Animal Model of EA

download Animal Model of EA

of 13

Transcript of Animal Model of EA

  • 7/28/2019 Animal Model of EA

    1/13

    Alzheimers & Parkinsons

    Disease Laboratory, Brain

    & Mind Research Institute,

    University of Sydney,100

    Mallett Street, Camperdown,

    NSW 2050, Australia.

    Correspondence to J.G.

    email:

    [email protected]

    doi:10.1038/nrn2420

    Nucleus basalis of Meynert

    A group of cholinergic nerve

    cells in the basal forebrain, with

    numerous projections to the

    cortex.

    Disinhibition

    A reduced capacity to control

    and coordinate the immediate

    impulsive response to a distinct

    situation.

    Animal models of Alzheimers diseaseand frontotemporal dementia

    Jrgen Gtz and Lars M. Ittner

    Abstract | Insoluble protein aggregates have been linked to Alzheimers disease (AD) and

    frontotemporal dementia (FTD). Recent work in transgenic mice has shed light on the role

    of these aggregates by identifying soluble oligomeric species that may interfere with

    essential cellular mechanisms at an early disease stage. This review summarizes what we

    have learned about the roles of these proteins from transgenic mice and invertebrate speciessuch as flies and worms. Proteomic and transcriptomic analyses of tissue from these animal

    models have identified new molecules with crucial roles in disease. Moreover, transgenic

    animals have been instrumental in defining drug targets and designing novel therapeutic

    strategies. With advanced imaging techniques that can be used in both humans and mice

    an early, preclinical diagnosis of AD and FTD could be within reach.

    Dntia is dfind as a lss f intllctal abilitis thatis sr ngh t intrfr ith scial r ccpatinalfnctining.Alzhirs disas (AD) is th st c-n cas f dntia, cprising 5070% f all cass.Frnttpral dntia (FTD) is lss cn, btaks p 50% f dntia cass prsnting bfr ag60 (REF. 1). At prsnt nithr can b crd.

    Drgs that ar crrntl prscribd fr AD can hasr sid-ffcts in patints ith FTD2. Frthrr,FTD itslf inclds sral clinical ntitis that rqirbttr bichical charactrizatin. Thrfr, itis iprati t dlp tls that nabl an arl,diffrntial diagnsis.

    Anial dls ha bn sfl in disscting thpathgnic chaniss f AD and FTD. Hr intrdc th nrpathlg, gntics and clinicalfatrs f AD and FTD, and dscrib hat halarnd abt ths disass fr transgnic rt-

    brat and inrtbrat dls. This Ri fcss nrcnt dlpnts and ais t intgrat fnctinalgnics, nl iaging tchniqs and n cncptsin thrap.

    A brief overview of AD and FTD

    Clinical features.AD is charactrizd b arl rdficits, flld b th gradal rsin f thr cg-niti fnctins. Th st sr nrpathlgicalchangs ccr in th hippcaps, flld b thassciatin crtics and sbcrtical strctrs, incld-ing th agdala and nucleus basalis of Meynert3. Incntrast t AD, hich is charactrizd prdinantl

    b r lss, FTD is assciatd ainl ithbhairal ipairnt sch as disinhibition, lss finitiati r apath. Lss f intrst in th nirn-nt, sr lss in dgnt and insight, ngligncf prsnal hgin, rbal and phsical aggrssi-nss, alchl abs, rstlssnss, hprralit andstrtpical bhair ar additinal fatrs fFTD4. Th arag ag f diagnsis f FTD is abt 60,hich is arnd 10 ars bfr th arag spradicAD (SAD) patint is diagnsd5,6. Patints ith FTDftn displa astrical atrph f th frntal andtpral crtx. Thr is idnc that tr nrndisas and FTD cxist, and that th tr sptsight prcd, cincid r fll th dlpnt fcgniti and bhairal changs1. Frthrr, lat-nst parkinsnis is bsrd in a significant sbstf patints ith FTD.

    Neuropathology.Th AD brain is charactrizd b as-si nrnal cll and snaps lss at spcific sits7, asll as -alid plaqs and nrfibrillar lsins.Th ar prtin cpnnt f plaqs is th plpp-tid A that is drid fr alid prcrsr prtin(APP; BOX 1). Th nrfibrillar lsins cntain hpr-phsphrlatd aggrgats f th icrtbl-assciatdprtin ta and ar fnd in cll bdis and apicaldndrits as nrfibrillar tangls (NFTs), in distal dn-drits as nrpil thrads, and in th abnral nritsthat ar assciatd ith s -alid plaqs. NFTsar als abndant in FTD, in hich thr is an absncf rt plaqs8.

    R E V I E W S

    532 | juLy 2008 | voLume 9 www.at.m/w/

    mailto:[email protected]://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=104300http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=104300http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=600274http://ca.expasy.org/uniprot/P05067http://ca.expasy.org/uniprot/P10636http://ca.expasy.org/uniprot/P10636http://ca.expasy.org/uniprot/P05067http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=600274http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=104300mailto:[email protected]
  • 7/28/2019 Animal Model of EA

    2/13

    http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4137&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=348&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.nature.com/nrn/journal/v9/n7/suppinfo/nrn2420.htmlhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5664&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5663&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
  • 7/28/2019 Animal Model of EA

    3/13

    |

    b

    a

    c

    APP PSEN1 TAU

    APP (APP23) Tau (pR5)

    APPswe

    Tg2576 (hPrP)APP23 (mThy1.2)APPV717F

    PDAPP (PDGF)

    PSEN1M146I/M146I

    APPsweTauP301L

    3xtg-AD (mThy1.2)

    TauP301L

    JNPL3 (mPrP)pR5 (mThy1.2)TauP301S

    P301S tau (mThy1.2)PS19 (mPrP)

    A plaque NFTs

    Mouse (APP23) Mouse (pR5)Human (AD) Human (AD)

    Time(months)

    Cortex

    Amygdala

    Hippocampus

    transgnic ic (FIG. 1 and Spplntar InfratinS1 (tabl)). Ths incld N279K, K280, P301L, P301S,v337 and R406w.

    Th xistnc f a sbgrp f patints ith FTD ithn ta aggrgatin as nigatic fr s ti. Thisdntia, charactrizd b ta-ngati and biqitin-psiti lsins, is n trd FTLD-u r FTDu-17,althgh th iplicatin f this nnclatr that thlsins in ta-psiti FTD ar biqitin-ngati isislading. mst cass f FTDu-17 ar spradic, tgrndbraking rk shd that FTDu-17 can bcasd b lss-f-fnctin tatins in progranulin(PGRN)18,19. Sn aftr, th TAR DNA-binding prtinTDP-43 as idntifid in biqitin-psiti inclsins

    in bth FTLD-u and spradic atrphic latralscl-rsis (ALS), sggsting that th pathlg f ths tdisrdrs rlaps20. mtatins in th gn ncdingTDP-43, TARDBP, in bth failial and spradic cassf ALS ha sinc bn idntifid2123. Siilar t ta, thTDP-43 fnd in th lsins is hprphsphrlatd,biqitinatd and carbx-trinall trncatd20.

    FTD ith inclsin bd path and Pagt disasf bn is a rar, atsal-dinant disrdr casdb tatins in alsin-cntaining prtin (VCP), anssntial cpnnt f th ERassociated degradation(eRAD) prcss24. TDP-43, bt nt vCP, acclats inth biqitin-psiti inclsins f this disrdr. TDP-43ths ss t b a cn pathlgical sbstrat in

    aris tps f FTLD-u that ar casd b diffrntgntic altratins25. Nithr vCP nr TDP-43 ha bnxprssd in transgnic ic s far, and althgh PGRNknckt ic ha bn gnratd, aspcts rlatd tFTD ha nt bn addrssd26. T dat, 11 tatinsha bn idntifid in VCP, 9 in TARDBP, 62 in PGRNand 42 inMAPT17.

    Transgenic mouse models of dementia

    Th finding that, in th failial frs f AD and FTD,th gns that ncd th prtins that ar dpsitdin plaqs and NFTs (APPand MAPT, rspctil)ar tatd sggstd a casal rl fr ths prtinsin disas and ld t th gnratin f transgnic ani-al dls27 (Spplntar Infratin S1 (tabl)).Hr fcs n th st rcnt adancs and thn insights int th disas that ths dls hapridd. Fi rcnt k pblicatins ar highlightdin BOX 2.

    Tau models. Th first ta transgnic s dl(Spplntar Infratin S1 (tabl)) xprssd thlngst han ild-tp (wT) ta isfr in n-rns28. Pretangle fratin and hprphsphrlatinf ta as bsrd. Hr, it as anthr 5 arsbfr th xprssin f han FTD tant P301L tarprdcd aggrgatin and NFT-fratin in ic29,30

    (FIG. 1). Ths ic ha bc a idl sd tl tstd disas-rlatd pathgnic chaniss27,31 andrcnt dls ha bilt n thir sccss.

    In an lgant std, it as shn that spprssinf P301L ta xprssin in rTg4510 ta transgnicic, hich nrall xprss th tant prtin at a

    Figure 1 | rdg aq ad nFT tag m. a | Plaques are

    produced by expressing mutant amyloid precursor protein (APP), as found in patients

    with familial Alzheimers disease (FAD), both with and without mutantPSEN1, and

    neurofibrillary tangles (NFTs) are produced by expressing mutant tau, as found inpatients with frontotemporal dementia with Parkinsonism linked to chromosome 17

    (FTDP17). A few exemplary mutations are listed (grey boxes) together with their strain

    names and the promoters (in brackets) that were used for expression (strains reviewed

    in REF. 31). More strains are listed in the Supplementary information S1. b | Progression

    of the pathology in APP23 and pR5 mice. NFT formation in pR5 mice is initiated in the

    amygdala and eventually found in the hippocampus, whereas the cortex is virtually

    spared. Plaque formation in the APP23 mice is prominent in the cortex and in the

    hippocampus. This reflects, to some extent, the situation in the brain of patients with

    AD, in which plaques and NFTs are anatomically separated. | Representative Aplaques from an APP23 and a human AD brain visualized with the dye thioflavin S are

    shown on the left. For comparison, NFTs from a pR5 and a human AD brain, visualized

    with the Gallyas silver impregnation technique, are shown on the right. These images

    highlight the similarities of the brain lesions in transgenic mice and in patients with AD.

    R E V I E W S

    534 | juLy 2008 | voLume 9 www.at.m/w/

    http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2896&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://ca.expasy.org/uniprot/Q13148http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=105400http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=105400http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=105400http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=105400http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=23435&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7415&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7415&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=23435&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=105400http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=105400http://ca.expasy.org/uniprot/Q13148http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2896&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
  • 7/28/2019 Animal Model of EA

    4/13

    ER-associated degradation

    (ERAD). Pathway which targets

    misfolded proteins from the

    endoplasmic reticulum for

    degradation by the

    proteasome.

    Pre-tangle

    A somatic accumulation of

    hyperphosphorylated tau

    without fibrillar deposition.

    Pretangles represent early

    stages of NFT formation.

    high ll, rrss bhairal ipairnts in thsic, althgh NFT fratin cntins32. This sg-gstd that slbl ta rathr than NFTs, is nrtxic(BOXES 1,2). It shld hr b ntd that n ndrths spprssd cnditins P301L ta xprssin asnl rdcd t lls cparabl t thr strains ftransgnic ic that xprss P301L ta ndr cn-

    trl f a nn-indcibl prtr and dlp NFTs(Spplntar Infratin S1 (tabl)).

    Bth ligdndrcts and astrcts cntain fila-nts ta inclsins in patints ith FTD. This asdlld in vivo b xprssing P301L and wT hanta ndr th cntrl f th 2 ,3-cclic ncltid3- phsphdistras and glial fibrillar acidic pr-tin (GFAP) prtrs, rspctil33,34. Bth strainsprsntd nrnal dsfnctin and axnal dgnratin,shing that glial ta pathlg als affcts nrns.

    Nrnal lss is lr in th P301L ta dls than inP301S ta ic, cnsistnt ith th arl nst f FTDin patints carring th P301S tatin35(FIG. 1). In n

    P301S strain, in hich th s prin prtin (PrP)prtr as sd, ta xprssin casd prnncdnrnal lss in sral brain aras and ntriclarnlargnt, as in patints ith FTD36. Ipaird sn-aptic fnctin and snaps lss prcdd nrdgn-ratin b sral nths. Frthrr, th incrasdctkin xprssin and arl icrglial actiatin snin this dl sggsts that nrinflaatin ight bassciatd ith ta pathlg36,37,38. In P301S ta ic,ta pathlg as attnatd and srial iprdpn inspprssin ith FK50636.

    Takn tgthr, ths ta transgnic dls f FTDprd that FTDP-17 tatins acclrat ta aggrga-tin, and cas nr-cll dsfnctin and lss in vivo(Spplntar Infratin S1 (tabl)). Frthrr,ta transgnic ic dl an iprtant aspct f FTDssch as prgrssi spranclar pals (PSP) and crtic-basal dgnratin (CBD): th xhibit glial pathlgthat affcts nrnal fnctin, and hnc bhairalrad-ts39. Finall, ths transgnic dls ar als al-abl tls fr AD rsarch, as aspcts f thir pathlg

    sch as snaps lss r inflaatin ar als fatrsf AD.

    Modelling the Atau axis. mic xprssing tantAPP, hich rprdc -alid plaq fratin andr ipairnt, ha bc th st idlsd tl t std AD-rlatd pathgnic cha-niss in vivo (FIGS 1,2; Spplntar InfratinS1 (tabl)). A can prt a ta pathlg, althghrcnt data sh that ta rdctin blcks A-diatdtxicit40(BOX 2). Crssing th APP transgnic strainTg2576 ith th P301L ta transgnic strain jNPL3,r intracrbral inctin f th lng fr f A,A

    42

    , int a scnd P301L ta transgnic strain, pR5,incrasd ta phsphrlatin and a pr-xisting NFTpathlg30,41. Siilarl, NFT fratin as aggra-

    atd b infsing jNPL3 ic intracrbrall ithbrain xtracts fr agd APP tant ic (APP23ic), r b crssing APP23 and jNPL3 ic42. Thisffct cld b diatd b th ta kinas glcgnsnthas kinas 3 (GSK3)43, hich als appars trglat APP prcssing44. Siilarl, stdis in iclacking th cis/trans-israsPIN1, hich dlatsta phsphrlatin45, ha rald that this nzprts th claag f APP b-scrtas46. Bcbining th xprssin f APPs and P301L tan a PSEN1m146v/ backgrnd th 3xtg-AD s

    dl as gnratd; this dl clsl rcapitlatshan AD pathlg47(FIG. 1). Frthrr, a knck-in apprach as sd t crat th APP(SL)PS1KIic, hich cbins tatins in PSEN1 ithrxprsssin f a tant fr f han APP,rslting in a 50% lss f CA1 nrns at 10 nthsf ag48. Ths cbinatrial apprachs ha prnt b r sccssfl in dlling AD. Althgh

    MAPT tatins ar nt fnd in FAD, xprssinf FTDP-17 tant ta tgthr ith tant APPrsltd in a cplt AD-lik pathlg in ic,hich cld nt b achid b r rxprssinf ithr wT r tantAPPaln.

    Box 2 | Selected recent advances provided by animal models

    Ta dt b A-mdatd txtyTau pathology in Alzheimers disease (AD) was thought to be downstream of A.However, slightly higher tau levels increase the AD risk162. When human amyloid

    precursor protein (hAPP)-expressing mice were crossed onto tauknockout

    backgrounds this prevented behavioural deficits, without altering the high A levels40.Tau reduction also protected mice against pentylene-tetrazole(PTZ)-mediated

    excitotoxicity40

    . Reducing tau levels could therefore be a powerful treatment option40

    .Earlier findings in cultured hippocampal neurons derived from tau/and transgenic

    mice support this notion139. A mechanistic explanation is eagerly awaited.

    cmm mam f A ad Prions are infectious and intracerebral injection causes them to spread in the brain.

    Intracerebral injections of AD-patient and APP23 transgenic brain extracts induced Adeposits in APP23 transgenic mice163. Subsequent injections of APP23 and APP/PSEN1

    extracts into APP23 and APP/PSEN1 mice resulted in four different types of pathology.

    This shows that, similar to prion disease159, exogenously induced amyloidosis depends

    on both the host and the source of the agent, suggesting the existence of polymorphic

    A strains reminiscent of prion strains163.

    idb tag ytm t nFT t t

    The rTg4510 tau transgenic model examined whether NFT formation is related to

    functional impairment32. These mice express doxycycline-repressible human P301L

    mutant tau and develop NFTs, neuron loss and behavioural impairment. Following a

    reduction of transgenic tau, memory function was recovered and the number of neurons

    stabilized, but NFTs continued to accumulate. This shows that elevated levels of tau

    impair memory function but that NFTs are not sufficient to cause cognitive decline or

    neuronal death.

    T a f tx

    Natural Aoligomers that disrupt cognitive function in rats165 were identified, followedby the A*56 species in Tg2576 mice164. The appearance of A*56 correlated withmemory loss at 6 months. A*56 infusion into young rat brains transiently disruptedshort-term but not spatial memory. A*56 impaired memory independently of Aplaquesor neuronal loss, and might contribute to cognitive deficits associated with AD164. A*56has since been correlated with memory impairment in additional APP mouse models 166.

    BAce ba t

    The role of the -secretase BACE as a therapeutic target in AD is contradictory. BACE isrequired to cleave A from its precursor but this study shows that it also has a role in

    myelinating axons167. BACE is required for processing of neuregulin (NRG1), an axonallyexpressed factor required for glial cell development and myelination167and implicated in

    schizophrenia168. It remains to be seen whether BACE has other substrates that are

    associated with disease169.

    R E V I E W S

    NATuRe RevIewS |neuroscience voLume 9 | juLy 2008 |535

    http://ca.expasy.org/uniprot/Q9WV60http://ca.expasy.org/uniprot/Q9WV60http://ca.expasy.org/uniprot/Q9QUR7http://ca.expasy.org/uniprot/Q9QUR7http://ca.expasy.org/uniprot/Q9QUR7http://ca.expasy.org/uniprot/Q9WV60
  • 7/28/2019 Animal Model of EA

    5/13

    |

    b

    c

    d

    a MutantControl

    0

    5

    10

    15

    Session (day)

    Meannumber

    oferrors

    co

    0

    2

    4

    6

    8

    10

    Numberof

    correctchoices

    1 2 3 4 5 6 7 8

    1 2 3 4 5 6 7 8

    0

    20

    40

    60

    80

    100

    120co

    co

    mt

    mt

    comt

    Trial

    Escapelatency(s)

    0

    20

    40

    60

    80

    Exploration

    frequency(%)

    X X

    mt

    Familiar objectNovel object

    Secretase models. B gnticall intrfring ith - and-scrtas actiit, th rl f ths nzs in APPprcssing, A dpsitin and r ipairnthas bn stablishd, ith iplicatins fr tratntstratgis (Spplntar Infratin S1 (tabl)).Altring -scrtas actiit b xprssin f m146LPSeN1 in an APP transgnic backgrnd incrasdA

    42fratin and dpsitin. Bhairal dficits

    and nrnal lss r als bsrd, n bfr Aas dpsitd49,50. Srprisingl, this ffct as nr prnncd pn ral f ndgns sPSeN1 in PSeN1m146v/

    knck-in ic, sggsting that

    wT PSeN1 is prtcti51.Rdcing th actiit f th -scrtas BACe b

    crssing APP transgnic ic nt a BACE/ back-grnd rdcd A fratin and dpsitin52,53,

    Figure 2 | Baa tt d t a mmy ft AD m md. Behavioural tests are essential to

    functionally validate Alzheimers disease (AD) models and assess treatments. Some routine methods to assess

    hippocampusdependent memory functions are shown. a | The Morris water maze measures spatial reference memory.

    Mice are trained in a circular pool filled with an opaque liquid. Distant visual cues are provided for navigation around thepool. A platform is hidden just below the water surface. Mice swim until they find the platform. There are different ways to

    perform the test and also many parameters to assess memory, including path length and time to find the platform (escape

    latency). The test can be divided into two phases, an acquisition phase followed by a reversal phase during which the

    platform is moved to the opposite corner. b | The Ymaze measures spatial working memory. One arm is blocked off while

    the mouse explores the other two arms for about 15 minutes. After several hours, the blocked arm is uncovered and the

    mouse is allowed to explore the maze. Memory is judged to be better when the mouse does not enter the arm it has entered

    before but explores the novel arm (X). | The radial arm maze measures shortterm working memory. During training, a

    food pellet is placed at the end of each arm. In the test phase, which is without pellets, the mouse must go down each arm

    only once to successfully complete the maze, using shortterm memory and spatial cues to remember which arms have

    already been visited. d | In the novel object recognition test the mouse is placed in an enclosure where it is exposed to

    two objects for a defined time. The mouse is removed and later retested in the same environment, in which one of the two

    previously used objects has been replaced with a novel object. The time spent on exploring the new object is recorded and

    reflects ability to remember what is new and what is old. co, control; mt, mutant.

    R E V I E W S

    536 | juLy 2008 | voLume 9 www.at.m/w/

    http://ca.expasy.org/uniprot/P56818http://ca.expasy.org/uniprot/P56818
  • 7/28/2019 Animal Model of EA

    6/13

    Drosophila melanogaster

    Often simply termed

    Drosophila, belongs to the

    family of fruitflies and is widely

    used as a genetic model

    organism.

    Hirano body

    Intraneuronal, often rodlike

    aggregate of actin and

    associated proteins found in

    certain neurodegenerative

    disorders, such as Alzheimers

    disease and Creutzfeldt

    Jakob disease.

    cnrsl transgnic BACe rxprssin incrasdA gnratin and plaq fratin in APP/BACeic54. BACE-dficinc als rrsd th bhairalchangs bsrd in sral APP transgnic strains52,55.exprssin f th -scrtas ADAm10 in APP trans-gnic ic als rdcd A fratin, aliratdbhairal dficits and nhancd LTP ipairnt,priding in vivo idnc fr ADAm10 as a fnctinal-scrtas56.

    ApoE models. Th alllAPOE4 is a ar risk factrfr AD. Crssing APP transgnic PDAPP (platlt-drid grth factr prtr-xprssing APP) icnt anApoE/ backgrnd strngl rdcd A llsand dpsitin in th brain57, hras lntiiral dlirfApoE4 incrasd A fratin58. Th stat f Apelipidatin and slbilit als ipacts n alid-gnsis5961, as shn in thr indpndnt stdis thatcrssd diffrnt transgnic APP ic ith ic lackingATP-binding casstt transprtr A1 (ABCA1), a prtinthat rs chlstrl and phsphlipids fr clls

    (Spplntar Infratin S1 (tabl)).ABCA1/ icha lr crbral Ape lls; hr, th rnantApe is ainl carbnat-inslbl, hich incrass itsalidgnic ptntial5961. TransgnicABCA1 r-xprssin in PDAPP ic significantl rdcd Alls and plaq brdn62.

    Axonal transport models. Axnal transprt alng icr-tbls is diatd b kinsin and dnin prtins 63.Disrptd axnal transprt has bn iplicatd in thpathlg f AD and axnal transprt dfcts ha bnbsrd in ta and APP transgnic ic33,64,65. mrr,rdctin f kinsin light chain in Klc+/ ic incrasdaxnal dfcts and alidgnic APP prcssing hncrssd ith APP transgnic ic65. Bth ta and APPight b dirctl inld in axnal transprt: ta rg-lats tr-prtin binding t icrtbls and APPlinks tr prtins t cargs6668. Hr, t hatxtnt incrasd ta binding t icrtbls cntribtst th transprt dfcts in AD66, is nclar: in AD, ta ishprphsphrlatd, hich rdcs its assciatin ithicrtbls69. Anthr pssibilit is that ta intractsdirctl ith prtins f th tr cplx, thrbaltring axnal transprt70.

    Beyond the rodent models

    Studies in fruit flies. Inrtbrat dls, and in partic-lar th fl, ha rgd as a prfl tl fr stdingnrdgnratin71. A dzn diffrnt transgnic linscan b gnratd siltansl, liciting s nis-nss in rsarchrs rking ith ic. Hr highlights f th rcnt insights int disas pathlg thatha rgd fr this rk.

    exprssin f ithr wT r R406w han ta in flisprdcs adlt nst, prgrssi nrdgnratin andpratr dath, and nhancs th acclatinand txicit f FTDP-17 ta xprssd pannrnall rin chlinrgic nrns72. Th nrdgnratin ccrsitht NFT fratin, hich is cnsistnt ith stdis

    in ic32(BOX 2). A nrfibrillar pathlg ith tafilants as bsrd hn wT ta-xprssing flisc-xprssd th Drosophila melanogasterGSK3 kinashlg Shagg, indicating that incrasd taphsphrlatin prtd ta filant fratin73.This std highlights a rl fr GSK3 in diating thffcts f A n ta in AD40.

    oxidati strss has bn iplicatd in AD and FTD.Gntic dnrglatin f antixidant dfnc pathasin R406w ta flis nhancd ta txicit and nrnaldath74. Adinistratin f th anti-xidant-tcphrl(itain e) spprssd ta-indcd nrtxicit. InR406w ta flis in hich xidati strss as indcd bgntic aniplatin f anti-xidant nzs, th c-jnN-trinal kinas (jNK) patha and th cll ccl ractiatd74. This links xidati strss t cll-ccl actia-tin and spprts th hpthsis that AD ight inla failr f itsis75. Data fr wT and R406w taflis sggst that cll-ccl actiatin is dnstra fta phsphrlatin and that actiatin f ToR (targtf rapacin kinas) b ta rxprssin indcd

    nrdgnratin in a cll-ccl-dpndnt annr76.As A cass xidati strss ths findings als haiplicatins fr AD.

    Fr a thraptic pint f i it is nclar hthrspcific ta kinass and phsphatass, r rallta phsphrlatin shld b targtd (FIG. 3). Spcificphsphrlatin sits in ta ha bn linkd t tatxicit and NFT fratin30,77, bt n rk inD. melanogasterindicats that ltipl phsphrlatinsits ight rk in cncrt t prt nrtxicit78.

    Actin-cntaining Hirano bodies ar fnd in annrdgnrati disass and th ar prdi-nantl lcalizd t th CA1 rgin f th hippcaps.R406w ta-indcd nrdgnratin as shnt b assciatd ith th acclatin f filantsactin-cntaining rds79, an f hich cntaindcfilin and phsphrlatd ta. Rds r als fndin th brain f rTg4510 ic, in hich ta xprssinis indcibl79 (Spplntar Infratin S1 (tabl)),and th changs in actin strctr r shn t ccrdnstra f ta phsphrlatin79. Th ffcts f tar ptntiatd b A, and this snrgistic ffct alsrqird ta phsphrlatin79.

    In D. melanogaster, th prtin cpnnts f-scrtas arhighl cnsrd80, hras -scrtasactiit is r l r absnt81. An APP-lik prtin(APPL) is prsntin flis, althgh, as in ic, th A

    dain is nt cnsrd. Transgnic xprssin f wTr tatd han APP incrasd cll dath in th laralbrain81. This txicit dpndd n bth A and th car-bx-trinal tail f APP. Discssins abt th rlatitxicit f fibrillar, prtfibrillar and ligric A sp-cis ar nging. Th rcnt dlpnt f antibdisthat ar spcific fr distinct tps f aggrgats, ightprid a tl t addrss this qstin8284.

    ubiqilin ariants ha bn assciatd ith anincrasd risk fr SAD85, bt indpndnt stdisar aaitd t cnfir thir rl. In D. melanogaster,rxprssin f biqilin rscd a dgnrati phntp casd b rxprssin f prsnilin and

    R E V I E W S

    NATuRe RevIewS |neuroscience voLume 9 | juLy 2008 |537

    http://ca.expasy.org/uniprot/O35598http://ca.expasy.org/uniprot/P41233http://ca.expasy.org/uniprot/P92208http://ca.expasy.org/uniprot/P14599http://ca.expasy.org/uniprot/P14599http://ca.expasy.org/uniprot/P92208http://ca.expasy.org/uniprot/P41233http://ca.expasy.org/uniprot/O35598
  • 7/28/2019 Animal Model of EA

    7/13

    |

    Human APP1

    Human

    Zebrafish

    Mouse

    Chimpanzee

    EVKMDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIATVIVITLVMLKKK

    EVKMDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIATVIVITLVMLKKK

    ELRMEAEERHS---EVYHQKLVFFAEDVSSNKGAIIGLMVGGVVIATIIVITLVMLRKK

    EVKMDAEFGHDSGFEVRHQKLVFFAEDVGSNKGAIIGLMVGGVVIATVIVITLVMLKKK

    a

    b Human tau1 441

    P P P P PPPP

    Human

    Zebrafish

    C. elegans

    Mouse

    Epitope

    APKTPPS SPGSPGTP GS R SRTPSLP T V VRTPPKSPSS KIGSTEN/KIGSLDN VYKSPVVSGDTSPRH MVDSPQL

    MVDSPQLVYKSPVVSGDTSPRHKIGSTEN/KIGSLDN

    KIGSTEN/KVGSLEN

    KIGSLDN/KVGSTAN

    KVGSVTN/KVGSKTN

    VVRTPPKSPSA

    VVRTPPKSPGS

    RSRTPSLPTSPGSPGTPGS

    SPASRSSTPG

    SPKTPPG

    PVKTPTS

    +

    +

    +

    276 317 770

    -secretase -secretase -secretase

    A

    A40/42

    AT270 CP13/AT8 CP3/AT100 TG3/AT180 12E8 PHF1 pS422181 422404396262 356231 235212 214202 205

    170 411393385251 345220 224201 2031 91 19 4

    163 224131 135114 118

    110

    2x297 ( 325) 356 ( 384)

    184 ( 243 ) 275 ( 305)Drosophila 2x

    Rational mutagenesis

    Targeted mutation of a gene of

    interest based on previous

    analysis (for example,

    sequence alignment or

    functional domains/motifs),

    often using sitedirected

    mutagenesis.

    Caenorhabditis elegansA roundworm (nematode) that

    has become a major model

    organism for molecular and

    developmental biology.

    Modifier screen

    Screen in which random

    mutations are introduced into

    an organism with a preexisting

    phenotype, using a mutagen

    such as NethylNnitrosourea

    (ENU). Mutants that modify

    (enhance or suppress) the

    preexisting phenotype are

    then isolated.

    RNA interference

    (RNAi). A method by which

    doublestranded RNA is used

    to cause rapid degradation of

    endogenous RNA thereby

    precluding translation. This

    provides a simple way of

    studying the effects of the

    absence of a gene product.

    Forward genetic screen

    A genetic analysis that

    proceeds from phenotype to

    genotype by positional cloning

    or candidategene analysis

    c-xprssin f biqilin ith han APP rdcdAPP lls86.

    Th rlati cntribtin f th t frs f A(A

    40and A

    42) t disas is a attr f dbat. In

    D. melanogaster, A42

    xprssin casd th fratinf diffs alid dpsits, ag-dpndnt larning dfi-cits and nrdgnratin. A

    40casd siilar larning

    dficits itht aggrgatin and nrdgnratin87.Rational mutagenesis applid t th A

    42pptid cnfird

    that th rat f aggrgat fratin in vitro is linkd tbrain txicit88. Frthrr, flis xprssing wT A

    42

    r e22G A42

    had a dian srial f 24 and 8 das,rspctil, hras A

    40-xprssing flis had a dian

    srial f 30 das, indicating that A40

    is nn-txicand pssibl prtcti87.

    In hans, PSENtatins cas FAD ith an agf nst ranging fr 24 t 65 ars. whn PSENta-tins r intrdcd int D. melanogaster PSEN, th

    actiitis f th tant prsnilins r linkd tth ag f nst f AD, sggsting that disas srit inhans is casd priaril b th tatins and nt bnlinkd gntic r pigntic difirs89.

    D. melanogaster is an xcllnt sst fr drgscrning. Th flis shrt lifspan, cbind ith thirsall siz and l cst, alls a singl labratr tkp sral hndrd thsand siltansl90. Frxapl, t dlp -scrtas inhibitrs as AD drgs,sid-ffcts rlatd t ipaird Ntch signalling nd tb prcldd. Th binding sit f th -scrtas inhibi-tr DAPT is cnsrd in D. melanogasterand DAPTadinistratin cass a phntp siilar t that licitd

    b tatins in th Ntch signalling patha, sggst-ing that D. melanogasteris a sitabl sst fr in vivopr-scrning f candidat -scrtas inhibitrs91.

    Studies in nematodes.Caenorhabditis elegans als has ashrt lif span and modifier screens and RNA interference(RNAi) ar asir in rs than flis, as th can bgrn n agar plats cntaining gnticall difidbactria. Hr tlin s f th as in hichths xprints ha nhancd r ndrstanding fAD and FTD.

    exprssin f wT and tant ta in C. elegans ladst bhairal and snaptic abnralitis, ith tantta casing an arlir and r sr phntp92,93.Th rl f th ta biqitin-ligas CHIP in th fra-tin f inslbl ta filants (hich as first shn inic), as cnfird b rslts f an RNAi-diatddnrglatin f CHIP in natds94. In additin,

    th C. elegans hlg f th ctskltal rglatrprtin enabld, uNC-34, as idntifid b a forwardgeneticscreen fr tatins that alirat th ta-indcd crdinatin phntp95. C. elegans asals instrntal in idntifing aph-1 and pn-2 ascpnnts f th -scrtas cplx96.

    egg-laing in C. elegans is cntrlld b a sipltr prgra and ths, prids a straightfrardrad-t f tr bhair97. A dfcti gg-laingphntp can b casd b tatins in th PSENhlg, sel12. A suppressor screen rald that atranscriptin factr, a histn dactlas and a histndthlas cld spprss th gg-laing dfct and

    Figure 3 | sq agmt f A ad ta fm tbat ad tbat . a | Sequence alignment of

    A and flanking sequences from the human, chimpanzee, mouse and zebrafish. Owing to the sequence, all but mouseamyloid precursor protein (APP) can be proteolytically cleaved to form A

    40/42. b | The longest human tau isoform, htau40,

    contains two aminoterminal inserts (blue) and four microtubulebinding domains (green). Routinely used

    phosphorylationdependent antitau antibodies are listed (grey boxes) along with the respective phosphorylationsite

    and flanking sequences. As can be seen from the alignment of the tau sequences in five species, mouse and human tau are

    highly homologous, which explains why most of the phosphorylationdependent antibodies that are listed react with both

    human and murine tau.

    R E V I E W S

    538 | juLy 2008 | voLume 9 www.at.m/w/

    http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=172303&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=172303&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
  • 7/28/2019 Animal Model of EA

    8/13

    Suppressor screen

    A system used to identify

    genes that, when

    overexpressed, lead to the

    suppression of a mutant

    phenotype.

    Transcriptomics

    Largescale studies of the

    expression of genes at

    the mRNA level, typically

    carried out using microarray

    technology.

    Proteomics

    Largescale studies of the

    proteome, which comprises all

    proteins produced by an

    organism or system. This might

    also include the analysis of

    protein function, structures

    and secondary modifications,

    using techniques such as

    massspectrometry.

    Mass-spectrometric analysis

    A technique used to identify

    and measure biological and

    chemical compounds. It

    involves ionization, followed

    by the use of a magnetic or

    electrical field. Applications

    include the identification ofproteins and sequencing

    of oligosaccharides.

    State 3 respiration

    Active respiration after adding

    a limited amount of ADP. The

    rate after all the ADP has been

    phosphorylated to ATP is

    termed state 4 respiration.

    Uncoupled respiration

    Respiration upon adding a

    reagent such as oligomycin

    (complex V inhibitor) that

    uncouples from ATPase.

    hnc rsc th tant prsnilin-rlatd phntp98.A rlatil high thrghpt thd f assssing gg-laing has bn dlpd b asring th chitinasthat is rlasd b hatching ggs99.

    Animal models and functional genomics

    Transcriptomics and proteomics ar incrasingl bingapplid t bth patints and anial dls f AD andFTD, hr th ha alld th idntificatin f nldiffrntiall rglatd gns and prtins100(FIG. 4).Ths thds can b sd t r-dfin and sbdiidAD and FTD n th basis f bichical critria. Thanalzd atrial inclds han brain, crbrspinalflid (CSF) and plasa, as ll as tiss cltr clls andbrain and spinal crd tiss fr anial dls 101,102.whras transcriptics ffrs th pssibilit f xa-ining singl clls r n sbclllar cpartnts,prtics has nt t attaind this ll f snsitiit101.Hr, dscrib h th analsis f anial dls bths tchniqs has cntribtd t th ndrstandingf AD and FTD.

    Wild-type mice provide the setting. T prid a fra-rk fr th analsis f transgnic brains it is snsiblt analz wT ic and idntif sbrgin- r clltp-spcific transcripts. In anial dls, tiss canb dissctd itht th pstrt dla rqirdfr han tiss. whn sbrgin-spcific RNA tran-scripts r cpard ithin th s hippcaps,th axial diffrnc bsrd as 7.6-fld (thatas Est1 nrichd in dntat grs) and n gn asxclsil xprssd in an n rgin103. A rlatdstd cpard gn xprssin in th crtx, crbl-l and idbrain, and shd that lss than 1% fth gns xaind r nrichd in an ara104. Thhippcaps, agdala and ntrhinal crtx shdsiilar xprssin prfils104. Anthr std idnti-fid diffrntiall nrichd gns in th agdala thatxhibitd bndaris f xprssin crrspnding tct-architctnicall dfind sbncli105. Althghrginal gn/prtin xprssin diffrncs ar nt thsl basis f slcti lnrabilit, stdis lik ths,tgthr ith dtrining diffrntial actiit pat-trns, shld hlp s t ndrstand h crtain brainrgins ar r prn t dgnratin in disasssch as AD and FTD.

    Focusing on mitochondria. Sral xplanatins f th

    nrdgnratin fnd in AD ha bn prpsd,s f hich ha als bn als iplicatd in FTD.Gntic, clinical and bichical idnc spprtsth alid cascad hpthsis in FAD106, hras thxidatin daag hpthsis is attracti in SAD. Thishpthsis rlaps ith th axn transprt failrhpthsis: itchndria ar bth a targt and srcf racti xgn spcis (RoS) and thir transprt isipaird in disas107.

    A massspectrometric analysis f pR5 ic (FIG. 1)rald drglatin f itchndrial rspiratrchain cplx cpnnts (inclding cplx v) andantixidant nzs, and itchndrial dsfnctin108.

    Frthrr, dcrasd cplx v lls ha bnfnd in th brains f patints carring th P301L tatatin108. Stdis n Sod2/ ic that lack th dtxi-fing nz sprxid distas 2 shd that it-chndrial strss can cas ta hprphsphrlatin109.This iplis that a icis ccl f altratins in ta andxidati strss can cas nrdgnratin.

    Crssing transgnic ic rxprssing th it-chndrial nz A-binding alchl dhdrgnas(ABAD) ith APP tant j20 ic has bn shn tcas th gnratin f RoS and spatial larning andr dficits110. As AD is assciatd ith snapsfailr7, snaptsal fractins fr Tg2576 icha bn analzd b ass spctrtr111(FIGS 1,4).Significant diffrncs r fnd in mitochondrialhsp70. whn snaptic and nnsnaptic itchndriar prifid fr Tg2576 brains and cpard,nrs diffrncs in th prtin sbnit cpsi-tin f rspiratr chain cplxs I and III r fnd.Fnctinal xainatin rald ipairnt in state 3respiration and uncoupled respiration in brain itchndria

    fr ng Tg2576 ic111, siilar t ths bsrd inpR5 ic108. As this ipairnt ccrrd bfr NFTfratin and A plaq dpsitin, itchndria arthght t b arl targts f A and ta aggrgats.

    Focusing on stress response and inflammation. Anprglatin f xidati strss-rlatd, apptsis-rlatdand pr-inflaatr signalling gns has bn fndin th CA1 rgin f th brains f patints ith AD112.Siilarl, in thr APP transgnic dls, gns ncdingprtins inld in th in rspns, carbhdrattablis and prtlsis r drglatd. ScrningjNPL3 ic (FIG. 1) idntifid drglatd inflaatindiatrs and apptsis inhibitrs113. In th pR5 strain114,

    glyoxalase I(GLo1) as fnd t b th nl prglatdgn115. Glxalas I is ssntial fr th dtxificatinf dicarbnl cpnds, prnting th fratin fadancd glcatin nd (AGe) prdcts that prt thfratin f RoS. Cparati prtics applid tA

    42-tratd P301L ta xprssing nrblasta clls

    and th agdala f pR5 ic strtaxicall inctd ithA

    42idntifid prtins inld in th strss-rspns

    that ar assciatd ith prtin flding, incldingvCP116. In bth ic and D. melanogaster, a prcin-snsiti ainpptidas (PSA) as idntifid as a sp-prssr f ta-indcd nrdgnratin. Hr,nlik ta, PSA did nt altr APP lls in vitro117.

    PSA is th ar pptidas rspnsibl fr digstingplgltain sqncs rlasd b prtassdring prtin dgradatin.

    Learning and memory-related genes. whn APP/PSeN1transgnic ic r analzd fr diffrntial RNAxprssin sral gns that ar ssntial fr lng-trptntiatin (LTP) and r fratin r fndt b dnrglatd in A plaq-cntaining aras. Asthr r n apparnt changs in snaptic strctr,r lss in ths ic ight dl th arl rdsfnctin that is sn in patints ith AD bfrsnapss and nrns dgnrat118. epidilgical

    R E V I E W S

    NATuRe RevIewS |neuroscience voLume 9 | juLy 2008 |539

    http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2739&ordinalpos=4&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2739&ordinalpos=4&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
  • 7/28/2019 Animal Model of EA

    9/13

    |

    AD mouse model

    in vitro

    Cell culture

    Human tissue

    Brain (dissection)

    LC-Nanospray

    Sample preparationand fractionation

    Gene-chip(mRNA; miRNA)

    2D-PAGE Antibody arrayMultiplex western

    Mass spectrometry

    Validation

    Mouse models

    N

    N

    N N

    S

    NN

    N

    N H

    O

    Cl

    idnc sggsts that actiit and xrcis ar crrlatdith a latr nst f AD and placing APP/PSeN1 tanttransgnic ic in an nirnntall nrichd nirn-nt significantl rdcd th A plaq brdn. man

    f th gns that r spcificall prglatd in APP/PSeN1 tant ic liing in th nrichd nirnntar inld in larning and r, nrgnsisand cll srial pathas, ipling that actiit has apsiti ffct n plasticit-rlatd gns119.

    Althgh s fnctinal gnics stdis f trans-gnic dls f dntia ral f drglatd gn/prtin-catgris, thrs indicat that an fnctinalcatgris ar drglatd, ftn rlatd t prcsssknn t b iprtant in AD pathphsilg120.This is, in part, d t diffrncs in tiss cplxit,statistical stringnc and anntatin sftars101. Thchallng fr th ftr is t idntif arl changs bthith rspct t ag f nst and th tiss r clllarcpartnt in hich pathlg is initiatd, hich illffr th pssibilit f a targtd intrfrnc ith thdisas prcss.

    Imaging animal models

    Th clinical diagnsis f AD and FTD rains agand inclds rcrding th patint histr, xclsin

    f dprssin and thr cass f dntia, labratrtsts (t rl t diabts fr xapl), nrlgicaland ntal xainatins and incrasingl, iagingtchniqs. Th tchniqs that ar sd fr prclinicaldiagnsis incld positron emission tomography (PeT),computed tomography (CT), magnetic resonance imaging(mRI) and multiphoton imaging. Althgh ltiphtniaging is cpatibl ith han and s tiss nrns and A plaqs ha a siilar dinsin inbth spcis th frr tchniqs rqir a highrrsltin in anials d t thir ch sallr brainstrctrs. In principl, iaging in anials prids atl t nn-inasil nitr pathlgical changs andt crrlat ths ith bhairal changs.

    visalizing A dpsitin in vivo ight cntribt ta dfiniti diagnsis f AD and t nitring th sc-css f tratnts. An arl prb as a d calld BSB((trans,trans)-1-br-2,5-bis-(3-hdrxcarbnl-4-hdrx)strlbnzn), hich as sd t labl Aplaqs in Tg2576 ic121. In rcnt ars th nlPeT tracr 11C-lablld Pittsbrgh Cpnd-B (PIB),hich binds t A plaqs, has arsd significantattntin122. PIB as shn t ntr th brain qickland labl plaqs ithin ints123. It as sd as aPeT tracr in APP transgnic ic bt initiall faild trflct th ant f A124. entall, in APP23 ic,an ag-dpndnt incras in radiligand binding as

    fnd t b cnsistnt ith prgrssi A accla-tin125. Iprtantl, A rdctins pn accinatinith an anti-A-antibd r rflctd b rdcdbinding f11C-PIB.

    Hr, thr ar sral liitatins f PeT,inclding a high ariabilit in nral cntrls, lspatial rsltin, th nd fr prbs that st bsnthsizd, prifid and qickl sd, and th highcst. In additin, PeT stdis rqir p t 45 intsf scanning, hich pss particlar prbls fr thldrl and patints ith dntia. B cntrast, mRI isp t 50-fld chapr, th rsltin is high, th prbsr cntrast nhancrs can b strd fr xtndd

    Figure 4 | Aat f fta gm t AD m md. Functional

    genomics is increasingly being applied to animal models of Alzheimers disease (AD) 100.

    In most instances some kind of prefractionation is required to reduce the complexity

    of the sample or to remove overtly abundant mRNAs or proteins. Prefractionation can

    be at the level of subcellular compartments, based on biochemical or biophysical

    characteristics, or by dissecting subregions of the brain. Genechips determine

    differences in mRNA and, more recently, in micro RNA (miRNA) levels100. Mass

    spectrometry might involve prior separation on twodimensional polyacrylamide gels

    (2DPAGE) and cutting out of protein spots or, alternatively, protein mixtures might be

    fed, through liquid chromatography (LC)nanospray, directly into the massspectrometer. Antibody arrays and multiplex Western blotting are biased massscale

    approaches to quantitatively determine differences in protein levels and post

    translational modifications, such as phosphorylation. Functional genomics data are

    highly dependent on a proper normalization and validation, both functionally and in

    human and animal tissue; this can be done using techniques such as Western blotting

    and immunohistochemistry101.

    R E V I E W S

    540 | juLy 2008 | voLume 9 www.at.m/w/

  • 7/28/2019 Animal Model of EA

    10/13

    Positron emission

    tomography

    (PET). In vivo imaging

    technique used for diagnostic

    examination that involves the

    acquisition of physiological

    images based on the detection

    of positrons, which are emitted

    from a radioactive substance

    previously administered to thepatient.

    Computed tomography

    Imaging technique that exploits

    the differences in absorption of

    Xrays by different tissues to

    give highcontrast images of

    anatomical structures.

    Computed tomography has

    relatively poor softtissue

    contrast, so iodinated contrast

    agents, which perfuse different

    tissue types at different rates,

    are commonly used to

    delineate tumours.

    Magnetic resonanceimaging

    A noninvasive method used to

    obtain images of living tissue. It

    uses radiofrequency pulses

    and magnetic field gradients;

    the principle of nuclear

    magnetic resonance is used to

    reconstruct images of tissue

    characteristics (for example,

    proton density or water

    diffusion parameters).

    Multiphoton imaging

    A noninvasive form of

    microscopy in which a

    fluorochrome that wouldnormally be excited by a single

    photon is stimulated quasi

    simultaneously by several

    photons of lower energy. Under

    these conditions, fluorescence

    increases as a function of the

    square of the light intensity,

    and decreases approximately

    as the square of the distance

    from the focus. Because of this

    behaviour, only fluorochrome

    molecules near the plane of

    focus are excited, greatly

    reducing light scattering and

    photodamage.

    prids and thr is n radiacti xpsr126. whnTg2576 ic r adinistrd th 19F-cntainingalidphilic Cng rd-tp cpnd FSB((e,e)-1-flr-2,5-bis-(3-hdrxcarbnl-4-hdrx)strlbnzn)intransl, A plaqscld b isalizd b mRI. Frthrr, agnticrsnanc spctrscp can b sd t asr altra-tins in tablits that ar prgnstic arkrs frnrdgnratin127.

    what is n ndd ar PeT tracrs fr pathlgi-cal strctrs thr than plaqs (sch as th NFTs), ata rsltin that is cpatibl ith th siz f sbrain strctrs. It is xpctd that iaging, tgthrith th dlpnt f biarkrs in CSF and bld,ill lad t an arl diffrntial diagnsis f AD.

    Therapeutic strategies

    Thr is n cr fr AD r FTD and th aailabl trat-nt is nl sptatic. Hr, clinical trials thatar basd n th ndrling bilg f disas ar nth a (s Frthr infratin). Ths incld ac-

    cinatin, anti-inflaatr drgs and dlatrsf fratin, aggrgatin and claranc f A andta. man f th n thraptic stratgis ha thirfndatin in transgnic anial rk128; highlighta f f ths hr.

    Vaccination targeting A. vaccinatin trials targtingA in ic and hans ha bn rid in REF. 129.In brif, bth acti and passi accinatin strat-gis ha bn sccssfl in A plaq-fring ic.vaccinatin f ng PDAPP ic ith th A

    42pp-

    tid, fr xapl, prnts th dlpnt f nriticA plaqs, and in ldr ic it significantl rdcsth130. An A-dirctd passi accinatin apprachas als ffcti131. vaccinatin rdcd ag-dpndntlarning dficits, hich crrlatd ith rdctins inbth slbl A and ta132.

    encragd b th fficac in ic, a clinical trialas lanchd ith AN-1792-cntaining pr-aggrgatdsnthtic A

    42and th adant QS-21 (REF. 133).

    Th Phas IIa trial as haltd pratrl as 6% fth patints h had rcid th accin dlpdningncphalitis; hr, as s patints dl-pd A-antibd titrs that crrlatd ith a sldcgniti dclin134, th dlpnt f antibd frag-nts and hanizd A-spcific antibdis is ngingand s ar crrntl in clinical trials (s Frthr

    infratin).

    Reduction of tau. At first sight, a ta-dirctd ac-cinatin apprach ds nt appar fasibl, bcasta is priaril an intraclllar prtin. Thrfr itas srprising, and ncraging, t find that accina-tin f jNPL3 ic ith a ta pptid cntaining thPHF1 phsph-pitp rdcd aggrgatd ta llsand sld prgrssin f an NFT-rlatdtr ph-ntp135. In this std, anti-ta antibdisntrd thbrain and bnd t pathlgical ta136. An indpndntta accinatin std is aaitd and clinical trials hant t startd.

    T cpnsat fr th lss f tas icrtbl-stabilizing fnctin (as hn it is phsphrlatd ithas lss icrtbl-binding capacit), intrapri-tnal inctins f th icrtbl-binding andstabilizing drg paclitaxl, r adinistrd t icrxprssing wT ta137. This rstrd fast axnaltransprt in spinal crd axns and aliratd tripairnt 137. whn NFT-fring P301S ta ic(PS19 ic, Spplntar Infratin S1 (tabl)), inhich icrglial actiatin prcds NFT fratin,r tratd ith th inspprssant FK506, anincras in srial, an attnatin f nrinfla-atin, and an aliratin f th ta pathlgas bsrd36. Siilarl, FK506 iprd rfnctins in Tg2576 ic138. Anthr rcnt findingis that th incrasd lthalit f A-prdcing trans-gnic ic cld b prntd b brding th APPtransgn nt a ta-dficint backgrnd (BOX 2). Thisstrngthns th ida that a rdctin f ta cld b anffcti tratnt stratg fr AD40,139.

    Role of diet. Th rl f dit in prnting AD hasgaind incrasd rcgnitin. Calric rstrictin (CR)rdcd A plaq nbrs in t APP transgnicstrains and rdcd astrct actiatin140. Bth intr-ittnt fasting and CR aliratd th bhairalphntp f 3xtg-AD ic141. A lls and ta phs-phrlatin r nt altrd in th intrittnt fast-ing grp, sggsting that this stratg ight pridprtctin dnstra f ta and A.

    on prtin iplicatd in CR-diatd lngitis th dactlas sirtin 1 (SIRT1). whn ic r-xprssing p25, an actiatr f th ta kinas cdk5, rinctd ith th anti-xidant rsratrl, hippcapalnrdgnratin as rdcd, larning dficin-cis r prntd and a dcras in th actlatinf th knn SIRT1 sbstrats PGC-1 and p53 asbsrd142.

    othr ditar stratgis incld th s f anti-xidants sch as Ginkgo biloba r th grn ta c-pnnt pigallcatchin-3-gallat, hich rdc Agnratin in Tg2576 ic, pssibl b actiating th-scrtas patha143. A dit nrichd in ga-3plnsatratd fatt acids (PFAs) rdcd A plaqsin Tg2576 ic pssibl b inflncing th latralbran bilit f APP and its scrtass, as llas scrtas actiit144. Zinc tablis has als bniplicatd in -alid plaq fratin145. Nnatal

    ga-3 PFA dficinc casd rxprssin f thzinc transprtr ZnT3 in rats and altratins in brainand plasa zinc lls145.

    whthr r gring ndrstanding f th ipr-tanc f dit in AD ill lad t lifstl changs isqstinabl; hr th finding that drat cn-sptin f rd in attnats A nrpathlg andr ipairnt in Tg2576 ic ight b asirt translat int dail practic146. whthr th rd inshld b cnsd ith A-xprssing transgnicptats, th fding f hich has bn shn t licitan in rspns and partiall rdc A plaqs inTg2576 ic, rains t b sn147.

    R E V I E W S

    NATuRe RevIewS |neuroscience voLume 9 | juLy 2008 |541

    http://ca.expasy.org/uniprot/Q923E4http://ca.expasy.org/uniprot/Q923E4
  • 7/28/2019 Animal Model of EA

    11/13

    Other strategies targeting Aand tau. Frthr thrapticstratgis that ha bn tstd in ic incld rdcingA prdctin b inhibiting - and -scrtas acti-it, r b prting its claranc thrgh nprilsin rinslin-dgrading nz148. othr thrapis plth s f scarinic agnists and chlating agnts149,150.Antixidants and inhibitrs f th prtass caspas-3 andcalpain ha bn cnsidrd, as APP and ta ar bthsbstrats f ths nzs151. Siilarl, nn-stridalanti-inflaatr drgs (NSAIDs) ar cnsidrd frtratnt and prntin f AD and ha bn tstd inanial dls152. As ta is hprphsphrlatd in bthAD and FTD, kinass ar prising targts, althghtargting ths nzs is nt triial, bcas th haltipl sbstrats in an rgans44. Lithi is sd ttrat biplar disrdr and thr is cnflicting idncrgarding hthr it is ffcti in AD. Chrnic adin-istratin in agd 3xTg-AD ic rdcd ta phsphr-latin b rdcing GSK3 actiit, bt did nt altr Alls r r fnctins153. In a rlatd std lithirdcd APP phsphrlatin and hnc, A lls154.

    whn all tratnt stratgis in ic ar cnsidrd cncld that anial xprintatin is absltlssntial. Hr, th lssn larnd fr th A-dirctd accinatins is t b particlarl carfl in dirctltranslating anial findings t th han patint.

    Outlook

    Anial dls cntin t ha a cntral rl in ADrsarch. Rcntl, a ar fcs has bn n cbi-natrial apprachs that rl n a liitd nbr fbasic dls ith a prnncd pathlg. Th dlsight nt accratl rprdc th anatical distri-btin f th lsins in han brain, bt bichicallth ar r siilar t th han cnditin. As faras r and tr fnctins, nranat andth ndcrin sst ar cncrnd, th s dlsar sprir t th inrtbrat ns. Hr, rcntrk in inrtbrat spcis highlights thir adantagsfr disscting signalling pathas, prfring di-fir scrnings r analzing failis f tatins inparalll.

    what ill th ftr bring? w xpct that thr illb a idr applicatin f iaging tchniqs t anialdls. Sral tas ha applid fnctinal gnicst thir dls and ith th adnt f antibd arrasand th rging rl f iRNAs bcing clar, it islikl that th cing ars ill s a assi incras

    in th s f ths tchniqs. Th nar ftr ill shhthr th crrnt clinical trials ill b fritfl andlad t a ral cr f AD and FTD. Finall, nxpctdrslts in anial dls cld rtrn s f thcrrnt hpthss.

    1. Ballatore, C., Lee, V. M. & Trojanowski, J. Q. Tau-

    mediated neurodegeneration in Alzheimers disease

    and related disorders. Nature Rev. Neurosci.8,

    663672 (2007).

    2. Cummings, J. L. & Askin-Edgar, S. Evidence for

    psychotropic effects of acetylcholinesterase inhibitors.

    CNS Drugs13, 385395 (2000).

    3. Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R. &

    Van Hoesen, G. W. The topographical and

    neuroanatomical distribution of neurofibrillary tangles

    and neuritic plaques in the cerebral cortex of patients

    with Alzheimers disease. Cereb. Cortex1, 103116

    (1991).4. Neary, D. et al. Frontotemporal lobar degeneration: a

    consensus on clinical diagnostic criteria [see

    comments]. Neurology51, 15461554 (1998).

    5. Snowden, J. S.et al. Distinct behavioural profiles in

    frontotemporal dementia and semantic dementia.

    J. Neurol. Neurosurg. Psychiatry70, 323332 (2001).

    6. Weder, N. D., Aziz, R., Wilkins, K. & Tampi, R. R.

    Frontotemporal dementias: a review.Ann. Gen.

    Psychiatry6, 15 (2007).

    7. Selkoe, D. J. Alzheimers disease is a synaptic failure.

    Science298, 789791 (2002).

    8. Lee, V. M., Goedert, M. & Trojanowski, J. Q.

    Neurodegenerative tauopathies.Annu. Rev. Neurosci.

    24, 11211159 (2001).

    9. Goate, A. et al. Segregation of a missense mutation in

    the amyloid precursor protein gene with familial

    Alzheimers disease. Nature349, 704706 (1991).10. Murrell, J., Farlow, M., Ghetti, B. & Benson, M. D. A

    mutation in the amyloid precursor protein associatedwith hereditary Alzheimers disease. Science254,

    9799 (1991).

    11. Mullan, M. et al. A pathogenic mutation for probable

    Alzheimers disease in the APP gene at the N-terminus

    of-amyloid. Nature Genet.1, 345347 (1992).12. Nilsberth, C. et al. The Arctic APP mutation (E693G)

    causes Alzheimers disease by enhanced Aprotofibril formation. Nature Neurosci.4, 887893

    (2001).

    13. Bertram, L. & Tanzi, R. E. The genetic epidemiology of

    neurodegenerative disease.J. Clin. Invest.115,

    14491457 (2005).14. Hutton, M. et al. Association of missense and

    5-splice-site mutations in tau with the inheriteddementia FTDP-17. Nature393, 702705 (1998).

    15. Poorkaj, P. et al. Tau is a candidate gene for

    chromosome 17 frontotemporal dementia.Ann.

    Neurol.43, 815825 (1998).

    16. Spillantini, M. G. et al. Mutation in the tau gene in

    familial multiple system tauopathy with presenile

    dementia. Proc. Natl Acad. Sci. USA95, 77377741

    (1998).

    17. Cruts, M. & Van Broeckhoven, C. Loss of progranulin

    function in frontotemporal lobar degeneration. Trends

    Genet. (2008).

    18. Baker, M. et al. Mutations in progranulin cause tau-

    negative frontotemporal dementia linked to

    chromosome 17. Nature442, 916919 (2006).

    19. Cruts, M. et al. Null mutations in progranulin cause

    ubiquitin-positive frontotemporal dementia linked to

    chromosome 17q21. Nature442, 920924 (2006).

    This study, together with reference 18, identifies

    null mutations inprogranulin as a cause of tau-

    negative frontotemporal dementia.

    20. Neumann, M. et al. Ubiquitinated TDP-43 in

    frontotemporal lobar degeneration and amyotrophic

    lateral sclerosis. Science314, 130133 (2006).

    This study shows that the tau-negative, ubiquitin-

    positive lesions in some forms of frontotemporal

    dementia and amyotrophic lateral sclerosis contain

    the protein TDP-43.

    21. Gitcho, M. A. et al. TDP-43 A315T mutation in familial

    motor neuron disease.Ann. Neurol.63, 535538

    (2008).

    22. Kabashi, E. et al. TARDBP mutations in individuals

    with sporadic and familial amyotrophic lateral

    sclerosis. Nature Genet.40, 572574 (2008).

    23. Yokoseki, A. et al. TDP-43 mutation in familial

    amyotrophic lateral sclerosis.Ann. Neurol.63,

    538542 (2008).24. Ye, Y. et al. Inaugural Article: Recruitment of the p97

    ATPase and ubiquitin ligases to the site of

    retrotranslocation at the endoplasmic reticulum

    membrane. Proc. Natl Acad. Sci. USA102,

    1413214138 (2005).

    25. Neumann, M. et al. TDP-43 in the ubiquitin pathology

    of frontotemporal dementia with VCP gene mutations.

    J. Neuropathol. Exp. Neurol.66, 152157 (2007).

    26. Kayasuga, Y. et al. Alteration of behavioural

    phenotype in mice by targeted disruption of the

    progranulin gene. Behav. Brain Res.185, 110118

    (2007).

    27. Gtz, J.et al. A decade of tau transgenic animal

    models and beyond Brain Pathol.17, 91103 (2007).

    28. Gtz, J. et al. Somatodendritic localization and

    hyperphosphorylation of tau protein in transgenic

    mice expressing the longest human brain tau isoform.

    Embo J.14, 13041313 (1995).

    29. Lewis, J. et al. Neurofibrillary tangles, amyotrophy and

    progressive motor disturbance in mice expressing

    mutant (P301L) tau protein. Nature Genet.25,

    402405 (2000).

    This study presented the first mouse model with

    NFT formation by expression of FTDP-17 (P301L)

    mutant tau.30. Gtz, J., Chen, F., van Dorpe, J. & Nitsch, R. M.

    Formation of neurofibrillary tangles in P301L tau

    transgenic mice induced by A 42 fibrils. Science293,14911495 (2001).

    31. Gtz, J.et al. Transgenic animal models of Alzheimers

    disease and related disorders: Histopathology, behavior

    and therapy. Mol. Psychiatry9, 664683 (2004).

    32. Santacruz, K. et al. Tau suppression in a

    neurodegenerative mouse model improves memory

    function. Science309, 476481 (2005).

    This study shows that NFT formation is not related

    to functional impairment in mice.

    33. Higuchi, M. et al. Axonal degeneration induced by

    targeted expression of mutant human tau in

    oligodendrocytes of transgenic mice that model glial

    tauopathies.J. Neurosci.25, 94349443 (2005).

    34. Forman, M. S.et al. Transgenic mouse model of tau

    pathology in astrocytes leading to nervous system

    degeneration.J. Neurosci.25, 35393550 (2005).

    35. Allen, B. et al. Abundant tau filaments and

    nonapoptotic neurodegeneration in transgenic mice

    expressing human P301S tau protein.J. Neurosci.22,

    93409351 (2002).

    36. Yoshiyama, Y. et al. Synapse loss and microglial

    activation precede tangles in a P301S tauopathymouse model. Neuron53, 337351 (2007).

    37. Bellucci, A. et al. Induction of inflammatory mediators

    and microglial activation in mice transgenic for mutant

    human P301S tau protein.Am. J. Pathol.165,

    16431652 (2004).

    38. Wyss-Coray, T. Inflammation in Alzheimer disease:

    driving force, bystander or beneficial response?

    Nature Med.12, 10051015 (2006).

    39. Gtz, J. Tau and transgenic animal models. Brain Res.

    Brain Res. Rev.35, 266286 (2001).

    40. Roberson, E. D. et al. Reducing endogenous tau

    ameliorates amyloid -induced deficits in an Alzheimersdisease mouse model. Science316, 750754 (2007).

    This study shows that tau reduction protects from

    A-mediated toxicity and excitotoxicity.41. Lewis, J.et al. Enhanced neurofibrillary degeneration

    in transgenic mice expressing mutant Tau and APP.

    Science293, 14871491 (2001).

    R E V I E W S

    542 | juLy 2008 | voLume 9 www.at.m/w/

  • 7/28/2019 Animal Model of EA

    12/13

    42. Bolmont, T. et al. Induction of tau pathology by

    intracerebral infusion of amyloid--containing brainextract and by amyloid- deposition in APP x Tautransgenic mice.Am. J. Pathol.171, 20122020

    (2007).

    43. Terwel, D. et al. Amyloid activates GSK-3 toaggravate neuronal tauopathy in bigenic mice.Am. J.

    Pathol.172, 786798 (2008).44. Phiel, C. J., Wilson, C. A., Lee, V. M. & Klein, P. S.

    GSK-3 regulates production of Alzheimers diseaseamyloid- peptides. Nature423, 435439 (2003).

    45. Liou, Y. C. et al. Role of the prolyl isomerase Pin1 inprotecting against age-dependent neurodegeneration.

    Nature424, 556561 (2003).46. Pastorino, L. et al. The prolyl isomerase Pin1

    regulates amyloid precursor protein processing and

    amyloid- production. Nature440, 528534(2006).

    47. Oddo, S.et al. Triple-transgenic model of Alzheimersdisease with plaques and tangles. Intracellular a andsynaptic dysfunction. Neuron39, 409421(2003).

    This study combines transgenic expression of

    mutant APP, PSEN1 and tau, achieving both Aplaque and NFT formation.

    48. Casas, C. et al. Massive CA1/2 neuronal loss with

    intraneuronal and N-terminal truncated A42accumulation in a novel Alzheimer transgenic model.

    Am. J. Pathol.165, 12891300 (2004).49. Holcomb, L. et al. Accelerated Alzheimer-type

    phenotype in transgenic mice carrying both mutant

    amyloid precursor protein and presenilin 1

    transgenes. Nature Med.4, 97100 (1998).50. Schmitz, C. et al. Hippocampal neuron loss exceeds

    amyloid plaque load in a transgenic mouse model of

    Alzheimers disease.Am. J. Pathol.164, 14951502

    (2004).51. Wang, R., Wang, B., He, W. & Zheng, H. Wild-type

    presenilin 1 protects against Alzheimer diseasemutation-induced amyloid pathology.J. Biol. Chem.

    281, 1533015336 (2006).52. Ohno, M. et al. BACE1 deficiency rescues memory

    deficits and cholinergic dysfunction in a mouse modelof Alzheimers disease. Neuron41, 2733 (2004).

    53. McConlogue, L. et al. Partial reduction of BACE1 hasdramatic effects on Alzheimer plaque and synaptic

    pathology in APP transgenic mice.J. Biol. Chem.282,

    2632626334 (2007).54. Willem, M. et al.-site amyloid precursor protein

    cleaving enzyme 1 increases amyloid deposition inbrain parenchyma but reduces cerebrovascular

    amyloid angiopathy in aging BACE x APP[V717I]double-transgenic mice.Am. J. Pathol.165,

    16211631 (2004).55. Ma, H. et al. Involvement of-site APP cleaving

    enzyme 1 (BACE1) in amyloid precursor protein-

    mediated enhancement of memory and activity-dependent synaptic plasticity. Proc. Natl Acad. Sci.

    USA104, 81678172 (2007).56. Postina, R. et al. A disintegrin-metalloproteinase

    prevents amyloid plaque formation and hippocampaldefects in an Alzheimer disease mouse model.J. Clin.

    Invest.113, 14561464 (2004).57. Bales, K. R. et al. Lack of apolipoprotein E

    dramatically reduces amyloid -peptide deposition.Nature Genet.17, 263264 (1997).

    58. Dodart, J. C. et al. Gene delivery of human

    apolipoprotein E alters brain A burden in a mousemodel of Alzheimers disease. Proc. Natl Acad. Sci.

    USA102, 12111216 (2005).59. Wahrle, S. E. et al. Deletion of Abca1 increases A

    deposition in the PDAPP transgenic mouse model ofAlzheimer disease.J. Biol. Chem.280, 43236

    43242 (2005).60. Koldamova, R., Staufenbiel, M. & Lefterov, I. Lack of

    ABCA1 considerably decreases brain ApoE level and

    increases amyloid deposition in APP23 mice.J. Biol.Chem.280, 4322443235 (2005).

    61. Hirsch-Reinshagen, V. et al. The absence of ABCA1decreases soluble ApoE levels but does not diminish

    amyloid deposition in two murine models of Alzheimerdisease.J. Biol. Chem.280, 4324343256 (2005).

    62. Wahrle, S. E. et al. Overexpression of ABCA1 reducesamyloid deposition in the PDAPP mouse model of

    Alzheimer disease.J. Clin. Invest.118, 671682(2008).

    63. Hirokawa, N. & Takemura, R. Molecular motors and

    mechanisms of directional transport in neurons.Nature Rev. Neurosci.6, 201214 (2005).

    64. Ishihara, T. et al. Age-dependent emergence andprogression of a tauopathy in transgenic mice

    overexpressing the shortest human tau isoform.Neuron24, 751762 (1999).

    65. Stokin, G. B. et al. Axonopathy and transport deficits

    early in the pathogenesis of Alzheimers disease.Science307, 12821288 (2005).

    This study identifies correlates of impaired axonaltransport in APP transgenic mice and AD brains.

    Formation of spheroids increases with reduced

    kinesin function.66. Dixit, R., Ross, J. L., Goldman, Y. E. & Holzbaur, E. L.

    Differential regulation of dynein and kinesin motor

    proteins by tau. Science319, 10861089 (2008).67. Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H. &

    Goldstein, L. S. Axonal transport of amyloid precursor

    protein is mediated by direct binding to the kinesinlight chain subunit of kinesin-I. Neuron28, 449459

    (2000).68. Kamal, A., Almenar-Queralt, A., LeBlanc, J. F.,

    Roberts, E. A. & Goldstein, L. S. Kinesin-mediatedaxonal transport of a membrane compartment

    containing -secretase and presenilin-1 requires APP.Nature414, 643648 (2001).

    69. Goedert, M. & Spillantini, M. G. A century of

    Alzheimers disease. Science314, 777781 (2006).70. Magnani, E. et al. Interaction of tau protein with the

    dynactin complex. Embo J.26, 45464554 (2007).71. Driscoll, M. & Gerstbrein, B. Dying for a cause:

    invertebrate genetics takes on humanneurodegeneration. Nature Rev. Genet.4, 181194

    (2003).72. Wittmann, C. W. et al. Tauopathy in Drosophila:

    neurodegeneration without neurofibrillary tangles.

    Science293, 711714 (2001).This study shows inD. melanogasterthat tau-

    mediated neurodegeneration can occur in theabsence of NFT formation.

    73. Jackson, G. R. et al. Human wild-type tau interactswith wingless pathway components and produces

    neurofibrillary pathology in Drosophila. Neuron34,509519 (2002).

    74. Dias-Santagata, D., Fulga, T. A., Duttaroy, A. & Feany,M. B. Oxidative stress mediates tau-induced

    neurodegeneration in Drosophila.J. Clin. Invest.117,

    236245 (2007).75. Arendt, T. Synaptic plasticity and cell cycle activation

    in neurons are alternative effector pathways: the Dr.Jekyll and Mr. Hyde concept of Alzheimers disease or

    the yin and yang of neuroplasticity. Prog. Neurobiol.71, 83248 (2003).

    76. Khurana, V. et al. TOR-mediated cell-cycle activationcauses neurodegeneration in a Drosophila tauopathy

    model. Curr. Biol.16, 230241 (2006).77. Ferrari, A., Hoerndli, F., Baechi, T., Nitsch, R. M. &

    Gtz, J.-amyloid induces PHF-like tau filaments intissue culture.J. Biol. Chem.278, 4016240168

    (2003).78. Steinhilb, M. L., Dias-Santagata, D., Fulga, T. A.,

    Felch, D. L. & Feany, M. B. Tau phosphorylation sites

    work in concert to promote neurotoxicity in vivo. Mol.

    Biol. Cell18, 50605068 (2007).79. Fulga, T. A. et al. Abnormal bundling and

    accumulation of F-actin mediates tau-induced

    neuronal degeneration in vivo. Nature Cell Biol.9,

    139148 (2007).This study links tau pathology to the formation of

    actin-containing rods.80. Takasugi, N. et al. The role of presenilin cofactors in

    the -secretase complex. Nature422, 438441(2003).

    81. Fossgreen, A. et al. Transgenic Drosophila expressinghuman amyloid precursor protein show -secretaseactivity and a blistered-wing phenotype. Proc. Natl

    Acad. Sci. USA95, 1370313708 (1998).82. Kayed, R. et al. Common structure of soluble amyloid

    oligomers implies common mechanism ofpathogenesis. Science300, 486489 (2003).

    83. ONuallain, B. & Wetzel, R. Conformational Absrecognizing a generic amyloid fibril epitope. Proc. Natl

    Acad. Sci. USA99, 14851490 (2002).84. Habicht, G. et al. Directed selection of a

    conformational antibody domain that prevents matureamyloid fibril formation by stabilizing A protofibrils.Proc. Natl Acad. Sci. USA104, 1923219237

    (2007).85. Bertram, L. et al. Family-based association between

    Alzheimers disease and variants in UBQLN1.N. Engl.J. Med.352, 884894 (2005).

    86. Li, A. et al. Isolation and characterization of theDrosophila ubiquilin ortholog dUbqln: in vivo

    interaction with early-onset Alzheimer disease genes.

    Hum. Mol. Genet.16, 26262639 (2007).87. Iijima, K. et al. Dissecting the pathological effects of

    human A40 and A42 in Drosophila: a potentialmodel for Alzheimers disease. Proc. Natl Acad. Sci.

    USA101, 66236628 (2004).

    88. Luheshi, L. M. et al. Systematic in vivo analysis of the

    intrinsic determinants of amyloid pathogenicity.PLoS Biol.5, e290 (2007).

    89. Seidner, G. A., Ye, Y., Faraday, M. M., Alvord, W. G. &Fortini, M. E. Modeling clinically heterogeneous

    presenilin mutations with transgenic Drosophila.

    Curr. Biol.16, 10261033 (2006).90. Muqit, M. M. & Feany, M. B. Modelling

    neurodegenerative diseases in Drosophila: a fruitful

    approach? Nature Rev. Neurosci.3, 237243 (2002).91. Micchelli, C. A. et al.-secretase/presenilin inhibitors

    for Alzheimers disease phenocopy Notch mutations in

    Drosophila. Faseb J.17, 7981 (2003).92. Kraemer, B. C. et al. From the Cover:

    Neurodegeneration and defective neurotransmissionin a Caenorhabditis elegans model of tauopathy. Proc.

    Natl Acad. Sci. USA100, 99809985 (2003).93. Miyasaka, T. et al. Progressive neurodegeneration in

    C. elegans model of tauopathy. Neurobiol. Dis.20,372383 (2005).

    94. Dickey, C. A. et al. Deletion of the ubiquitin ligase

    CHIP leads to the accumulation, but not theaggregation, of both endogenous phospho- and

    caspase-3-cleaved tau species.J. Neurosci.26,69856996 (2006).

    95. Kraemer, B. C. & Schellenberg, G. D. SUT-1 enablestau-induced neurotoxicity in C. elegans. Hum. Mol.Genet.16, 19591971 (2007).

    96. Francis, R. et al. aph-1 and pen-2 are required for

    Notch pathway signaling, -secretase cleavage ofAPP, and presenilin protein accumulation. Dev. Cell3, 8597 (2002).

    97. Schafer, W. F. Genetics of egg-laying in worms.Annu.Rev. Genet.40, 487509 (2006).

    98. Smialowska, A. & Baumeister, R. Presenilin function inCaenorhabditis elegans. Neurodegener. Dis.3,

    227232 (2006).99. Ellerbrock, B. R., Coscarelli, E. M., Gurney, M. E. &

    Geary, T. G. Screening for presenilin inhibitors usingthe free-living nematode, Caenorhabditis elegans.

    J. Biomol. Screen9, 147152 (2004).100. David, D., Hoerndli, F. & Gtz, J. Functional Genomics

    meets neurodegenerative disorders Part I:

    Transcriptomic and proteomic technology. Prog.Neurobiol.76, 153168 (2005).

    101. Hoerndli, F., David, D. & Gtz, J. Functional genomicsmeets neurodegenerative disorders. Part II:

    Application and data integration. Prog. Neurobiol.76,169188 (2005).

    102. Ray, S. et al. Classification and prediction of clinical

    Alzheimers diagnosis based on plasma signalingproteins. Nature Med.13, 13591362 (2007).

    103. Zhao, X. et al. Transcriptional profiling reveals strict

    boundaries between hippocampal subregions.J. Comp. Neurol.441, 187196 (2001).

    104. Sandberg, R. et al. Regional and strain-specific

    gene expression mapping in the adult mouse brain.

    Proc. Natl Acad. Sci. USA97, 1103811043 (2000).

    This study shows differentially regulated genes in

    subregions of the hippocampus.105. Zirlinger, M., Kreiman, G. & Anderson, D. J.

    Amygdala-enriched genes identified by microarraytechnology are restricted to specific amygdaloid

    subnuclei. Proc. Natl Acad. Sci. USA98, 52705275(2001).

    106. Haass, C. & Selkoe, D. J. Soluble protein oligomers inneurodegeneration: lessons from the Alzheimers

    amyloid -peptide. Nature Rev. Mol. Cell Biol.8,101112 (2007).

    107. Ebneth, A. et al. Overexpression of tau protein

    inhibits kinesin-dependent trafficking of vesicles,mitochondria, and endoplasmic reticulum:

    implications for Alzheimers disease.J. Cell Biol.143,777794 (1998).

    108. David, D. C. et al. Proteomic and functional analysisreveal a mitochondrial dysfunction in P301L tau

    transgenic mice.J. Biol. Chem.280, 2380223814(2005).

    109. Melov, S.et al. Mitochondrial oxidative stress causeshyperphosphorylation of tau. PLoS ONE2, e536

    (2007).110. Lustbader, J. W. et al. ABAD directly links A to

    mitochondrial toxicity in Alzheimers disease. Science

    304, 448452 (2004).111. Gillardon, F. et al. Proteomic and functional

    alterations in brain mitochondria from Tg2576 miceoccur before amyloid plaque deposition. Proteomics

    7, 605616 (2007).112. Colangelo, V. et al. Gene expression profiling of

    12633 genes in Alzheimer hippocampal CA1:

    transcription and neurotrophic factor down-regulationand up-regulation of apoptotic and pro-inflammatory

    signaling.J. Neurosci. Res.70, 462473 (2002).

    R E V I E W S

    NATuRe RevIewS |neuroscience voLume 9 | juLy 2008 |543

  • 7/28/2019 Animal Model of EA

    13/13

    113. Ho, L. et al. Gene expression profiling of the tau

    mutant (P301L) transgenic mouse brain. Neurosci.Lett.310, 14 (2001).

    114. Gtz, J., Chen, F., Barmettler, R. & Nitsch, R. M. Taufilament formation in transgenic mice expressing

    P301L tau.J. Biol. Chem.276, 529534 (2001).115. Chen, F. et al. Role for glyoxalase I in Alzheimers

    disease. Proc. Natl Acad. Sci. USA101, 76877692(2004).

    116. David, D. C. et al.-Amyloid treatment of twocomplementary P301L tau-expressing Alzheimersdisease models reveals similar deregulated cellular

    processes. Proteomics6, 65666577 (2006).117. Karsten, S. L. et al. A genomic screen for modifiers of

    tauopathy identifies puromycin-sensitiveaminopeptidase as an inhibitor of tau-induced

    neurodegeneration. Neuron51, 549560 (2006).118. Dickey, C. A. et al. Selectively reduced expression of

    synaptic plasticity-related genes in amyloid precursorprotein + presenilin-1 transgenic mice.J. Neurosci.

    23, 52195226 (2003).119. Lazarov, O. et al. Environmental enrichment reduces

    A levels and amyloid deposition in transgenic mice.Cell120, 701713 (2005).This study shows how environmental enrichment

    can reduce A levels and improve memory deficits.120. Selwood, S. P. et al. Gene expression profile of the

    PDAPP mouse model for Alzheimers disease with andwithout Apolipoprotein E. Neurobiol. AgingSep 29

    2007 (doi:10.1016/j.neurobiolaging.2007.08.006).121. Skovronsky, D. M. et al.In vivo detection of amyloid

    plaques in a mouse model of Alzheimers disease.

    Proc. Natl Acad. Sci. USA97, 76097614 (2000).122. Klunk, W. E. et al.Imagingbrain amyloid in

    Alzheimers disease with Pittsburgh Compound-B.Ann. Neurol.55, 306319 (2004).

    This study shows that the Pittsburgh Compound-B

    (PIB) is a suitable PET tracerin vivo.123. Bacskai, B. J. et al. Four-dimensional multiphoton

    imaging of brain entry, amyloid binding, and clearance

    of an amyloid- ligand in transgenic mice. Proc. NatlAcad. Sci. USA100, 1246212467 (2003).This study introduces the Pittsburgh Compound-B

    (PIB) that binds to A plaquesin vivo.124. Klunk, W. E. et al. Binding of the positron emission

    tomography tracer Pittsburgh compound-B reflectsthe amount of amyloid- in Alzheimers disease brainbut not in transgenic mouse brain.J. Neurosci.25,1059810606 (2005).

    125. Maeda, J. et al. Longitudinal, quantitative assessment

    of amyloid, neuroinflammation, and anti-amyloidtreatment in a living mouse model of Alzheimers

    disease enabled by positron emission tomography.

    J. Neurosci.27, 1095710968 (2007).126. Higuchi, M. et al. 19F and 1H MRI detection of

    amyloid plaques in vivo. Nature Neurosci.8,527533 (2005).

    127. Marjanska, M. et al. Monitoring disease progression

    in transgenic mouse models of Alzheimers diseasewith proton magnetic resonance spectroscopy. Proc.Natl Acad. Sci. USA102, 1190611910 (2005).

    128.Van Dam, D. & De Deyn, P. P. Drug discovery indementia: the role of rodent models. Nature Rev. Drug

    Discov.5, 956970 (2006).129. Lichtlen, P. & Mohajeri, M. H. Antibody-based

    approaches in Alzheimers research: safety,pharmacokinetics, metabolism, and analytical tools.

    J. Neurochem.104, 859874 (2008).130. Schenk, D. et al. Immunization with amyloid-

    attenuates Alzheimer-disease-like pathology in the

    PDAPP mouse. Nature400, 173177 (1999).131. Bard, F. et al. Peripherally administered antibodies

    against amyloid -peptide enter the central nervoussystem and reduce pathology in a mouse model of

    Alzheimer disease. Nature Med.6, 916919 (2000).132. Oddo, S. et al. Reduction of soluble A and tau, but

    not soluble A alone, ameliorates cognitive decline intransgenic mice with plaques and tangles.J. Biol.Chem.281, 3941339423 (2006).

    133. Orgogozo, J. M. et al. Subacute meningoencephalitis

    in a subset of patients with AD after A42immunization. Neurology61, 4654 (2003).

    134. Hock, C. et al. Antibodies against -amyloid slowcognitive decline in Alzheimers disease. Neuron38,547554 (2003).

    135.Asuni, A. A., Boutajangout, A., Quartermain, D. &Sigurdsson, E. M. Immunotherapy targeting

    pathological tau conformers in a tangle mouse model

    reduces brain pathology with associated functionalimprovements.J. Neurosci.27, 91159129 (2007).

    136. Kulic, L. et al. Active immunization trial in A(42)-injected P301L tau transgenic mice. Neurobiol. Dis.

    22, 5056 (2005).137. Zhang, B. et al. Microtubule-binding drugs offset tau

    sequestration by stabilizing microtubules andreversing fast axonal transport deficits in a tauopathy

    model. Proc. Natl Acad. Sci. USA102, 227231

    (2005).138. Dineley, K. T., Hogan, D., Zhang, W. R. & Taglialatela,

    G. Acute inhibition of calcineurin restores associativelearning and memory in Tg2576 APP transgenic mice.

    Neurobiol. Learn. Mem.88, 217224 (2007).139. Rapoport, M., Dawson, H. N., Binder, L. I., Vitek,

    M. P. & Ferreira, A. Tau is essential to-amyloid-induced neurotoxicity. Proc. Natl Acad. Sci.USA99, 63646369 (2002).

    This study shows in primary neuronal cultures ofTau/ mice that tau is needed for A-mediatedtoxicity.

    140. Patel, N. V. et al. Caloric restriction attenuates A-deposition in Alzheimer transgenic models. Neurobiol.

    Aging26, 9951000 (2005).141. Halagappa, V. K. et al. Intermittent fasting and caloric

    restriction ameliorate age-related behavioral deficits

    in the triple-transgenic mouse model of Alzheimersdisease. Neurobiol. Dis.26, 212220 (2007).

    142. Kim, D. et al. SIRT1 deacetylase protects against

    neurodegeneration in models for Alzheimers diseaseand amyotrophic lateral sclerosis. Embo J.26,

    31693179 (2007).143. Rezai-Zadeh, K. et al. Green tea

    epigallocatechin-3-gallate (EGCG) modulates amyloidprecursor protein cleavage and reduces cerebral

    amyloidosis in Alzheimer transgenic mice.J. Neurosci.

    25, 88078814 (2005).144. Lim, G. P. et al. A diet enriched with the omega-3 fatty

    acid docosahexaenoic acid reduces amyloid burden in

    an aged Alzheimer mouse model.J. Neurosci.25,

    30323040 (2005).145. Jayasooriya, A. P. et al. Perinatal omega-3

    polyunsaturated fatty acid supply modifies brain zinchomeostasis during adulthood. Proc. Natl Acad. Sci.

    USA102, 71337138 (2005).146. Wang, J.et al. Moderate consumption of Cabernet

    Sauvignon attenuates A neuropathology in a mousemodel of Alzheimers disease. Faseb J.20,

    23132320 (2006).147.Youm, J. W. et al. Transgenic potato expressing A

    reduce A burden in Alzheimers disease mousemodel. FEBS Lett.579, 67376744 (2005).

    148. Cheng, H. et al. Mechanisms of disease: newtherapeutic strategies for Alzheimers disease targeting APP processing in lipid rafts. Nature Clin.

    Pract Neurol.3, 374382 (2007).149. Barnham, K. J., Masters, C. L. & Bush, A. I.

    Neurodegenerative diseases and oxidative stress.

    Nature Rev. Drug Discov.3, 205214 (2004).150. Caccamo, A. et al. M1 receptors play a central role in

    modulating AD-like pathology in transgenic mice.Neuron49, 671682 (2006).

    151. Di Rosa, G., Odrijin, T., Nixon, R. A. & Arancio, O.Calpain inhibitors: a treatment for Alzheimers

    disease.J. Mol. Neurosci.19, 135141 (2002).152. Kukar, T. et al. Diverse compounds mimic Alzheimer

    disease-causing mutations by augmenting A42production. Nature Med.11, 545550 (2005).

    153. Caccamo, A., Oddo, S., Tran, L. X. & LaFerla, F. M.

    Lithium reduces tau phosphorylation but not A orworking memory deficits in a transgenic model with

    both plaques and tangles.Am. J. Pathol.170,16691675 (2007).

    154. Rockenstein, E. et al. Neuroprotective effects ofregulators of the glycogen synthase kinase-3signaling pathway in a transgenic model of Alzheimersdisease are associated with reduced amyloid

    precursor protein phosphorylation.J. Neurosci.27,19811991 (2007).

    155. Glenner, G. G. & Wong, C. W. Alzheimers disease:

    initial report of the purification and characterization ofa novel cerebrovascular amyloid protein. Biochem.

    Biophys. Res. Commun.120, 885890 (1984).156. Masters, C. L. et al. Amyloid plaque core protein in

    Alzheimer disease and Down syndrome. Proc. NatlAcad. Sci. USA82, 42454249 (1985).

    157. McGowan, E. et al. A42 is essential for parenchymaland vascular amyloid deposition in mice. Neuron47,191199 (2005).

    158.Yan, Y. & Wang, C. A40 protects non-toxic A42monomer from aggregation.J. Mol. Biol.369,

    909916 (2007).159.Vassar, R.et al.-secretase cleavage of Alzheimers

    amyloid precursor protein by the transmembraneaspartic protease BACE. Science286, 735741

    (1999).160. Edbauer, D. et al. Reconstitution of-secretase

    activity. Nature Cell Biol.5, 486488 (2003).161. Goedert, M., Wischik, C. M., Crowther, R. A.,

    Walker, J. E. & Klug, A. Cloning and sequencing of the

    cDNA encoding a core protein of the paired helicalfilament of Alzheimer disease: identification as the

    microtubule-associated protein tau. Proc. Natl Acad.

    Sci. USA85, 40514055 (1988).162. Myers, A. J. et al. The H1c haplotype at the MAPT

    locus is associated with Alzheimers disease. Hum.Mol. Genet.14, 23992404 (2005).

    163. Meyer-Luehmann, M. et al. Exogenous inductionof cerebral -amyloidogenesis is governed byagent and host. Science313, 17811784(2006).

    This study shows shared properties between prionsand A with regards to host and agent dictatingpathology.

    164. Lesne, S. et al. A specific amyloid- protein assemblyin the brain impairs memory. Nature440, 352357

    (2006).165. Cleary, J. P. et al. Natural oligomers of the amyloid-

    protein specifically disrupt cognitive function. NatureNeurosci.8, 7984 (2005).

    166. Cheng, I. H. et al. Accelerating amyloid- fibrillizationreduces oligomer levels and functional deficits in

    Alzheimer disease mouse models.J. Biol. Chem.282,2381823828 (2007).

    167. Willem, M. et al. Control of peripheral nervemyelination by the -secretase BACE1. Science314,664666 (2006).

    This study identifies a role for the -secretaseBACE in processing neuregulin.

    168. McIntosh, A. M. et al. The effects of a neuregulin 1variant on white matter density and integrity. Mol.

    Psychiatry 9 Oct 2007 (doi: 10.1038/sj.mp.4002103).

    169. Schubert, C. Alzheimer disease: BACE1 branches out.

    Nature Med.12, 1123 (2006).

    AcknowledgementsWe apologize to those whose work has not been cited due to

    space limitations. J.G. is a Medical Foundation Fellow. This

    work has been supported by the University of Sydney, theNational Health & Medical Research Council (NHMRC), the

    Australian Research Counci l (ARC), the New South Wales

    Government through the Ministry for Science and Medical

    Research (BioFirst Program), the Nerve Research Foundation,

    the Medical Foundation (University of Sydney) and the Judith

    Jane Mason & Harold Stannett Williams Memorial

    Foundation to J.G. and the ARC, NHMRC and Deutsche

    Forschungsgesellschaft (DFG) to L.M.I.

    DATABASESEntrez Gene:http://www.ncbi.nlm.nih.gov/entrez/query.

    fcgi?db=gene

    APOE| GLO1|MAPT|PGRN|PSEN1|PSEN2|TARDBP|VCP|

    OMIM:http://www.ncbi.nlm.nih.gov/entrez/query.

    fcgi?db=OMIM

    Alzheimers disease | amyotrophic lateralsclerosis |

    frontotemporal dementia |

    UniProtKB:http://ca.expasy.org/sprot

    ABCA1|ADAM10|APP |APPL | BACE|CHIP|GSK3 |JNK |PIN1|SIRT1|tau | TDP43 |

    FURTHER INFORMATIONJrgen Gtzs homepage:http://www.bmri.org.au/

    alzheimer.html

    Alzforum index of drugs in clinical trials:http://www.

    alzforum.org/drg/drc/default.asp

    SUPPLEMENTARY INFORMATIONSee online article:S1(table)

    All links Are AcTive in The online pDF

    R E V I E W S

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genehttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genehttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=348&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2739&ordinalpos=4&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2739&ordinalpos=4&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4137&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4137&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4137&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2896&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2896&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5663&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5664&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5664&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5664&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=23435&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=23435&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7415&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIMhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIMhttp://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=104300http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=105400http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=105400http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=105400http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=600274http://ca.expasy.org/sprothttp://ca.expasy.org/sprothttp://ca.expasy.org/uniprot/P41233http://ca.expasy.org/uniprot/P41233http://ca.expasy.org/uniprot/O35598http://ca.expasy.org/uniprot/O35598http://ca.expasy.org/uniprot/O35598http://ca.expasy.org/uniprot/P05067http://ca.expasy.org/uniprot/P05067http://ca.expasy.org/uniprot/P145