Ball Milling - University of Massachusetts Boston - a student

23
Ball Milling An efficient and ecologically friendly synthetic approach ‐‐‐ Jackie Ding

Transcript of Ball Milling - University of Massachusetts Boston - a student

Ball Milling An efficient and ecologically friendly synthetic approach

‐‐‐ Jackie Ding

Ball milling – solvent free approach

Application in organic synthesis

Conclusion

Content

2

The 12 Principles of Green Chemistry

  Prevention of waste

  Atom Economy

  Less Hazardous Chemical Syntheses

  Design Safer Chemicals

  Safer Solvents and Auxiliaries

  Design for Energy Efficiency

  Reduce Derivatives

  Use Renewable Feedstocks

  Catalysis

  Design for Degradation

  Real-time Analysis for Pollution Prevention

  Inherently Safer Chemistry for Accident Prevention

3

Do I need to use a solvent?

4

The best solvent is no solvent

  Alternative solvents: water supercritical CO2 ionic liquids

  Solventless Chemistry Mortar and pestle Ball milling

5

Principles of green chemistry

Application in organic synthesis

Conclusion

Content

6

What is ball milling?   A ball mill is a type of grinder used to grind materials

into extremely fine powder.

7

Major parameters for ball milling

Temperature

Size and Number of the balls

Nature of the balls

Rotation speed

8

Types of Ball Mills

  Drum ball mills   Jet-mills   Bead-mills   Horizontal rotary ball mills   Vibration ball mills   Planetary ball mills

9

Vibration Mills

10

Mixer Mill MM 400

11

 Feed material: hard, medium-hard, soft, brittle, elastic, fibrous  Material feed size: ≤ 8 mm  Final fineness: ~ 5 µm  Setting of vibrational frequency: digital, 3 - 30 Hz (180 - 1800 min-1)

Planetary Mills

12

13

Planetary Ball Mill PM 400

 Feed material: soft, hard, brittle, fibrous (dry or wet);  Material feed size: < 10 mm;  Final fineness < 1 µm;  No. of grinding stations: 4 / 2

Principles of green chemistry

Ball milling – solvent free approach

Conclusion

Content

14

Application in Organic Synthesis

  Aldol Condensations   Knoevenagel Condensations   Baylis-Hillman Reaction   Michael Reaction   Wittig Reaction   Fullerene Cycloadditions   Suzuki Reaction   Heck-Jeffery Reaction   Radical Additions Mediated by Mn (III)   Etc.

15

Suzuki reaction

16

B(OH)2 + Br-Ar

[Pd(PPh3)4] (5mol%)

K2CO3!(3 equivs.)

NaCl

ball milling

30-60 min

Ar

S. F. Nielsen, O. Axelsson, Synth. Commun. 2000, 30, 3501.

B(OH)2

+

Br

Ac

KF-Al2O3/ Pd(OAc)2

ball milling

Ar Ac

Franziska Schneider, Org. Proc. Res. & Develop., 2009, 13,44

Up to 96% yield

Entry Rpm T (min) Yield% 1 400 10 92 2 800 5 94

Aldol Condensation

17 B. Rodr´ıguez, Angew. Chem., Int. Ed., 2006, 45, 6924

O

+

H

O

R

(S)-proline10 mol%

Ball milling (A)or stirring (B)

O OH

R

Entry R= Method t/h Yield% anti/syn ee% 1 4-NO2 A 5.5 99 89:11 94 2 4-NO2 B 24 95 89:11 94 3 3-NO2 A 7 94 88:12 >99 4 3-NO2 B 16 89 82:18 98 5 2-NO2 A 7 97 93:7 97 6 2-NO2 B 36 89 91:9 97

Oxidation

18 Guan-Wu Wang, J. Org. Chem. 73, 7088 (2008).

Conventional heating in organic solvent: a. Acetic acid, 80oC, argon atmosphere, yield 32% b. Ethanol, refluxing temperature for 12h, yield 48%

O

OR1

R1

X

N

+R2

O

Mn(OAc)3.2H2O

ball milling

18 examples up to 91% yield

X

N

O

O

O

R1

R1

R2

X=CH or NR1= CH3

R2 = -C6H5, -C6H5NO2,

-C6H5CN, etc.

30Hz, 1h

Other applications of ball milling

  Fine particles

  Inorganic solids

19

Drawbacks of ball milling

20

•  Solution Purification of

byproducts

•  Solution It is not a magic wand.

Benign Solvents

Under development

Conclusion

  Ball milling should be considered as a potentially attractive solution for solvent-free synthesis.

21

Solvent free One-pot process

Tip of iceberg

Reference   Lance Frazer, Environmental health perspectives, 2003, 111, 10   Belen Rodríguez, Adv. Synth. Catal. 2007, 349, 2213   Ana Lazuen Garay, Chem. Soc. Rev., 2007, 36, 846–855   Raphael Janot, Progress in Materials Science 50 (2005) 1–92   Andreas Theisen, “Green Chemistry”in the Laboratory, TECHNICAL

REPORT, www.retsch.com   G Kaupp, Solvent-free organic synthesis, Wiley-VCH, 2009.   S. F. Nielsen, O. Axelsson, Synth. Commun. 2000, 30, 3501.   Franziska Schneider, Org. Proc. Res. & Develop., 2009, 13,44   B. Rodr´ıguez, Angew. Chem., Int. Ed., 2006, 45, 6924   Guan-Wu Wang, J. Org. Chem. 73, 7088 (2008).   G.Kaupp, Top. Curr. Chem. 254, 95 (2005).   M. Reza Naimi-Jamal, Eur. J. Org. Chem. 2009, 3567–3572.

22

23