 5 decades an intensive development in waste management was realized worldwide and implemented in European as well as local laws and guidelines like exem- plary listed below: EC – Incineration Directive No. 2000/76/EC D – Ordinance on Environmentally compatible storage of waste from human settlement and on biological waste treatment facilities, (Abfallablagerungsverordnung – AbfAbIV) D – Technical guideline (TA) municipal waste (TASi) D – Federal control of pollution act (BImSchG) A – Federal immission control act (IG-L) Typical WtE concepts: Pure waste incineration plants => for unsorted waste collection basically with grate combustion technology Waste incineration plants with upstream mechanical treatment facilities => for unsor- ted waste collection and local recycling market as well as cement kiln with combustion technologies for incineration of refuse-derived fuel (RDF) – high calorific value fraction Waste incineration plants with upstream mechanical and biological treatment facilities => basically for unsorted waste collection and local recycling market as well as existing local law for application of renewable energy Waste incineration plants with fuel pre-treatment facilities => for selective waste collec- tion and additional fuel types (e.g. sewage sludge) basically with fluidized bed technology

Transcript of Integrated Waste Treatment including Residue Utilization · Integrated Waste Treatment including...

269

Integrated Waste Treatment including Residue Utilization

Integrated Waste Treatment including Residue Utilization

Andreas Richter

Waste Treatment, Principles

Based on the existing guideline 89/369/EWG the main purpose of waste incineration plants was defined as listed below:

Waste incineration plants are industrial premises which shall be designed for the main purpose of treatment of municipal waste incl. recovery systems for generated thermal energy.

History Waste Incineration Plants:

• Firstdiscontinuousstoker-firedfurnaceforwasteincineration1876inManchester(GB)and1894inHamburg(D).Developmentofcontinuousstoker-firedsystemsstartingin1920.Currently,worldwidemorethan1.000wasteincinerationplantswithcombustiongrate,fluidizedbedaswellasrotarykilntechnologieshavebeenrealized.

• Today,variouscompaniesingratecombustion,fluidizedbed,rotarykiln,boilerdesignandfabricationtechnologyaswellasoperatorsofcomplexenvironmentalfacilitiesbuildon100yearsoftraditioninconstructionandoperationofwasteincinerationplants.

• Duetodevelopmentofenvironmentalmovementthetermwaste incineration plant was afflictedwithovertones.HencethetermWaste to EnergywasdevelopedinthepasttosubstitutetheolddefinitionandtorebrandWtEprojectswithpositivegreen public image.

Duringthelast5decadesanintensivedevelopmentinwastemanagementwasrealizedworldwideandimplementedinEuropeanaswellaslocallawsandguidelineslikeexem-plary listed below:

• EC–IncinerationDirectiveNo.2000/76/EC

• D–OrdinanceonEnvironmentallycompatiblestorageofwastefromhumansettlementandonbiologicalwastetreatmentfacilities,(Abfallablagerungsverordnung–AbfAbIV)

• D–Technicalguideline(TA)municipalwaste(TASi)

• D–Federalcontrolofpollutionact(BImSchG)

• A–Federalimmissioncontrolact(IG-L)

TypicalWtEconcepts:

• Purewaste incinerationplants=>forunsortedwastecollectionbasicallywithgratecombustion technology

• Wasteincinerationplantswithupstreammechanicaltreatmentfacilities=>forunsor-tedwastecollectionandlocalrecyclingmarketaswellascementkilnwithcombustiontechnologiesforincinerationofrefuse-derivedfuel(RDF)–highcalorificvaluefraction

• Wasteincinerationplantswithupstreammechanicalandbiologicaltreatmentfacilities=>basicallyforunsortedwastecollectionandlocalrecyclingmarketaswellasexistinglocal law for application of renewable energy

• Wasteincinerationplantswithfuelpre-treatmentfacilities=>forselectivewastecollec-tionandadditionalfueltypes(e.g.sewagesludge)basicallywithfluidizedbedtechnology

Andreas Richter

270

Figure1: Waste to Energy concepts

Flue Gas Cleaning Systems, Basics

Typicalfluegassystemsforwasteincinerationplantscanbelistedandsplitintothefol-lowing systems:

• Conditioneddryabsorption(CDA)andSNCRfluegascleaningsystem,SNCRstageinstalled in the boiler section at the combustion chamber

• Conditioneddryabsorption(CDA)andSCRfluegascleaningsystem

• Conditioneddryabsorption(CDA)andwetscrubbingandSCRfluegascleaningsystem

Basedonstatistics,thedesignandrealizationforfluegascleaningsystemsinWtEplantsduringthelastyearshasbeenheavilyinfluencedbysemidryfluegascleaningsystems.Duetothisreasontheauthorwillfocusonthissystem.

TheconditioneddryabsorptionfluegassystemincombinationwithSNCRsystemwillhavethefollowingadvantagescomparedtoothers:

• EmissionsessentiallybelowFederalcontrolofpollutionact(BImSchG)

• Lesscapitalexpenditures(CAPEX)

• Lessoperationalexpenditures(OPEX)

• Systemwithoutsewage&wastewater

• Lowrequirementstothestructuralbuildingandcivilconstruction

• Lowrequirementstofireprotectionsystemduetostandardmaterial,mostlysteelstructure

RoadSubstructure

PrecastConcrete

PrecastConcrete Railroad

Sleepers

RemainingFly ash disposal in salt mine

RDFRefuse-Derived Fuel

Sewage Sludge

Municipal Waste

Bulky Waste

Waste to Energy PlantGrate or Fluidized bed combustion Boiler

and combined heat and power cyle

Ferrous fraction after incineration

Digestion and Biogas

GenerationSTABILAT

Biogas Engine for

Energy Production

Compost PET Cardboard NonFerrous

Glass

Reuse Energythermal and

electric Energy

Reuse of treated boiler slag and ash and fly ash

Sorting FacilitiesHandsorting and

optical sorting devices

MBT-Mechanical-biological

Treatment

Pre-SortingOrganic fraction

Recyclablefractions

from MBT

Boiler and fly ashstabilisation plant

271

Integrated Waste Treatment including Residue Utilization

• Low-pressuredualfluidnozzles,principleofultra-sonicatomization,withnomovingparts

• Lowconsumptionofatomizingagent(steamorcompressedair)

Flue Gas Cleaning Systems, Line Up

• Conditioneddryabsorption(CDA)andSNCRfluegascleaningsystem

• Conditioneddryabsorption(CDA)andwetscrubbingandSCRfluegascleaningsystem

Dust SO2/HCl/HF Heavy Metals NOx PCDD/F +++ ++ + ++ +

• Conditioneddryabsorption(CDA)andSCRfluegascleaningsystem

Dust SO2/HCl/HF Heavy Metals NOx PCDD/F +++ ++ + +++ +++

Flue Gas Cleaning Systems, Typical design

Dust SO2/HCl/HF Heavy Metals NOx PCDD/F +++ +++ +++ +++ +++

Figure2: Conditioneddryabsorption(CDA)andSNCR*fluegascleaningsystem

* SNCRstageinstalledintheboilersectionatthecombustionchamberandnotshowninfigureabove

Recirculation sytem

CDA

ActivatedCarbon

Fabric Filter

CleanFlue Gas

ResiduesFly ash

Absorbente.g. lime milk

Andreas Richter

272

Flue Gas Cleaning Systems, layout and construction

Figure3: Conditioneddryabsorption(CDA)andSNCRfluegascleaningsystem–Typicalar-rangement(left),Designelementsandpictures(right)

Flue Gas Cleaning Systems, Statistics

Figure4: Statistic:Emissionvaluesforconditioneddryabsorption(CDA)systemsinWtEfacilities

70

60

50

40

30

20

10

%

Carbon

Monoxide (CO)

Emission limit according EU 76/2000Acutal Emissions of German WTE plants operating with semi-/conditioned dry flue gas treatment

80

90

100

Total Organic

Carbon (C)

Hydrogen Chloride (H

CI)

Hydrogen Fluoride (H

F)

Sulfur D

ioxide (SO 2)

Nitrogen Oxide (N

O x)

Dust

Mercury (H

g)

Cadmium + Thallium (C

d + Tl)

Heavy Metals (

Sb + As + Pb + Cr +

Co + Cu + Mn + Ni + V + Sn)

Dioxins/Furans (P

CDD/F)

50mg/N3

10mg/Nm3

10mg/Nm3

1mg/Nm3

50mg/Nm3

200mg/Nm3

10mg/Nm3

0.05mg/Nm3

0.05mg/Nm3

0.5mg/Nm3

0.1ng/Nm3

0

273

Integrated Waste Treatment including Residue Utilization

InseratERC GmbH

Andreas Richter

274

InseratIRS GmbH

275

Integrated Waste Treatment including Residue Utilization

Residue Utilization

Duetoenvironmentalmovement,residueutilizationsgethighlyimportantevenfordeve-lopmentandfinancingofpublic-private-partnershipWtEproject.

Multilateralinstitutessuchas

• EuropeanBankforReconstructionandDevelopment–EBRD

• InternationalFinanceCorporation–IFC(MemberofWorldBankGroup)

shall evaluate technologies,materialbalanceand furtherutilizationof residues inWtEprojectsindetailandasbasicfortheirinternaldue-diligenceprogress.

Henceintegratedwastetreatmentincl.Conceptsforresidueutilizationsgetmoreandmoreimportantforprojectdevelopment,constructionandoperation.

Residueutilizationssecuresustainabilityforwastetreatmentprocessaswellasforlongtermoperationperiodincludingresidueapplicationbasedoneconomizinghandlingwithresourcesfrommothernature.

ResiduesfromWtEfacilitiescanbestructuredinthefollowingcategories:

• Boilerslag => fromthecombustionchamber

• Boilerash => fromdownstreamsectionse.g.evaporator,superheater,economizer in the boiler

• Flyash => fromfluegascleaningsystems

Residue Utilization, Quantities

Boiler residues (slag and ash)approx. 160 – 240 kg

Residues from FGC (fly ash)approx. 20 – 50 kg

Scraps (Fe and Non-Fe)approx. 10 – 30 kg

1 Mg Wastethermal treated

Figure5: Incinerationresidues,expectedoutputbalance*

* basedongratecombustiontechnologyandwastemorphologyforcentralEurope

Table1: Incinerationresidues,outputbalancestatisticalrecords1

Country/City therm. waste treatment Boiler slag and ash Fly ash

Mg/a

Vienna2 approx. 1,070,000 approx. 185,000 approx. 30,000

Austria approx. 2,400,0003 approx. 528,0004 approx. 96,0004

Germany approx. 26,800,0003 approx. 5,900,0004 approx. 1,070,0004

1 partly based on internet research2 incl.quantitiesforhazardouswasteincineration(rotarykiln)andsewagesludgeincineration(FBC)3 researchVZ&A–07/20114 Estimatedvaluesbasedon22%ratioforBoilerslagandashand4%ratioforflyash

Andreas Richter

276

Based on Europeanaswellasonlocallaws(e.g.OrdinanceonEnvironmentallycompa-tiblestorageofwastefromhumansettlementandonbiologicalwastetreatmentfacilities,AbfAbIVforGerman),residuesfromthermalwastetreatmentmustbestoredbasedonmorphologyindifferentlandfillcategories.

• BoilerslagandashshallbedisposedinmostofthecasesonlandfillclassificationIII.Afterutilization,thematerialmightbeusedas intermediateandcover layerforre-cultivation.InmostoftheregionsinCentralEuropeadequatecapacitiesforthisland-fillclassificationareavailable.Duetothisfact,longtermpermittingprocessfornewlandfillsaswellasrisingcapacitiesinwasteincineration,aviewapplicationinresidueutilizationhavebeeninstalledinthelastyears.Theactualexpendituresfordisposalboilerslagandashareinarangebetweenapprox.15–50EUR/Mg.

• Dependingonnational&locallegislation,wastemorphology,incinerationtechnologyaswellaslocalrestrictionsandpermits,residuestabilizationcanberealizedforfurtherutilizationandre-useofpartialfractions.

• Flyashfromfluegastreatmentsystemsisclassifiedashazardousmaterialandmustbestoredincloseddownsaltmines.InCentralEuropetheavailablelocationswithofficialapprovalsandpermitsarelimited.Duetofewerpossibilitiestheexpendituresforfinaldisposalarequithighandinarangeofapprox.120–180EUR/Mg.Hencethatfactandmoreorlessexpiringcapacitiesadditionalsolutionsforfurthertreatmentofflyashareunderdevelopment.

Referenceplants:

• Forboilerslagandash,STRABAGisoperatingthegrateslagandashtreatmentplantinVillenearCologne/Dsince2009.

• InViennathemunicipaldepartmentforwastecollectingMA48isoperatingsince1991themixingplantforresiduesfromseveralwasteandsewagesludgeincinerationplantsinVienna.

Figure6: ResidueUtilization,ReferencePlantVille/D

277

Integrated Waste Treatment including Residue Utilization

InseratSTRABAG

GmbH

Andreas Richter

278

InseratCheMin

279

Integrated Waste Treatment including Residue Utilization

Materialquantities:

ThegrateashofthewasteincinerationplantinCologneistransportedfromtheincinerationplanttothetreatmentplantinVillebytrucks.Thestockpilingisoutsidewithoutcovering.

PlantCapacity: 100,000Mg/a

Grateashsize: 0–1,000mm

Fraction0/6mm: approx.40–60M.-%

Fraction6/16mm: approx.20–30M.-%

Fraction16/45mm: approx.20–30M.-%

Fractionofnotincinerated: <5M.-%

Averageamountofrecyclables:

• Ferrousmetalscrap:

* ca.5M.-%,

– with3–4M.-%finescrap

– 1–2M.-%mediumscrap,

– 0,1M.-%scrap

• NonFerrousscrap

* 1,5–2M.-%

Maintreatmentfacilities

• Bunkerincl.feedinghopper,steelplatedosingconveyor,vibrationconveyor

• Polygonscreeningdrum

• FerrousandNonFerrousseparationbymagneticseparatorandmagneticdrumseparator

• Mechanicalseparationbyflopscreenmachine

• Windsifterforremovallightfraction

• Recirculationsystemforwasteair,incl.ventilationsystemandchimney

Figure7:

Function ofmagnetic drumseparator

Fe scrap Inerts

Screen overflow > 45 mm

Andreas Richter

280

Figure8: GrateAshTreatmentPlantCologne–Ville

Figure9: Finalproductsslagandash,severalfractions

Grate ash 0 - 1,000 mm

Bunker

drumscreen

screened< 45 mm

Fe Sep. Flip-flopscreen

overflow8 - 45 mm

EddySep.

Fe Sep.Fe Sep.

Fe Sep.

EddySep.

Airclassifier

fraction 8 - 45 mm

fraction< 8 mm

fraction45 - 1,000 mm

overflow 45 - 1,000 mm

screened< 8 mm

Overflow Inert45 - 1,000 mm

Fine fraction0 - 8 mm

Fe metal scrap Light fractionMedium fraction8 - 45 (0 - 45) mm

Non Fe metalscrap

Fe Sep.

281

Integrated Waste Treatment including Residue Utilization

Residue Utilization, Ref. Plant MA48 Vienna/Austria

Plant history:

• ProfessorWruss andProfessorLukasdevelop a typeof slurry containing slag, ash,bondingagentsandwater,socalledash and slag concrete.MA48startstousetheslurryforreinforcingsidewallsoftheexistinglandfillRautenweginVienna.

• In1991MA48realized theconstructionofa single linemixingplantbasedon theadaptedtechnologyofastandardconcretemixingplant.

• In1994/1995MA48realizedthedesignandconstructionofasecondlineforslagandash processing and mixing

• Since2008ahighlyefficientferrousandnonferrousseparationsystemwasimplemented

From1991to2007approx.2.7MillionMgofslag&ashconcretehavebeentreatedanforwarded to the existing landfill Rautenweg as basic construction material for surrounding barrier.

Mainbenefitsfromslag&ashconcrete:

• Significantreductionofeluateclassificationcomparedtoun-compactedlandfillmate-rial as pollutants are embedded in the cement matrix

• reductionofdustandodoremissions

• Duetohighcompactiondensity(1.80Mg/m³)steeperslopeforconstructingsurroun-dingbarrier,thereforeincreasingoflandfillcapacity.

Residue Utilization, Basics

Basicallythereexist2possibilitiestoimpactresidueconditions

• Primarymeasure=>optimizationofmaintreatmentprocess,whichmeansincinerationprocess,e.g.optimizationofincinerationconditionssuchase.g.combustiontempera-ture,airsupply,etc.

• Secondarymeasure=>optimizationofdownstreamtreatmentprocess,whichcanbedevelopmentofresidueutilizationprocess

Primary measures

Optimizationofprimarymeasuresisfluentlyexecutedbyallofwellknownboilersuppliersworldwideandcanbedemonstratedinhighercombustionrate,higherboilerefficiency,risingplantavailabilityandlessresidueoutcome.

Secondary measures

Optimizationofsecondarymeasureswasfocusedinthepastmainlyontreatmentofboi-lerslag&ashandrecyclingofferrousandnonferrousfractions.Duetoenvironmentalmovement, lessdisposal capacities andhighdisposal costs,developmentofutilizationtechnologiesandprocessesforflyashfromfluegascleaningsystemsaregettingmoreandmoreimportantinthelastfewyears.

Andreas Richter

282

Residue Utilization, Categories

Duetolowdevelopmentandexperienceoffurtherflyashtreatmentsystemstheauthorwillconcentrateonlyonevaluation,visions&potentialsinflyashtreatmentforresiduesfrom waste to energy facilities

In professional literature there were listed two different categories of residue treatment processes:

• Low-temperaturetreatmentprocess

• High-temperaturetreatmentprocess

High-temperatureprocesses aredefinedwith aminimum temperature runningabove 650°C.

Low-Temperatureprocesses are from theoretical point ofdefinitionbelow650 °C, inpracticelessthan100°C.

Residue Utilization, Categories

Low-temperature treatment process

Thiscategorycanbesplitintofurther3subgroups.

Figure10: Low-temperaturetreatmentprocesswiththreesubgroups

FortreatmentofflyashfromwasteincinerationplantsthesubgroupStabilization(utili-zation)willbethetechnologywithhighestpotentialindevelopmentandoptimization.

This subgroup contains two main treatment processes:

• Stabilization(utilization)withcement

• Stabilization(utilization)withclay

Wettreatmentofresiduesisexecutedwithintheprocessoffluegascleaningsystemifexe-cutedasconditioneddryabsorption(CDA)andwetscrubbingandSCRfluegascleaningsystem.The2maintreatmentprocessescanbelistedwith

• Acidtreatment

• Alkalinetreatment

Stabilization (Utilization) Chemical treatment Wet (fluidized) treatment

Low-temperaturetreatment process

283

Integrated Waste Treatment including Residue Utilization

Chemicaltreatmentisseldomandbasicallyusedforindustrialapplicationsandintegrationofheavymetalsinformofcarbonizingandimmobilizationofheavymetals.

High-temperature treatment process

Thiscategorycanalsobesplitinfurther3subgroups.

Figure11: High-temperaturetreatmentprocesswiththreesubgroups

Sintering Glazing by melt down Generating stock minerals

High-temperaturetreatment process

High temperature treatmentprocesseshave to implementhighenergyquantity in thetreatmentprocesstorealizesinteringormeltdownprocess.Allhigh-temperatureprocesseswilldestroyorganicpollutants.

Iftheprocessrunsunderreducedatmosphericconditionstherecoveryprocessformetalswillbethemaintopic.

Duringtreatmentunderoxidationatmosphericconditionsthegenerationofoptical,che-micalandelectricalspecialglassesorglassfiberswillbethemaintopic.

Therealizationofenergyinputcanberealizedvia

• Plasmamethod

• Electricalenergy

• Fossilenergysources

Summary

Integrated waste treatment including residue utilizationisnotonlyacatchphrase,itshallbethemaximforfurtherdevelopmentinwastemanagementforallkindsofwastetypesandlocalconditionsandrequirements.

ModernWtE – Waste to Energyprojects,shallbeunderstoodasinnovativeturnkeysolutionstoconvertwasteproductsinrecyclableswhichsubstitutethelimitednaturalresourcessuchasfossilenergysourcesandsecuressustainablepreservationofMotherNature.

Andreas Richter

284

InseratLAB GmbH