Approaching or exceeding the limit in organic photovoltaics

20
1 Approaching or exceeding the limit in organic photovoltaics Xiaoyang Zhu $$ NSF, DOE

Transcript of Approaching or exceeding the limit in organic photovoltaics

Page 1: Approaching or exceeding the limit in organic photovoltaics

1

Approaching or exceeding the

limit in organic photovoltaics

Xiaoyang Zhu

$$ NSF, DOE

Page 2: Approaching or exceeding the limit in organic photovoltaics

2

How to escape the Coulomb trap?

• Energetic alignment

• Hot CT excitons

• Gradients

• ……. 1.0

0.5

0.0

6004002000-200

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

150100500

hn1 =

4.17 eV

4.38 eV

4.59 eV

4.77 eV

Bin

din

g e

nerg

y

1s

1s

2s

3s

IPS

Pump-probe delay (fs)

MRS Bulletin (2010)

Acct. Chem. Res. (2009)

Page 3: Approaching or exceeding the limit in organic photovoltaics

3

Model: phthalocyanine/fullerene

Loren Kaake

(UCSB)

A. Jailaubekov

(Cymer)

Nature Mater.

TR-SHG

Page 4: Approaching or exceeding the limit in organic photovoltaics

4

Direct & indirect formation of interfacial

CT excitons

• For initiation exciton in CuPc,

interfacial CT exciton forms in 80-

170 fs.

• Direct exciton in the optical gap

(hv ~ 1.5 eV) leads to the

instantaneous formation of

interfacial CT excitons.

Page 5: Approaching or exceeding the limit in organic photovoltaics

5

Hot CT exciton cooling sets the time

limit in charge separation at interfaces

e Wai-lun Chan

(U. Kansas)

John Tritsch

Energ

y

Distance to

interface

TR-2PPE

Page 6: Approaching or exceeding the limit in organic photovoltaics

6

How to escape the Coulomb trap?

• Hot CT excitons

• Gradient, gradient, gradient

• ……

http://echwaluphotography.wordpress.com/

“Mind the gap!”

Page 7: Approaching or exceeding the limit in organic photovoltaics

7

Exceeding the Shockley-Queisser Limit

The SQ limit:

1 photon in,

1 e-h pair out.

J. Appl. Phys. 32

(1961) 510.

Multiple excitons: 1

photon in, 2 or more

e-h pairs out

Science 334 (2011) 1541

Nature Chem. 4 (2012)

Hot carrier cell: Share

the hot electron or hot

hole energy

Science 328 (2010) 1543

Nano Lett. 12 (2012) 1588

h

Page 8: Approaching or exceeding the limit in organic photovoltaics

8

Implementation of singlet fission in solar cells

hv

So

S1

T1

hv2So

S1 +

Chromophore 2 Chromophore 1

Leo et al. JAP 106, 064511 (2009).

Baldo et al. Nano Lett. 11, 1495 (2011).

Greenham, Friend, et al. Nano Lett. 12, 1053 (2012);

Nature Comm. 3, 1019 (2012).

Hanna & Nozik, JAP 100, 074510 (2006)

Paci, et al. JACS 128, 16546 (2006).

So + S1

1TT( ) T1 +T1

Page 9: Approaching or exceeding the limit in organic photovoltaics

9

Singlet Fission & multi-electron transfer

hv

Wai-lun Chan

(U. Kansas)

John Tritsch

Science 334 (2011) 1541; Nature Chem. 4 (2012); JACS (2012) pending

So + S1

1TT( ) T1 +T1

??

Page 10: Approaching or exceeding the limit in organic photovoltaics

10

Seeing the multiexciton state in pentacene

1.83 eV T1

0.86 eV S0

T1 2x ET1 - ES1

= -0.11 eV

S1

Time-resolved two-photon photoemission Science 334 (2011) 1541

S1 ÛME[ ] ME* T1 +T1

hv1 = 2.15 eV; hv2 = 4.65 eV;

100 fs

lifetime

Page 11: Approaching or exceeding the limit in organic photovoltaics

11

The coherent mechanism is also responsible

for endothermic singlet fission in tetracene

hv = 2.32

2.3 eV S1 T1 1.25 eV

How is the energy barrier

overcome in singlet fission?

D 2T1 - S1( ) » 0.2 eV

Nature Chem. 4 (2012) S1 ÛME[ ] lives for 7 ps.

Page 12: Approaching or exceeding the limit in organic photovoltaics

12

There is no energy relaxation from ME to 2T1 in

tetracene

S1

2xT1

ME

Nature Chem. 4 (2012)

Page 13: Approaching or exceeding the limit in organic photovoltaics

13

The higher energy ME state is accessed by coherent

electronic coupling on an ultrafast time scale.

S1

2T1 ME

Tetracene

Pentacene

S1 2T1

ME

Interaction with the

bath: dephasing &

entropic driving force

Page 14: Approaching or exceeding the limit in organic photovoltaics

14

Harvesting singlet fission for solar energy

conversion: one vs. two electron transfer

JACS pending

Page 15: Approaching or exceeding the limit in organic photovoltaics

15

Singlet fission occurs faster than electron

transfer at the pentacene/C60 interface

Singlet Multiexciton

+ triplets

Science 334 (2011) 1541

Page 16: Approaching or exceeding the limit in organic photovoltaics

16

Singlet fission is not competitive with electron

transfer at the tetracene/C60 interface

SF ET

2 × T1

7 ps C60

0.5 ps

26 ps

[S1 ME]

JACS pending

Page 17: Approaching or exceeding the limit in organic photovoltaics

17

Simultaneous ET to LUMO & LUMO+1 of C60

CT2 (LUMO+1), 60%

CT1 (LUMO), 40%

JACS pending

Page 18: Approaching or exceeding the limit in organic photovoltaics

18

Ultrafast harvesting from the multiexciton state in the

quantum superposition may increase fission yield

p12

Singlet exciton

cooling, decay,

1 e transfer

...

Multiple exciton

localization,

cooling,

2 e transfer,

Nbi

Nex= P1®2

g 2

g1

Shabaev, Efros, Nozik

Nano Lett. 6, 2856 (2006)

g 1 g 2

2xET

S1 ÛME[ ] ME* T1 +T1

2xET 2xET 1xET

g 2g 1

Page 19: Approaching or exceeding the limit in organic photovoltaics

19

Design principles for harvesting singlet fission in OPVs

• Singlet fission faster than electron

transfer, as is the case for

pentacene but not tetracene.

• For slow SF, limiting interfacial

charge transfer, but recombination

and T - T annihilation is a concern.

• Energy selective electron transfer

from the ME state: need designer

electron acceptors!

• Enhancing the carrier multiplication

yield by electron transfer from the

ME state.

Page 20: Approaching or exceeding the limit in organic photovoltaics

20

• Escaping the Coulomb trap with hot CT excitons –

mind the gap!

Phys. Rev. Lett. 101 (2008) 196403; Acct. Chem. Res. 42 (2009) 1779;

Nature Mater. pending.

• Exceeding the limit in OPVs with singlet fission –

harvesting triplets or the quantum coherence

Science 334 (2011) 1541; Nature Chem. 4 (2012); JACS pending

Conclusions