Ansys releasenotes ks278-rn

21
ANSYS Release Notes ANSYS Release 9.0 KS278-RN November 2004 ANSYS, Inc. is a UL registered ISO 9001: 2000 Company.

Transcript of Ansys releasenotes ks278-rn

Page 1: Ansys releasenotes ks278-rn

ANSYS Release NotesANSYS Release 9.0

KS278-RNNovember 2004

ANSYS, Inc. is aUL registeredISO 9001: 2000Company.

Page 2: Ansys releasenotes ks278-rn
Page 3: Ansys releasenotes ks278-rn

ANSYS Release Notes

ANSYS Release 9.0

ANSYS, Inc.Southpointe275 Technology DriveCanonsburg, PA [email protected]://www.ansys.com(T) 724-746-3304(F) 724-514-9494

Page 4: Ansys releasenotes ks278-rn

Copyright and Trademark InformationCopyright © 2004 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited.

ANSYS, DesignSpace, CFX, DesignModeler, DesignXplorer, ANSYS Workbench environment, AI*Environment, CADOE and any and all ANSYS, Inc. productnames referenced on any media, manual or the like, are registered trademarks or trademarks of subsidiaries of ANSYS, Inc. located in the United States orother countries. ICEM CFD is a trademark licensed by ANSYS, Inc. All other trademarks and registered trademarks are property of their respective owners.

ANSYS, Inc. is a UL registered ISO 9001: 2000 Company.

ANSYS Inc. products may contain U.S. Patent No. 6,055,541.

Microsoft, Windows, Windows 2000 and Windows XP are registered trademarks of Microsoft Corporation.Inventor and Mechanical Desktop are registered trademarks of Autodesk, Inc.SolidWorks is a registered trademark of SolidWorks Corporation.Pro/ENGINEER is a registered trademark of Parametric Technology Corporation.Unigraphics, Solid Edge and Parasolid are registered trademarks of Electronic Data Systems Corporation (EDS).ACIS and ACIS Geometric Modeler are registered trademarks of Spatial Technology, Inc.

FLEXlm License Manager is a trademark of Macrovision Corporation.

This ANSYS, Inc. software product and program documentation is ANSYS Confidential Information and are furnished by ANSYS, Inc. under an ANSYSsoftware license agreement that contains provisions concerning non-disclosure, copying, length and nature of use, warranties, disclaimers and remedies,and other provisions. The Program and Documentation may be used or copied only in accordance with the terms of that license agreement.

Printed in the U.S.A.

Page 5: Ansys releasenotes ks278-rn

Table of Contents

1. ANSYS Release 9.0 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–11.1. ANSYS 9.0 New Features and Enhancements ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1

1.1.1. Installation and Licensing Changes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–11.1.2. Structural .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2

1.1.2.1. Contact .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–21.1.2.1.1. Mesh-Independent Spot Weld ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–21.1.2.1.2. Penalty-Based Shell-Shell Assemblies ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–21.1.2.1.3. MPC Approach Supports No-Separation Contact .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–21.1.2.1.4. Revised Contact Algorithm KEYOPT for CONTA178 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–31.1.2.1.5. Tracking Contact During Solution ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–31.1.2.1.6. Recovering Contact Default Settings ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–31.1.2.1.7. New Documentation: ANSYS Contact Technology Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3

1.1.2.2. Element Technology ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–31.1.2.2.1. Manual Rezoning ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–31.1.2.2.2. New Solid-Shell Element ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–41.1.2.2.3. Follower Loads ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–41.1.2.2.4. Preintegrated General Shell Sections ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–41.1.2.2.5. Nonlinear General Beam Sections ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4

1.1.2.3. Linear Dynamics ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–51.1.2.3.1. Component Mode Synthesis (CMS) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–51.1.2.3.2. Translational Acceleration of Element Components ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–51.1.2.3.3. QR Damped Complex Eigensolver .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5

1.1.2.4. Materials .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–61.1.2.4.1. Cast Iron Plasticity .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–61.1.2.4.2. Plasticity with Stress vs. Plastic Strain Data Input ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–61.1.2.4.3. Frequency-Dependent Full Harmonic-Response Analysis .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6

1.1.2.5. Curve Fitting ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–61.1.3. Coupled-Field ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6

1.1.3.1. Thermal-Electric Analyses ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–71.1.4. Low-Frequency Electromagnetics .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7

1.1.4.1. Extracting Conductance ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–71.1.4.2. Electromagnetic Force and Torque ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7

1.1.5. High-Frequency Electromagnetics .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–71.1.5.1. Scattering Analysis of Periodic Structures ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–81.1.5.2. Lumped Circuits .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–81.1.5.3. Fast Frequency Sweep Performance ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–81.1.5.4. Port Enhancements ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–81.1.5.5. Specific Absorption Rate ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–81.1.5.6. Smith Chart and Network Parameter Conversion ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8

1.1.6. Thermal .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–81.1.6.1. Radiosity Enhancements ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8

1.1.7. Solvers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–91.1.7.1. Distributed ANSYS ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–91.1.7.2. MSAVE Enhancements ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–91.1.7.3. Results File Splitting for Large Models .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–91.1.7.4. Sparse File Splitting Changes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9

1.1.8. Usability .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–101.1.8.1. Improved Surface Operations ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–101.1.8.2. Enhanced Coordinate System Support for Function Loads ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10

1.1.9. Programmers' Manual Updates ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10

ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.

Page 6: Ansys releasenotes ks278-rn

1.1.9.1. Interfacing with ANSYS Updates ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–101.1.9.2. Guide to User-Programmable Features Updates ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10

1.1.10. ANSYS Commands ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–101.1.10.1. New Commands ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–111.1.10.2. Modified Commands ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–121.1.10.3. Undocumented Commands ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–13

1.1.11. ANSYS Elements ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–131.1.11.1. New Elements ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–131.1.11.2. Modified Elements ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–14

1.2. Guidelines for Upgrading to the ANSYS 9.0 Family of Products ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–141.2.1. Incompatibilities .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–14

1.2.1.1. SHELL91 Real Constant Format ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–141.2.1.2. KEYOPT(2) Revised for CONTA178 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–151.2.1.3. Cast Iron Plasticity Element Support .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–151.2.1.4. Fluid-Solid Interaction Analysis Using MpCCI ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–151.2.1.5. Results File Format Change ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–15

1.3. Late Changes Page on the ANSYS Web Site ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–15

ANSYS Release Notes

ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.vi

Page 7: Ansys releasenotes ks278-rn

Chapter 1: ANSYS Release 9.0 Notes

Introduction to the ANSYS 9.0 Family of Products

The ANSYS 9.0 Family of Products continues ANSYS, Inc.'s commitment to provide the highest quality engineeringtools to help you with all of your design and analysis needs. This release of the products contains all of the cap-abilities from previous releases, plus many new features to enhance your productivity. Some important areaswhere you will find new capabilities include the following:

• Section 1.1.1: Installation and Licensing Changes

• Section 1.1.2: Structural

• Section 1.1.3: Coupled-Field

• Section 1.1.4: Low-Frequency Electromagnetics

• Section 1.1.5: High-Frequency Electromagnetics

• Section 1.1.6: Thermal

• Section 1.1.7: Solvers

• Section 1.1.8: Usability

• Section 1.1.9: Programmers' Manual Updates

• Section 1.1.10: ANSYS Commands

• Section 1.1.11: ANSYS Elements

For information about changes to the ANSYS Workbench Products, see the ANSYS Workbench Products ReleaseNotes.

1.1. ANSYS 9.0 New Features and Enhancements

1.1.1. Installation and Licensing Changes

The following features have been added or updated at ANSYS 9.0. Unless otherwise noted, all items listed belowapply to both Windows and UNIX platforms.

The ANSLIC_ADMIN utility has been redesigned for better ease-of-use and consistency across Windows andUNIX platforms. For more information on the ANSLIC_ADMIN utility, see the ANSYS, Inc. Licensing Guide.

License borrowing is now available, allowing an ANSYS user at your site to use the product outside of yourcompany facility (so that an engineer can take a license home on a notebook computer, for example). To use licenseborrowing, you must have license keys that specify borrowable licenses. A new borrowing utility, accessible fromthe ANSLIC_ADMIN utility, allows you to select the license(s) you want to borrow, specify the amount of timefor which you want to borrow them, and to return borrowed licenses early. License borrowing is available onlyon Windows platforms. For more information, see Section 5.6: Using License Borrowing in the ANSYS, Inc. LicensingGuide.

The ANSYS Launcher now allows you to launch Distributed ANSYS or the distributed solvers in shared-memoryANSYS. Using the Solver Setup tab, you can specify the type of MPI to use and either the number of processorson a local machine or the hosts to use for multiple machines. For more information about setting up a distributedenvironment, see the Distributed ANSYS Guide or the Installation and Configuration Guide for your platform.

ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.

Page 8: Ansys releasenotes ks278-rn

The ANSYS and Workbench product installations are now more consistent between products and across platforms.On UNIX installations for both ANSYS and Workbench, the option to use the symbolic link is available earlier inthe installation, at the point where you specify your mount and installation directories. At Release 9.0, the sym-bolic link option is on by default.

ANSYS now supports the 64-bit Fujitsu SPARC64 IV platform running Solaris 8 and the AMD Opteron 64-bit Linuxplatform running SuSE SLES 8.

ANSYS now supports native 64-bit versions of Parasolid and SAT Connections and LS-DYNA (previous releasesused a 32-bit version).

1.1.2. Structural

ANSYS 9.0 includes the following new features and enhancements that expand your ability to perform structuralanalyses.

1.1.2.1. Contact

The following new features expand your ability to perform structural analyses involving contact.

1.1.2.1.1. Mesh-Independent Spot Weld

The new spot weld feature allows you to easily model thin sheet components that are connected with spotwelds, rivets, or fasteners. This feature is based on the multipoint constraint (MPC) contact approach. The spotweld can be located anywhere between the parts that are to be connected, independent of the mesh and thenode locations. Each spot weld set connects two or more surfaces.

Advantages to using the mesh-independent spot weld capability are:

• You can mesh parts independently.

• The program takes into account effects of the spot weld radius that you input.

• You can use rigid or deformable beams to model each spot weld set. In addition, beam forces, moments,and stresses for each spot weld set are available during postprocessing.

Four new commands are available to create and manage spot welds. Use the SWGEN command to create a newspot weld set, the SWADD command to add more surfaces to an existing spot weld set, and SWLIST and SWDELto list and delete spot welds, respectively. For more information on the spot weld feature, see Chapter 8, “ SpotWelds” in the ANSYS Contact Technology Guide.

1.1.2.1.2. Penalty-Based Shell-Shell Assemblies

Typically, you would use bonded contact with the multipoint constraint (MPC) approach to model shell-shellassemblies. However, in cases where the MPC approach causes the model to be overconstrained, you can usethe new penalty-based shell-shell assembly feature instead. This method uses penalty stiffness to constrain ro-tational degrees of freedom in addition to translational degrees of freedom. The new capability is available forcontact elements CONTA173, CONTA174, and CONTA175 when used with TARGE170. See Section 3.8.11.3:Bonded Contact for Shell-Shell Assemblies in the ANSYS Contact Technology Guide for more information.

1.1.2.1.3. MPC Approach Supports No-Separation Contact

You can now use the no-separation option (KEYOPT(12) = 4 on the contact element) with the MPC approach tomodel solid-solid assemblies that represent a slider line (2-D) or slider plane (3-D). This capability is available for

Chapter 1: ANSYS Release 9.0 Notes

ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.1–2

Page 9: Ansys releasenotes ks278-rn

contact elements CONTA171 through CONTA175. See Section 7.1: Modeling Solid-Solid and Shell-Shell Assembliesin the ANSYS Contact Technology Guide for more information.

1.1.2.1.4. Revised Contact Algorithm KEYOPT for CONTA178

KEYOPT(2) of the CONTA178 node-to-node contact element controls which contact algorithm is used. The optionsfor KEYOPT(2) have been reordered to be consistent with the surface-to-surface and node-to-surface contactelements (CONTA171 through CONTA175). As a result, the new default contact algorithm for this element is theaugmented Lagrange method. The new format of KEYOPT(2) is:

KEYOPT(2)Contact Algorithm:0 - Augmented Lagrange method (default)1 - Pure penalty method3 - Lagrange multiplier on contact normal and penalty on tangent (uses u-P formulation for normal contact,non-u-P formulation for tangential contact)4 - Lagrange multiplier method

1.1.2.1.5. Tracking Contact During Solution

An enhancement to the NLDIAG command allows you to monitor contact diagnostic information for all definedcontact pairs during the solution. The information is written to a text file named Jobname.cnd at a user-specifiedfrequency (each iteration, substep, or load step). Using this information, you can identify when and how contactoccurs, determine the regions where contact is unstable, and identify the corresponding contact parameters.You can then focus on the specific settings for those particular contact pairs that need attention. See the docu-mentation for the NLDIAG command for more information.

1.1.2.1.6. Recovering Contact Default Settings

A new CNCHECK command option allows you to reset all real constant and KEYOPT values back to their defaultsettings for specified contact pairs. The new feature provides a convenient way to reset the values after contactpairs have been defined. See the documentation for the CNCHECK command for details.

1.1.2.1.7. New Documentation: ANSYS Contact Technology Guide

Documentation for the ANSYS contact capabilities has been moved from the ANSYS Structural Analysis Guide toa new ANSYS Contact Technology Guide. The large (and ever increasing) amount of contact information previouslycontained in one chapter is now broken into several chapters within the new guide, making it easier to read andcomprehend. The new guide also presents the information in a more logical sequence.

1.1.2.2. Element Technology

The following element technology enhancements are available in this ANSYS release:

1.1.2.2.1. Manual Rezoning

In a finite large-deformation analysis, mesh distortion reduces simulation accuracy, causes convergence difficulties,and can eventually terminate an analysis. Rezoning allows you to repair the distorted mesh and continue thesimulation. Manual rezoning means that you decide when to use rezoning and what region to rezone; then, yougenerate a new mesh on the selected region. During the rezoning process, ANSYS updates the database as ne-cessary, generates contact elements if needed, transfers boundary conditions and loads from the original mesh,and maps all solved variables (node and element solutions) to the new mesh automatically. Afterwards, with

1–3ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.

Section 1.1: ANSYS 9.0 New Features and Enhancements

Page 10: Ansys releasenotes ks278-rn

equilibrium achieved based on the mapped variables, you can continue solving using the new mesh. For moreinformation, see Chapter 6, “Manual Rezoning” in the ANSYS Advanced Analysis Techniques Guide.

1.1.2.2.2. New Solid-Shell Element

SOLSH190 is a new 3-D solid-shell element that supports large strain analyses with a wide array of nonlinearmaterials. The element has only translational degrees of freedom and eight-node brick connectivity.

The new element eliminates the problem of transitioning from solid to shell elements. The element allows formodeling tapered shell sections without the need for midplane extraction. It performs well in simulating shellstructures with a wide range of thicknesses (from extremely thin to moderately thick). You can use it for bothflat plate and curved shell models. SOLSH190 is based directly on 3-D material laws--that is, no plane stress re-duction is required--and automatically accounts for thickness change. Like other continuum elements, it supportscontact with exterior surfaces.

1.1.2.2.3. Follower Loads

A new one-node 3-D element named FOLLW201 is now available. You can overlay the element onto an existingnode with physical rotation degrees of freedom. The element specifies external forces and moments which followthe deformation of a structure in a nonlinear analysis. FOLLW201 contributes follower load stiffness terms in ageometrically nonlinear analysis (NLGEOM,ON). For more information, see the documentation for the FOLLW201element.

1.1.2.2.4. Preintegrated General Shell Sections

You can now define homogenous shell section behavior directly via preintegrated general shell sections, amethod commonly used in analyses involving laminated composite structures. With preintegrated shell sections(SECTYPE,,GENS), you can directly specify the membrane, bending, and coupling properties. The preintegratedmethod also allows analysis of complex geometry (with repeated patterns such as corrugated sheets) usingequivalent shell section properties.

You can use preintegrated shell sections when linear elastic material behavior is acceptable. Compared tostandard shell usage with independent material and section definitions, preintegration requires minimal systemresources because numerical integration through the thickness of the shell is unnecessary. A series of new ANSYScommands allows you to specify the particular component quantities necessary for defining a preintegratedshell section. You can define each quantity of the preintegrated shell section data as temperature-dependent.The preintegrated form of input allows you to import homogenous section-stiffness constants evaluated inother analyses or by third-party, special-purpose software tools.

For more information, see Section 16.4: Using Preintegrated General Shell Sections in the ANSYS Structural Ana-lysis Guide.

1.1.2.2.5. Nonlinear General Beam Sections

A nonlinear general beam section (SECTYPE,,GENB) is an abstract cross section type that allows you to directlyinput the relationships of generalized stresses to generalized strains. You can define axial, flexural, torsional, andtransverse shear behavior as a function of axial strain, bending curvature, twist, and transverse shear strains.

The generalized section form of input does not require cross section geometry data or material data independently.For purposes of evaluating mass matrices, ANSYS assumes a unit area of cross section. This form of data is usefulfor including an experimentally measured nonlinear response of a beam-like structural component, such as crosssection distortion not permitted when using normal beam sections.

Chapter 1: ANSYS Release 9.0 Notes

ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.1–4

Page 11: Ansys releasenotes ks278-rn

Nonlinear general beam sections also allow a nonlinear relationship of transverse shear forces to the correspondingtransverse shear strains. Often, the input of generalized beam sections consists of the results of a prior detailedslice analysis (for example, a segment of pipe analyzed using generalized plane strain elements).

For more information, see Section 15.5: Using Nonlinear General Beam Sections in the ANSYS Structural AnalysisGuide.

1.1.2.3. Linear Dynamics

The following enhancements are available in the area of linear dynamics:

1.1.2.3.1. Component Mode Synthesis (CMS)

The following CMS enhancements are available in this ANSYS release:

Offsetting a substructure at a different location When creating a new superelement from an existing one(via a SESYMM or SETRAN command), you can now specify an offset value to the node or element IDs in the FEgeometry record. After performing the use and expansion passes for all CMS superelements, the mode shapedisplay of the entire assembled structure shows the offset superelements in their transformed locations. Formore information, see the documentation for the RSTOFF and SEEXP commands.

CMS Wizard A wizard is available to guide you through the CMS generation, use, and expansion passes. Thewizard also provides support for organizing and managing the files generated by a CMS analysis. You can accessthe wizard in the ANSYS GUI via the Solution (/SOLU) menu.

1.1.2.3.2. Translational Acceleration of Element Components

It is now possible to specify the translational acceleration of an element component in each of the global Cartesian(X, Y, and Z) axis directions. Using the new CMACEL command, you can specify translational, acceleration-basedloading on up to 100 element components. A typical use of the new capability involves applying accelerationto the base of a structure to simulate ground acceleration in an earthquake.

Components for which you want to specify acceleration loading must consist of elements only. The elementsyou use cannot be part of more than one component, and elements that share nodes cannot exist in differentelement components. You cannot apply the loading to an assembly of element components.

You can define linear translational acceleration for the following analyses types:

• Static (ANTYPE,STATIC)

• Harmonic (ANTYPE,HARMIC), full or mode superposition method

• Transient (ANTYPE,TRANS), full or mode superposition method

• Substructure (ANTYPE,SUBSTR)

1.1.2.3.3. QR Damped Complex Eigensolver

Because unsymmetrical stiffness contributions can result from nonconservative friction forces between twocontact surfaces, the QR damped mode-extraction method has been extended to account for unsymmetricalstiffness matrices. The unsymmetrical stiffness contributions of the original stiffness matrix are projected ontothe modal subspace and the reduced unsymmetrical eigenproblem is solved. The QR damped eigensolver isfaster and requires fewer computational resources than the existing damped or unsymmetrical eigensolvers.

The QR damped eigensolver now computes to complex eigenvectors of the quadratic eigenproblem. An inverseiteration method calculates the complex eigenvectors in modal subspace. As a result, complex eigenvectors

1–5ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.

Section 1.1: ANSYS 9.0 New Features and Enhancements

Page 12: Ansys releasenotes ks278-rn

from the original system are recovered via the modal transformation. The MODOPT command's CPXMOD optionactivates complex eigenmode extraction.

The QR damped eigensolver is also supported for partial solutions (PSOLVE), allowing a prestressed modalanalysis (PSTRES,ON) following a large deformation (NLGEOM,ON) static solution. Issuing a PSOLVE,EIGQRDAcommand performs a QR damped eigensolution when an unsymmetrical stiffness matrix must be used in amodal analysis. The new capability is useful in applications such as brake friction modeling through contactelements (CONTA174) with the Newton-Raphson option set to unsymmetric (NROPT,UNSYM).

For more information, see the MODOPT command description, the PSOLVE command description, and Sec-tion 3.13.7: QR Damped Method in the ANSYS Structural Analysis Guide.

1.1.2.4. Materials

The following materials enhancements are available in ANSYS 9.0:

1.1.2.4.1. Cast Iron Plasticity

The cast iron plasticity material model is more robust, accurate, and better performing. The new implementationsupports plane strain, axisymmetric, and 3-D stress states. (The plane stress and beam stress states are not sup-ported.) The improved cast iron plasticity material model supports these elements: PLANE182, PLANE183, SOL-ID185, SOLID186, and SOLID187.

1.1.2.4.2. Plasticity with Stress vs. Plastic Strain Data Input

You can now directly define the plastic strain vs. stress as stress-strain input data for plastic hardening behavior,eliminating the duplicated Young’s modulus definition for material when using stress vs. total strain data (suchas MISO and KINH tables). Support is available for both multilinear isotropic (MISO) and kinematic hardening(KINH). You can combine the new option with other ANSYS material models that currently support MISO andKINH.

1.1.2.4.3. Frequency-Dependent Full Harmonic-Response Analysis

You can now perform a frequency-dependent, full harmonic-response analysis (ANTYPE, HARM) with a materialelastic property (TB,ELASTIC) and/or structural damping coefficient (TB,SDAMP). Issue the TBFIELD commandto specify a frequency-dependent property data table. You can define several materials with different frequency-dependent behaviors and assign them to different parts of components. The new capability is available for ele-ments PLANE182, PLANE183, SOLID185, SOLID186, and SOLID187.

1.1.2.5. Curve Fitting

Temperature-dependent curve fitting using individually specified temperatures is now available for all threedisciplines supported for material curve fitting (viscoelasticity, hyperelasticity, and creep). ANSYS curve-fittingtools can now perform curve fitting at each given temperature, plotting curves of your experimental input datawith curve-fitted data and writing the corresponding data (TBDATA) with temperatures (TBTEMP) to the database.For more information, see Chapter 9, “Material Curve Fitting” in the ANSYS Structural Analysis Guide.

1.1.3. Coupled-Field

ANSYS 9.0 includes the following enhancements that expand your ability to perform coupled-field analyses.

Chapter 1: ANSYS Release 9.0 Notes

ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.1–6

Page 13: Ansys releasenotes ks278-rn

1.1.3.1. Thermal-Electric Analyses

A thermal-electric analysis capability is now available that accounts for Seebeck, Peltier, and Thomson thermo-electric effects in addition to Joule heating. PLANE223, SOLID226, and SOLID227 now support this capability. Toinclude the Seebeck-Peltier thermoelectric effects, a Seebeck coefficient must be specified (MP,SBKX or SBKY orSBKZ). To capture the Thomson effect, the temperature dependence of the Seebeck coefficient must be specified(MPDATA,SBKX or SBKY or SBKZ). Typical applications include heating coils, fuses, thermocouples, and thermo-electric coolers and generators.

A transient analysis using PLANE223, SOLID226, or SOLID227 can now account for both transient thermal andtransient electrical effects.

For more information, see Thermal-Electric Analysis in the ANSYS Coupled-Field Analysis Guide.

1.1.4. Low-Frequency Electromagnetics

ANSYS 9.0 includes the following new features and enhancements in the area of low-frequency electromagnetics.

1.1.4.1. Extracting Conductance

A GMATRIX macro is now available to extract conductance from multi-conductor systems. This macro, which isused much like the CMATRIX macro for capacitance, allows you to extract self and mutual conductance termsso that equivalent circuit lumped conductors can be defined for use in circuit simulators.

GMATRIX works with the following elements: SOLID5, PLANE67, LINK68, SOLID69, SOLID98, PLANE230, SOLID231,and SOLID232.

For more information, see the GMATRIX command description in the ANSYS Commands Reference and the dis-cussion in the Electric Field Analysis chapter of the ANSYS Low-Frequency Electromagnetic Analysis Guide.

1.1.4.2. Electromagnetic Force and Torque

Use the new EMFT command to summarize electromagnetic force and torque on a selected set of nodes. TheEMFT command works on any set of selected nodes, not just bodies. In addition, the EMFT command incorporatesboth Lorentz and reluctance forces, with no need to differentiate between Maxwell, virtual work, and Lorentzforces. It is applicable to both surface and body forces.

Unlike FMAGSUM, which requires you to specify element components first and then flag them using FMAGBC,EMFT requires only that you select the nodes of interest and issue the EMFT command. In addition, the under-lying stress pass evaluation time during solution will be notably faster (up to three times faster).

This command is available only for static analyses using SOLID117, PLANE121, SOLID122, or SOLID123 elements.For all other analysis, continue to use the FMAGSUM procedure.

For more information on using EMFT, see the description in the ANSYS Commands Reference, the discussion oncalculating magnetic force and torque for a static edge-based analysis in ANSYS Low-Frequency ElectromagneticAnalysis Guide, and the discussion on electromagnetic forces in an electrostatic field analysis, also in the ANSYSLow-Frequency Electromagnetic Analysis Guide

1.1.5. High-Frequency Electromagnetics

ANSYS 9.0 includes the following new features and enhancements in the area of high-frequency electromagnetics.

1–7ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.

Section 1.1: ANSYS 9.0 New Features and Enhancements

Page 14: Ansys releasenotes ks278-rn

1.1.5.1. Scattering Analysis of Periodic Structures

A plane wave source port is now available to launch a plane wave for a scattering analysis of a periodic structure(Frequency Selective Surface) (via HFPORT). Radar cross section results can be displayed and printed for 2-D TEand TM incident plane waves (via PLHFFAR and PRHFFAR). Reflection and transmission properties of frequencyselective surfaces can now be calculated using the new FSSPARM command macro. For more information, seeApplying Excitation Sources in the ANSYS High-Frequency Electromagnetic Analysis Guide.

1.1.5.2. Lumped Circuits

Lumped circuits are now available to simplify your high-frequency analysis. You apply them to the mid-nodesof element edges using the BF command. For more information, see Lumped Circuits in the ANSYS High-FrequencyElectromagnetic Analysis Guide.

1.1.5.3. Fast Frequency Sweep Performance

A Variational Technology method using a perfect absorber is now available for S-parameter calculations over afrequency range (via SPSWP or HROPT). It provides about a 20% faster solution than the original VariationalTechnology method. For more information, see ANSYS Frequency Sweep VT in the ANSYS Advanced AnalysisTechniques Guide.

1.1.5.4. Port Enhancements

Power terms of multi-port networks can now be calculated using the new HFPOWER command macro.

1.1.5.5. Specific Absorption Rate

Specific absorption rate can now be calculated when a mass density of the material is defined by the MP command.Results are stored in the HF119 and HF120 Item and Sequence Numbers Table.

1.1.5.6. Smith Chart and Network Parameter Conversion

You can now plot scattering, admittance, or impedance parameters on a Smith chart. The new PLSCH commandconverts any input parameter type to a specified output parameter type and plots the results on a Smith chart.A Touchstone file provides the input parameters and the input type.

You can also convert and list scattering, admittance, or impedance parameters input by a Touchstone file. Thenew PRSYZ command generates a new Touchstone file jobname_SYZ.snp for the network parameters.

Using the new PLSYZ command, you can also convert and plot scattering, admittance, or impedance parametersas a function of frequency.

1.1.6. Thermal

ANSYS 9.0 includes the following new features and enhancements that expand your ability to perform thermalanalyses.

1.1.6.1. Radiosity Enhancements

The ANSYS radiosity capability has been enhanced to allow symmetry in 2-D planar/axisymmetric and 3-Dmodels. Prior to ANSYS 9.0, you had to build the full model, both for the solid region and for the radiation surface,resulting in a significant increase in computational cost. With ANSYS 9.0, you can now solve the radiation problembased on the full radiation surface and solve the heat conduction problem based on the solid/fluid region with

Chapter 1: ANSYS Release 9.0 Notes

ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.1–8

Page 15: Ansys releasenotes ks278-rn

specified symmetries. As part of this enhancement, you can reduce the number of surface elements by creatinga decimated mesh and generate new SURF251/SURF252 surface elements. See the discussion on Advanced Ra-diosity in the ANSYS Thermal Analysis Guide for a detailed description of this procedure.

1.1.7. Solvers

ANSYS 9.0 includes the following new enhancements that improve solution procedures and features.

1.1.7.1. Distributed ANSYS

ANSYS 9.0 adds Distributed ANSYS to the Parallel Performance for ANSYS module. In Distributed ANSYS, theentire solution, including generating the stiffness matrix, solving the equations, and performing the results cal-culations, runs in parallel. As a result, Distributed ANSYS is very scalable for linear and nonlinear analyses, bothfor wall-clock time and equation-solution-only time.

Distributed ANSYS' distributed memory architecture runs a solution over multiple processors on single or multiplemachines. It decomposes large problems into smaller domains, transfers the domains to each processor, solveseach domain, and creates a complete solution to the model. Because the solutions are running in parallel, thewhole-model solution takes much less time to solve. The memory required is also distributed over multiple systemsso that the peak memory required on any one machine is greatly reduced, making large-model solutions possibleon lower-end computers with limited memory.

Distributed ANSYS includes two sparse solvers (the sparse and the distributed sparse direct solvers), a PCGsolver, and a JCG solver. The sparse solver can still run in shared-memory parallel mode, and the distributedsparse, PCG, or JCG solvers can run in distributed-memory parallel mode. Distributed ANSYS is available for linearstructural analyses, nonlinear structural analyses, and full transient analyses for single field structural and singlefield thermal analysis. See the new Distributed ANSYS Guide to learn how to configure your system to run DistributedANSYS.

Distributed ANSYS is available on HP 64-bit platforms, SGI 64-bit platforms, and Intel Linux 32-bit and 64-bitplatforms. A beta version of Distributed ANSYS is available for most other ANSYS platforms, including 32-bitWindows.

1.1.7.2. MSAVE Enhancements

The MSAVE command now supports SOLID45 and SOLID185 elements (brick shapes only), in addition to SOLID92,SOLID95, SOLID186, and SOLID187.

1.1.7.3. Results File Splitting for Large Models

You can use the RSPLIT command to decompose a large results file (typically generated from an assemblymodel run across a server or cluster of machines) into smaller files that can be easily postprocessed. For example,for an assembly, you could create separate results files for each part. See Splitting Large Results Files in the ANSYSBasic Analysis Guide for more information.

1.1.7.4. Sparse File Splitting Changes

At ANSYS 9.0, the sparse solver files are no longer split at different sizes than other ANSYS files. Prior to ANSYS9.0, all 64-bit machines split sparse solver files at just under 8 GB, while 32-bit machines split sparse solver filesat just under 2 GB. Also prior to ANSYS 9.0, you could not override the maximum split file size of 8 GB for 64-bitsystems or 2 GB for 32-bit systems. In ANSYS 9.0, the sparse solver files are now split the same as other ANSYSfiles. By default, the file split size is over 100 GB, so you should almost never see split files. Linux 32-bit systemsfollow the same split size as other systems and will no longer split files at 2 GB.

1–9ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.

Section 1.1: ANSYS 9.0 New Features and Enhancements

Page 16: Ansys releasenotes ks278-rn

1.1.8. Usability

ANSYS 9.0 includes the following new features and enhancements that increase the usability and the overallfunctionality of the program.

1.1.8.1. Improved Surface Operations

Surface calculations in postprocessing (/POST1) now support a cylinder option. Issue the SUCR command tospecify a cylindrical surface centered at the working plane origin, and extending infinitely in the positive andnegative Z directions. For more information, see Section 5.3.2: Surface Operations in the ANSYS Basic AnalysisGuide.

1.1.8.2. Enhanced Coordinate System Support for Function Loads

Prior to this release, function loads and other function-builder parameters were available only in Cartesian co-ordinate systems (RSYS,0). ANSYS now supports them in local coordinate systems (Cartesian, cylindrical, solution,user-defined, etc.). For more information, see Section 2.6.15: Applying Loads Using Function Boundary Conditionsin the ANSYS Basic Analysis Guide.

1.1.9. Programmers' Manual Updates

ANSYS 9.0 includes the following programmers' manual updates:

Subroutines provided for your convenience in the Guide to ANSYS User Programmable Features and the Guide toInterfacing with ANSYS have been updated to use alternative memory management routines and to reflectchanges in the results file format. All routines and functions documented in the Programmer's Manual Set havebeen updated to reflect the current source code.

To see specific changes in a file, ANSYS recommends opening both the old and current files (using a text editorthat displays line numbers), then comparing the two to determine which lines have changed. You can copy theupdated files to your system by performing a custom installation of the ANSYS program.

1.1.9.1. Interfacing with ANSYS Updates

The results file format as described in Section 1.2 of the Guide to Interfacing with ANSYS--fdresu.inc is a descriptionof the results file contents--has been updated to support results files generated by solving very large models.The results file format has been modified as follows:

• More of the index tables are 64-bit, so they take two integer words in the file rather than one as in priorresults files. Some of the header records have also increased in size.

• All of the pointers in the index tables are relative pointers; that is, they point to data relative to the currentfile location and the physical pointer to the data is computed as relative pointer + offset.

The new access routines as documented in Section 2.3 have also been updated accordingly.

1.1.9.2. Guide to User-Programmable Features Updates

Section 1.13 of the Guide to ANSYS User Programmable Features has been updated to reflect the alternativememory management routines.

1.1.10. ANSYS Commands

This section describes changes to commands at the ANSYS 9.0 release.

Chapter 1: ANSYS Release 9.0 Notes

ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.1–10

Page 17: Ansys releasenotes ks278-rn

1.1.10.1. New Commands

ANSYS has been enhanced with the following new commands:

AREMESH -- Generates an area in which to create a new mesh for rezoning.BSAX -- Specifies the axial force and axial strain relationship for a nonlinear general beam section.BSM1 -- Specifies the bending moment and curvature relationship in plane XZ for a nonlinear general beamsection.BSM2 -- Specifies the bending moment and curvature relationship in plane XY for a nonlinear general beamsection.BSMD -- Specifies mass density for a nonlinear general beam section.BSS1 -- Specifies the transverse shear force and strain relationship in plane XZ for a nonlinear general beamsection.BSS2 -- Specifies the transverse shear force and strain relationship in plane XY for a nonlinear general beamsection.BSTE -- Specifies a thermal expansion coefficient for a nonlinear general beam section.BSTQ -- Specifies the cross section torque and twist relationship for a nonlinear general beam section.CMACEL -- Specifies the translational acceleration of an element component. The new command is relatedto these existing inertia-control commands: ACEL, CGLOC, CGOMGA, DCGOMG, DOMEGA, OMEGA,CMOMEGA, and CMDOMEGA.EMFT -- Summarizes electromagnetic forces and torques on a selected set of nodes (valid only with SOLID117,PLANE121, SOLID122, and SOLID123).FSSPARM -- Calculates reflection and transmission properties of a frequency selective surface.GMATRIX -- Performs electromagnetic field solutions and calculates the self and mutual conductance betweenmultiple conductors.HFPOWER -- Calculates power parameters for a high-frequency electromagnetic analysis.MAPSOLVE -- Maps solved node and element solutions from an original mesh to a new mesh for rezoning.MFEM -- Add more element types to a previously defined field number.PLSCH -- Converts and plots scattering, admittance, or impedance parameters on a Smith chart.PLSYZ -- Converts and plots scattering, admittance, or impedance parameters as a function of frequency.PRSYZ -- Converts and lists scattering, admittance, or impedance parameters.PSCONTROL -- Turns off shared-memory parallel operations during solution.RDEC -- Defines the decimation parameters for reducing the number of surface elements prior to issuing theRSURF command.REMESH -- Specifies starting and ending remeshing points for rezoning.REZONE -- Initiates a rezoning operation, sets rezoning options, and rebuilds the database.RSPLIT -- Creates one or more results file(s) from the current results file based on subsets of elements.RSTOFF -- Offsets node or element IDs in the FE geometry record saved in the .rst results file. Issue thecommand when you want to expand a superelement (SEEXP) created from an original superelement (via aSETRAN or SESYMM command) in a transformed location.RSURF -- Generates the radiosity surface elements based on the RSYMM and RDEC parameters.RSYMM -- Defines the symmetry conditions for a radiation symmetry.SSBT -- Specifies the bending thermal effects quantity for a preintegrated shell section.SSMT -- Specifies the membrane thermal effects quantity for a preintegrated shell section.SSPA -- Specifies the membrane stiffness quantity for a preintegrated shell section.SSPB -- Specifies the coupling stiffness quantity for a preintegrated shell section.SSPD -- Specifies the bending stiffness quantity for a preintegrated shell section.SSPE -- Specifies the transverse shear stiffness quantity for a preintegrated shell section.SSPM -- Specifies the mass density and stress-free initial temperature for a preintegrated shell section.SWADD -- Adds more surfaces to an existing spot weld set defined by SWGEN.SWDEL -- Deletes spot weld sets.

1–11ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.

Section 1.1: ANSYS 9.0 New Features and Enhancements

Page 18: Ansys releasenotes ks278-rn

SWGEN -- Creates a new spot weld set. The spot weld is defined between two surface and may be deformableor rigid.SWLIST -- Lists spot weld sets.SXIN -- Defines an inertial load as an input variable for DesignXplorer VT (Variational Technology).TBFIELD -- Defines values of field variables for the material data tables.VEORIENT -- Specifies brick element orientation for volume mapped (hexahedron) meshing. This commandis especially useful for orienting the new SOLSH190 solid shell element.

1.1.10.2. Modified Commands

Changes and enhancements to the capabilities of the following commands have occurred:

BF -- Defines a nodal body force load. This command has a new option for specifying lumped circuits in ahigh-frequency electromagnetic analysis.CMSFILE -- Specifies a list of component mode synthesis (CMS) results files for plotting results on the assembly.The command offers a new option allowing you to add any .rst file to the list of files to plot, even if the filewas not expanded via a CMS expansion pass.CNCHECK -- This command performs several contact-related functions. A new option allows you to reset allreal constants and key options to their default values for the specified contact pairs.EORIENT -- Reorients solid element normals. This command now supports the new SOLSH190 solid shellelement.HFPORT -- Specifies input data for waveguide or transmission line ports or an incident plane wave. Planewave is a new port type option.HROPT -- Specifies harmonic analysis options. The command offers a new Variational Technology solutionmethod using a perfect absorber.MODOPT -- Specifies modal analysis options. A new command field specifies whether ANSYS should calculatecomplex eigenmodes. The option extends the capabilities of the QR damped mode extraction method tocalculate damped system eigenmodes.MP -- Defines a linear material property as a constant or a function of temperature. This command now offersa label for a Seebeck coefficient to capture Seebeck-Peltier thermoelectric effects in a thermal-electric ana-lysis.MPDATA -- Defines property data to be associated with the temperature table. This command now offers alabel for a temperature dependent Seebeck coefficient to capture the Thomson thermoelectric effect in athermal-electric analysis.MSAVE -- Sets the solver memory saving option for the PCG and DPCG solvers. The command's default be-havior has changed. For element types SOLID92, SOLID95, SOLID186, and SOLID187 when small strains areassumed (NLGEOM,OFF) and other required MSAVE conditions are met, the default is MSAVE,ON. The defaultremains MSAVE,OFF for all other element types.NLDIAG -- Specifies nonlinear diagnostics functionality. A new option allows you to track contact diagnosticsinformation during the solution. The information is written to a text file called Jobname.cnd.PLHFFAR -- Displays electromagnetic far fields and far field parameters. 2-D TE and TM plane waves are nowavailable for the radar cross section and normalized radar cross section options. The RADIUS field has beenchanged to RADZ. For 2-D TE and TM plane wave problems, RADZ is the thickness of the model in the z dir-ection.PRHFFAR -- Prints electromagnetic far fields and far field parameters. 2-D TE and TM plane waves are nowavailable for the radar cross section and normalized radar cross section options. The RADIUS field has beenchanged to RADZ. For 2-D TE and TM plane wave problems, RADZ is the thickness of the model in the z dir-ection.PSOLVE -- Performs a partial solution. The command now supports partial solutions for the QR damped ei-gensolver, allowing a prestressed modal analysis (PSTRES,ON) following a large deformation (NLGEOM,ON)static solution. Issuing a PSOLVE,EIGQRDA command performs a QR damped eigensolution when the non-symmetric stiffness matrix is required during a modal analysis.

Chapter 1: ANSYS Release 9.0 Notes

ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.1–12

Page 19: Ansys releasenotes ks278-rn

SECTYPE -- Associates section type information with a section ID number. The command has new optionsfor specifying nonlinear general beam sections (GENB) and preintegrated general shell sections (GENS).SEEXP -- Sets options for a substructure expansion pass. The command has a new option allowing you tospecify whether or not to transform node or element locations.SETRAN -- Creates a superelement from an existing superelement in a substructuring or CMS analysis. Thecommand now allows you to specify whether the nodal coordinate systems rotate with the superelementor remain fixed in their original global orientations.SPSWP -- Computes S-parameters over a frequency range and writes them to a file. This command offers anew Variational Technology solution method using a perfect absorber.SUCR -- Creates a surface. You can now define a cylindrical surface along a defined working plane in yourmodel. All surface-operation functionality is available for your cylinder, and the surface automatically extendsalong the plane's Z-axis, to the opposite ends of your model.SXGEOM -- Defines a geometry parameter created with ANSYS ParaMesh as a DesignXplorer VT (VariationalTechnology) input variable. The command has new options to set the minimum and maximum of the inputvariable, to set the reduction option, and to set the deviation order.TB -- Activates a data table for nonlinear material properties or special element input. SDAMP is a new mater-ial structural damping coefficient argument description for Label. Damping can be use to define frequencydependent properties for use in a DesignXplorer VT (Variational Technology) harmonic analysis. ELAS is anew material structural elastic coefficient argument description for Label. All elastic properties (for example,EX, EY, EZ, NUXY, GXY) can be defined as frequency dependent for use in a DesignXplorer VT (VariationalTechnology) harmonic analysis.TBFT -- Performs material curve-fitting operations. You can now use temperature dependency to generatedata curves for any of the disciplines supported by curve-fitting operations.

1.1.10.3. Undocumented Commands

The following command is no longer documented and may be removed from ANSYS at a future date:

PLSP -- Use the PLSYZ command instead.

1.1.11. ANSYS Elements

This section describes changes to elements at the ANSYS 9.0 release.

1.1.11.1. New Elements

ANSYS has been enhanced with the following new elements:

SOLSH190 -- A 3-D solid shell element that has translational degrees of freedom and eight-node brick con-nectivity, thus eliminating the problem of transitioning from solid to shell elements. The element performswell in simulating shell structures with a wide range of thicknesses (from extremely thin to moderately thick).You can use it for both flat plate and curved shell models.FOLLW201 -- A one-node 3-D element that you can overlay onto an existing node with physical rotation de-grees of freedom. The element specifies external forces and moments, following the deformation of thestructure. The element contributes follower load stiffness terms in a geometrically nonlinear analysis(NLGEOM,ON).SURF251/SURF252 -- Radiosity surface elements allow you to use symmetry to model radiation problemsand significantly reduce the problem size. You solve the radiation problem based on the full radiation surfaceand solve the heat conduction problem based on the solid/fluid region with specified symmetry. You mustuse the RSURF command to generate these elements. See the discussion on Advanced Radiosity in the ANSYSThermal Analysis Guide for a detailed description of this procedure.

1–13ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.

Section 1.1: ANSYS 9.0 New Features and Enhancements

Page 20: Ansys releasenotes ks278-rn

1.1.11.2. Modified Elements

Changes and enhancements to the capabilities of the following elements have occurred:

SHELL91 -- For this 8-layered shell element, ANSYS no longer supports the old (prior to ANSYS 5.2) formatfor real constants. KEYOPT(2) is no longer recognized and is now undocumented; previously, it was necessaryto set KEYOPT(2) = 1 before providing real constant values in the old input format.HF119 and HF120 -- These high-frequency elements now support a Specific Absorption Rate (SAR) calculation.SURF151 / SURF153 -- If a single PLANE element lies beneath SURF151 or SURF153, you can automaticallyset the element behavior (plane stress, axisymmetric, or plane stress with thickness [including TKPS if applic-able]), to that of the underlying solid element by specifying KEYOPT(3) = 10. This option is valid only whena single PLANE element lies beneath the SURF element. For example, if you apply a SURF151 or SURF153element over a PLANE77 (thermal) element whose nodes are also used in the definition of a PLANE82(structural) element, a warning appears and the load is not applied to the element.SURF154 -- A new KEYOPT(2) setting applies pressure loads to the element faces according to the local co-ordinate system, as follows: face 1 in the local X direction, face 2 in the local Y direction, and face 3 in thelocal Z direction. (Faces 4 and 5 are unaffected.) When using KEYOPT(2) = 1, a local coordinate system mustbe defined for the element.CONTA178 -- KEYOPT(2) of the CONTA178 node-to-node contact element controls which contact algorithmis used. The options for KEYOPT(2) have been reordered to be consistent with the surface-to-surface andnode-to-surface contact elements (CONTA171 to CONTA175). As a result, the new default contact algorithmfor this element is the augmented Lagrange method.SHELL181 -- This shell element now supports preintegrated general sections, where the relationships ofgeneralized stresses to generalized strains are input directly. When the element is associated with the prein-tegrated section type (SECTYPE,,GENS), thickness or material definitions are not required.BEAM188 / BEAM189 -- These beam elements now support nonlinear general sections, where the relationshipsof generalized stresses to generalized strains are input directly. When the beam element is associated witha generalized beam (SECTYPE,,GENB) cross section type, the relationship of transverse shear force to thetransverse shear strain can be nonlinear elastic or plastic, an especially useful capability when flexible spotwelds are modeled.PLANE223, SOLID226, and SOLID227 -- These coupled-field elements can now account for Seebeck, Peltier,and Thomson thermoelectric effects in addition to Joule heating. They can now also account for both transientthermal and transient electrical effects in a transient analysis.

1.2. Guidelines for Upgrading to the ANSYS 9.0 Family of Products

This section contains important information that you may need to consider as you upgrade from your currentversion of ANSYS to the new ANSYS 9.0.

1.2.1. Incompatibilities

The following incompatibilities are known to exist at ANSYS 9.0.

1.2.1.1. SHELL91 Real Constant Format

The eight-layered shell element, SHELL91, no longer supports the old (prior to ANSYS 5.2) format for real constants.KEYOPT(2) is no longer recognized and is now undocumented; previously, it was necessary to set KEYOPT(2) =1 before providing real constant values in the old input format.

Chapter 1: ANSYS Release 9.0 Notes

ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.1–14

Page 21: Ansys releasenotes ks278-rn

1.2.1.2. KEYOPT(2) Revised for CONTA178

KEYOPT(2) of the CONTA178 node-to-node contact element controls which contact algorithm is used. The optionsfor KEYOPT(2) have been reordered to be consistent with other contact elements. As a result, the default contactalgorithm for this element is now the augmented Lagrange method instead of the Lagrange multiplier method.See the CONTA178 element description for complete details on KEYOPT(2) settings.

1.2.1.3. Cast Iron Plasticity Element Support

The enhanced cast iron plasticity material model does not support elements LINK180, SHELL181, BEAM188,BEAM189, SHELL208, and SHELL209. For more information, see Section 1.1.2.4.1: Cast Iron Plasticity.

1.2.1.4. Fluid-Solid Interaction Analysis Using MpCCI

The fluid-solid interaction analysis method using MpCCI is no longer supported.

1.2.1.5. Results File Format Change

The results file format has been updated to support results files generated when solving very large models. SeeSection 1.1.9.1: Interfacing with ANSYS Updates for details.

1.3. Late Changes Page on the ANSYS Web Site

If you have a password to the ANSYS customer portal, you can see Readme files and late documentation changesby entering the customer portal, and following the steps below:

1. Select Product Info from the menu at the top of the screen.

Result: A menu appears on the left.

2. Select Product Documentation from the menu.

Result: The ANSYS documentation set list appears.

3. Select Readme files and late document changes.

1–15ANSYS Release Notes . ANSYS Release 9.0 . KS278-RN . © SAS IP, Inc.

Section 1.3: Late Changes Page on the ANSYS Web Site