Artificial Design of Molecular Motors

63
Yubai Zhou Michigan State University November 14, 2012 Designs of Synthetic Molecular Motors

Transcript of Artificial Design of Molecular Motors

Yubai Zhou

Michigan State University November 14, 2012

Designs of Synthetic Molecular Motors

Heat Engine

Electric Motor ATP Synthase

http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/CarnotEngine.pdf Elston, T.; Wang, H.; Oster, G. Nature, 1998, 391, 510.

Motors From Man-Made Scale to Molecular Scale: Similar Designs from Nature

Macroscopic Scale Molecular Scale

Synthetic Molecular Motors: Energy-Directed Conformational (Configurational) Motion

Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem. Int. Ed. 2000, 39, 3348.

Conformer A

Conformer X Conformer B

……

(1) Consumption of Energy

(3) Unidirectional and Repetitive Motion

(2) A Series of Chemical Transformation

Chemical-Driven Rotary Molecular MotorsThe chemical reaction is mechanically coupled to movement and force is directly generated to move the motor forward.

1 Triptycyl Helicene

2 Biary Lactone

First Prototype of Synthetic Motors Based on Triptycyl Helicene

Kelly, T. R.; Silva, H. D.; Silva, R. A. Nature, 1999, 401, 150.

The Idea of Design From A Molecular Brake

Bowyer, M. C.; Bhaskar, K. V. et al. Kelly, T. R. J. Am. Chem. Soc. 1994, 116, 3657.

Chemically Powered Bond RotationBond Rotation Barrier 20-25 kcal·mol-1

Kelly, T. R.; Silva, H. D.; Silva, R. A. Nature, 1999, 401, 150.

Controlled 120° Bond Rotation in Triptycyl Helicene Derivatives

Kelly, T. R.; Silva, H. D.; Silva, R. A. Nature, 1999, 401, 150.

Requirements on Structure to Achieve 360° Continuous Rotation

•  Each blade of the triptycene must be attached an amino group.

•  A good chemoselectivity is required for phosgene delivery to the

amine “firing position”.

•  Successful 120° rotation of the triptycene should be brought by

the phosgene-fueled formation of an intramolecular urethane.

•  The urethane has to be cleaved to allow subsequent repetition of

preceding rotation.

Cai, X.; Damkaci, F. et al. Kelly, T. R. J. Am. Chem. Soc. 2007, 129, 376.

DMAP Induced in Rotating Motor

Cai, X.; Damkaci, F. et al. Kelly, T. R. J. Am. Chem. Soc. 2007, 129, 376.

Directed Acylation of Amine by DMAP

Kelly, T. R.; Cavero, M. Org. Lett. 2002, 4, 2653.

Proposed Process of 360° Rotation

Cai, X.; Damkaci, F. et al. Kelly, T. R. J. Am. Chem. Soc. 2007, 129, 376.

Unexpected Products from Quenching by Methanol

Cai, X.; Damkaci, F. et al. Kelly, T. R. J. Am. Chem. Soc. 2007, 129, 376.

Selective Mono-Acylation via Less Reactive Surrogate for Phosgene

Cai, X.; Damkaci, F. et al. Kelly, T. R. J. Am. Chem. Soc. 2007, 129, 376.

mono-acylated motor1,1’-carbonyldiimidazole

Failure of Staab Equilibrium in Motors

Cai, X.; Damkaci, F. et al. Kelly, T. R. J. Am. Chem. Soc. 2007, 129, 376.

Trifloroacetyl Protection to Give Monoamine

Cai, X.; Damkaci, F. et al. Kelly, T. R. J. Am. Chem. Soc. 2007, 129, 376.

Reasons for Failure to Form UrethaneBürgi-Dunitz intervention

Markey, M. D.; Kelly, T. R. Tetrahedron, 2008, 64, 8381.

Stability of Cyclic Acylpyridinium Salt

Unchanged in MeOH at 100 ℃ for 19 h

Markey, M. D.; Kelly, T. R. Tetrahedron, 2008, 64, 8381.

Possible Modification to Interfere with the Resonance of DMAP Unit

Markey, M. D.; Kelly, T. R. Tetrahedron, 2008, 64, 8381.

Comments on Triptycene-system Motors

•  Successful  120°  clockwise  bond  rota6on,    but  failed  in  360°  repeated  

rota6on  with  the  existence  of  DMAP  unit  

•  Phosgene  fuel  was  too  reac6ve  to  give  a  selec6ve  acyla6on  of  amine  

proximate  to  “firring  posi6on”  

•  The  stable  acylpyridinium  salt  from  DMAP  and  isocyanate  impeded  

the  forma6on  of  urethane  to  give  con6nuous  rota6on  

Unidirectional Bond Rotary of Biaryl Lactone from Diastereoselective Ring-Opening

However, the rapid equilibrium of diastereomerization scrambles the direction of bond rotationDahl, B. J.; Branchaud, B. P. Tetrahedron Lett. 2004, 45, 9599.

exo  face  aIack�

180° Bond Rotation of Bifunctional Biaryl Lactone Derivatives

M axial

Dahl, B. J.; Branchaud, B. P. Org. Lett. 2006, 8, 5841.

360° Rotation of Achiral Biaryl Lactone

Fletcher, S. P.; Dumur, F.; Pollard, M. M.; Feringa, B. L. Science, 2005, 310, 80.

Summary of Chemical-Driven Molecular Motors

l  Unidirectional rotation is controlled by chemical interaction.

l  Chemoselectivity is the main challenge in multifunctionl motors.

l  The chemical accumulation may contaminate the system.

Fletcher, S. P.; Dumur, F.; Pollard, M. M.; Feringa, B. L. Science, 2005, 310, 80.

Light-Driven Rotary Molecular Motors

Light-Driven Molecular Motors

Mechanism of Motor Rotation

Structure Modification

Motor-Controlled LC Reorganization

Motor-Controlled Asymmetric Catalysis

M- and P- Axial Helicity in Molecules

Photochemical and Thermal isomerization of Overcrowded Biphenanthrylidenes

Koumura, N.; Zijlstra, R. W. J. et al. Feringa, B. L. Nature, 1999, 401, 152.

Mechanism of Motor Rotation

Light-Driven Molecular Motors

Mechanism of Motor Rotation

Structure Modification

Motor-Controlled LC Reorganization

Motor-Controlled Asymmetric Catalysis

Energy  Diagram  of  Rota0on  Cycle

Pollard, M. M.; Klok, M.; Pijper, D.; Feringa, B. L. Adv. Funct. Mater. 2007, 17, 718.

Structure Analysis of Overcrowded Alkenes

1.341 Å

1.347 Å

111.22°

122.76°123.18°

ter Wiel, M. K. J.; van Delden, R. A.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2005, 127, 14208.

Steric Interaction in Thermal Helix Inversion

Steric interactions in the fjord region

Pollard, M. M.; Klok, M.; Pijper, D.; Feringa, B. L. Adv. Funct. Mater. 2007, 17, 718.

Ultraviolet and Circular Dichroism Spectra to Lable Motor 1

Koumura, N.; Zijlstra, R. W. J. et al. Feringa, B. L. Nature, 1999, 401, 152.

Unexpected Changes of i-Propyl-Substituted Motors in Photochemical Process

solid dotted

ter Wiel, M. K. J.; van Delden, R. A.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2005, 127, 14208.

Thermal Helix Inversion Monitored by NMR

ter Wiel, M. K. J.; van Delden, R. A.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2005, 127, 14208.

Rotary Cycle of i-Propyl-Substituted Motors

ter Wiel, M. K. J.; van Delden, R. A.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2005, 127, 14208.

Rate Acceleration by Structure Modification

Light-Driven Molecular Motors

Mechanism of Motor Rotation

Structure Modification

Motor-Controlled LC Reorganization

Motor-Controlled Asymmetric Catalysis

Possible Ways to Improve the Motors

•  Accelerating the rate of rotation to control the unidirectional motion

by overcoming the “Brownian storm” from molecular collision and

vibration.

•  Functionalization to allow incorporation with more complex

molecular structure, able to be involved in certain chemical process.

Pollard, M. M.; Klok, M.; Pijper, D.; Feringa, B. L. Adv. Funct. Mater. 2007, 17, 718. Pollard, M. M.; Meetsma, A.; Feringa, B. L. Org. Biomol. Chem. 2008, 6, 507.

Rotation Acceleration with Five-Membered Ring Systems

ter Wiel, M. K. J.; van Delden, R. A.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2003, 125, 15076. Pollard, M. M.; Meetsma, A.; Feringa, B. L. Org. Biomol. Chem. 2008, 6, 507.

The thermal helix conversion is the rate-determined step in bond rotation.

Rotation Cycle of Five-Membered Ring Motors

1.4 h 4.2 h

ter Wiel, M. K. J.; van Delden, R. A.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2003, 125, 15076.

Half-time of Thermal Helix Conversion

Molecular Motors

Cis-isomer helix conv.

Trans-isomer helix conv.

Overall Process

1 32 min 439 h 2 ~20 ha

2A 18 min 317 h 3 74 min 18 s 40 min4 >36 hb 1.2 sc

a. 50% conversion at 110 ℃ monitored by 1H-NMR;b. 20 min at 60 ℃;c. at -20 ℃.ter Wiel, M. K. J.; van Delden, R. A.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2005, 127, 14208. Pollard, M. M.; Meetsma, A.; Feringa, B. L. Org. Biomol. Chem. 2008, 6, 507.

Energy Barrier of Thermal Helix Conversion

Molecular Motors

Cis-isomer helix conv. ΔG(kJ·mol-1)

Trans-isomer helix conv. ΔG(kJ·mol-1)

1 91 1072 124, 131a

2A 91 1073 95 844 101 71

a. the conversion contains two steps.ter Wiel, M. K. J.; van Delden, R. A.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2005, 127, 14208. Pollard, M. M.; Meetsma, A.; Feringa, B. L. Org. Biomol. Chem. 2008, 6, 507.

Structure Analysis of Cis- and Trans-isomers with Five-membered Ring

ter Wiel, M. K. J.; van Delden, R. A.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2003, 125, 15076.

1.352 Å104.6°

1.350 Å104.1°

Design of Second Generation Light-Driven Rotary Motors

Rotor

Stator

Koumura, N.; Geertsema, E. M. et al. Feringa B. L. J. Am. Chem. Soc. 2002, 124, 5037.

Tuning the Speed of Rotary Motion of Motors with Symmetric Lower Moieties

Motor Energy Barrier (kJ·mol-1) Half-time (h) Photochemistry

Ratio

6 105.2 184 8:927 105.6 215 13:878 100.5 26.3 23:779 110.1 1283 23:77

10 106.0 233 8:9211 91.8 0.67 1:9912 94.4 2.01 1:9913 102.7 60.1 25:75

Koumura, N.; Geertsema, E. M. et al. Feringa B. L. J. Am. Chem. Soc. 2002, 124, 5037.

Second Generation Motors with Fused Five Membered Ring System

Motor Energy Barrier (kJ·mol-1) Half-time (s) Photochemistry

Ratio15A 88 587 25:75

15B 85 190 14:86

15C 84 95 11:89

15D 60 5.73x10-3 12:88

16 79 15 33:67

17 38 5.74x10-7 a NAa. 2.3 h at 115 K

Vicario, J.; Walko, M.; Meetsma, A.; Feringa B. L. J. Am. Chem. Soc. 2006, 128, 5127. Kulago, A. A.; Mes, E. M. et al. Feringa B. L. J. Org. Chem. 2010, 75, 666.

Summary: Steric Effect on Half-time of Thermal Helix Conversion

•  Ground state energy of unstable isomers depends on the geometry of overcrowded alkenes

•  Increasing the size of substituents makes the isomers with pseudo-equatorial substituents more sterically strained.

•  Less steric interaction at fjord region gives large decrease of energy barrier. Motors with fused five membered ring have a released space in the fjord region for trans-isomer, but even more crowded for cis-isomers.

•  The second generation motors are able to reduce the energy barrier significantly by changing the bridging atoms.

Vicario, J.; Walko, M.; Meetsma, A.; Feringa B. L. J. Am. Chem. Soc. 2006, 128, 5127.

Light-Driven Molecular Motors

Mechanism of Motor Rotation

Structure Modification

Motor-Controlled LC Reorganization

Motor-Controlled Asymmetric Catalysis

Rotational Reorganization of Liquid Crystalline Films Induced by Doped Molecular Motors

Rod Rotation on the Doped Cholesteric LC Film: Observed Helix Twisting Power of Motors

liquid crystal with embedded molecular motor

glass rod (28 µm)Eelkema, R.; Pollard, M. M. et al. Feringa B. L. J. Am. Chem. Soc. 2006, 128, 14397.

Possible Mechanism of Rotational Reorganization of LC Films

𝑝=   [𝛽  ∙𝑐  ∙(𝑒𝑒)]↑−1 p  –  the  pitch  of  cholesteric  liquid  crystalls;  β – the HTP of the dopant; c – the concentration of the dopant;

Eelkema, R.; Pollard, M. M. et al. Feringa B. L. J. Am. Chem. Soc. 2006, 128, 14397.

AFM Images of Corrugated LC Film Surface

Eelkema, R.; Pollard, M. M. et al. Feringa B. L. J. Am. Chem. Soc. 2006, 128, 14397.

Helical Polymer Functionalized Molecular Motors: Light-Controlled Helicity in LC Phase

Pijper, D.; Jongejan, M. G. M.; Meetsma, A.; Feringa B. L. J. Am. Chem. Soc. 2008, 130, 4541

molecular chirality

macromolecular chirality

Supramolecular chirality

Full Photocontrol of Supramolecular Helicity in LC Phase

(2’S)-­‐(P)-­‐18-­‐PHIC (2’S)-­‐(M)-­‐18-­‐PHIC

Pijper, D.; Jongejan, M. G. M.; Meetsma, A.; Feringa B. L. J. Am. Chem. Soc. 2008, 130, 4541

Molecular  Motors  in  Asymmetric  Reac0on

Light-Driven Molecular Motors

Mechanism of Motor Rotation

Structure Modification

Motor-Controlled LC Reorganization

Motor-Controlled Asymmetric Catalysis

Beyond the Traditional Asymmetric Catalysis

Wang, J.; Feringa, B. L. Science, 2011, 331, 1429.

The Design of Bifunctional Molecular Motors

Wang, J.; Feringa, B. L. Science, 2011, 331, 1429.

Previous Work on Bifunctional Organocatalyst

Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672. Rana, N. K.; Selvakumar, S.; Singh, V. K. J. Org. Chem. 2010, 75, 2089.

Rotation Cycle of Bifunctional Motors

Wang, J.; Feringa, B. L. Science, 2011, 331, 1429.

UV and CD Spectral Changes of Isomerization

Wang, J.; Feringa, B. L. Science, 2011, 331, 1429.

Bifunctional Motor Catalyzed Michael Addition(P,P)-trans-18 R/S = 51/49 �

(M,M)-cis-18 R/S= 25/75 �

(P,P)-cis-18 R/S = 77/23 �

Wang, J.; Feringa, B. L. Science, 2011, 331, 1429.

Transition State in Asymmetric Catalysis

Wang, J.; Feringa, B. L. Science, 2011, 331, 1429.

Comments on Motors as Asymmetric Catalysts

•  The light-driven rotary molecular motors may be a useful tool in

developing new asymmetric catalysis systems.

•  The bifunctional molecular motors shown significant

stereochemical interplay based on the geometry of transition state

in Michael addition.

•  There is a long way to improve the stereoselectivity and more

reactions are going to be explored.

Triptycyl Helicene

Overcrowded Alkene

Biaryl Lactone

Summary

Acknowledgement

l  Dr. Wulff

l  Dr. Borhan

l  Dr. Jackson

l  My lab members

Yong, Hong, Wynter, Wenjun, Xin, Xiaopeng, Mathew,

Munmun, Anil, Dima, Nilanjana

l  My friends

l  My family