An Analysis of Least-squares Velocity Inversion

download An Analysis of Least-squares Velocity Inversion

of 164

Transcript of An Analysis of Least-squares Velocity Inversion

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    1/164

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    2/164

    GEOPHYSICAL MONOGRAPH SERIES

    Don W. Steeples, Editor

    NUMBER 4

    AN ANALYSIS OF LEAST-SQUARES

    VELOCITY INVERSION

    By Fadil Santosa and William W. Symes

    Edited by Raymon L. Brown

    SOCIETY OF EXPLORATION GEOPHYSICISTS

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    3/164

    Library of Congress Cataloging-in-Publication Data

    Santosa, Fadil.

    An analysis of least-squaresvelocity inversion / by Fadail Santosa

    and William W. Symes: edited by Raymon L. Brown.

    p. cm.- (Geophysical monograph series:no. 4)

    Bibliography: p.

    ISBN 0-931830-89-8: $20.00

    1. Seismic waves -- Measurement. 2. Inverse problems (Differential

    equations) I. Symes, William W., 1949- . II. Brown, Raymon L.,

    1944- .III. Society of Exploration Geophysicists. V. Title.

    V. Title: Least-squares velocity inversion. VI. Series.

    QE538.5. $25 1989

    551.2'2--dc20

    ISBN 0-931830-56-7 Series

    ISBN 0-931830-78-8 Volume

    Society of Exploration Geophysicists

    P.O. Box 702740

    Tulsa, OK 74170-2740

    ¸ 1989 by the Society of Exploration Geophysicists

    All rights reserved

    Published 1989

    Printed in the United States of America

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    4/164

    To Amelia, Jan, and Lene

    iii

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    5/164

    This page has been intentionally left blank

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    6/164

    Contents

    P reface

    vii

    1 Introduction

    2 The Model

    3 The SH-wave Inverse Problem

    15

    4 The Output Least-squares Principle

    17

    5 Generalities on Nonlinear Least-squares Problems

    21

    Perturbations About A Slowly Varying

    Reference Velocity

    25

    Perturbations About A Rapidly Changing

    Reference Velocity

    41

    Implications for the Solution of the Least-squares

    Inverse Problem

    65

    9 Computing the Least-squares Solution

    83

    10 Numerical Experiments

    91

    11 Conclusion

    105

    References

    109

    A Least-squares and the Velocity Spectrum

    117

    B Relation Between the L2-norms of (x,t)

    and (p, r) Sections

    123

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    7/164

    C Perturbational Seismogram for Two-layer References

    127

    D Hough-background WKBJ Perturbational

    Seismograms for Layered Media

    135

    E The Optimum Coherency Principle

    141

    F An Example: Impedance Trends are not Determined 149

    vi

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    8/164

    Preface

    This book grew out of our attempt to understand he mechanismshrough

    which band-limited reflectionseismograms etermine velocity distributions

    in elastic models of the earth's crust. We were especially interested in the

    feasibilityof recovering eryslowlyvarying out-of-passband)elocitycom-

    ponents rom band-limited high-frequency)eflectiondata. Our interest

    was spurred by reports of successful nversions or layered media, which

    came to our attention in late 1984 and 1985, ust as we began this project.

    By the fall of 1986, we felt that we had assembled cogent, convincing,

    and so far as we knew, uniquely complete analysis of the least-squares

    approach to velocity estimation, which explained both its feasibility and

    its computational pitfalls. This difficult aspect of least-squares nversion

    usuallymanifeststselfasslow or no) convergencef iterativeminimization

    algorithms, and still stands in the way of extensiveand reliable application

    of the technique.

    Between he first circulationof this manuscript November1986) and

    the presentwriting (August1988),the volumeof published aperson least-

    squares nversionhas perhapsdoubled, and the techniquehas gained much

    wider visibility and interest in both the exploration and academic geo-

    physicscommunities. Nonetheless,no published analysis has appeared of

    the essential ssue--determination of velocity trends from band-limited and

    aperture-limited data---of sufficient depth and detail to provide a quanti-

    tative understandingof the strengths and limitations of least-squares n-

    version, and so to suggestwhat, if anything, could be done to remedy its

    deficiencies. We hope that the present manuscript, with its emphasison

    simple examples and relevant concepts from computational mathematics,

    will go some distance toward filling this gap.

    We date the beginning of the work reported here to a conversationwith

    Jeff Resnick n the fall of 1984, who pointedout to us that field geophysicists

    daily estimate velocity trends from band-limited data. Many of the ideas

    developedhere have heir roots n our subsequent tudy of velocityanalysis,

    seismic omography,and other topics, both conventionaland experimental,

    vii

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    9/164

    fromthe literatureof reflection eismology.

    Many of our colleagues ere generous ith their insights nto these

    matters:We thank especially en Bube,Guy Canadas, amesCarazzone,

    Guy Chavent, rancisCollino, ohnDennis,PierreKolb, PatrickLailly,

    Alan Levander, uanMeza,and Paul Sacksor manyhoursof illuminat-

    ing conversation n variousaspectsof our work. We owe thanks to Al-

    bert Tarantolawhose isionand energyhave nspiredmuchwork on the

    seismicnverse roblem.We are gratefulo Enders obinsonor bring-

    ing this manuscripto the attentionof the SEG Publications ommittee,

    and o theCommittee embersor heirbroad-mindednessn considering

    manuscriptriginating o ar outsidehe geophysicalainstream. aymon

    Brownwent throughour manuscriptwith great careand madenumerous

    usefulsuggestions hich have made this material more readable. We thank

    him for his good work.

    We beganour workunder he auspicesf the SRO-III project Inverse

    problemsf acoustic•ndelastic aves t Cornell niversity,rincipal

    investigators.H. Pao and L.E. Payne, undedby the Officeof NavalRe-

    searchcontract umber -000-14-83-K0051)uring he period 982-1985.

    We are grateful o CharlesHolland, hen programmanager f Applied

    Mathematics t ONR, for his encouragement,nd to Professorsao and

    Payne or theirguidancendadvice.Our workwas urthersupportedy

    the Officeof NavalResearchnder ontract -000-14-85-K0725,ndby

    the NationalScience oundation ndergrantsDMS-8403148 nd DMS-

    8603614.

    The SVD computationsn Chapters through werecarriedout at

    theCray-XMP acility t theNavalResearchaboratoryourtesyf ONR.

    Many of the othercalculationsereperformed n the Pyramid-90Xmade

    available y the Computer cience epartmentt RiceUniversity. ivian

    Choiexpertlyeducedeams f illegiblecrawlo thebeautifullyype-set

    manuscript sing •TEX.

    F. S.

    Newark, Delaware

    W. S.

    Houston, Texas

    August 1988

    ..o

    VIII

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    10/164

    Chapter

    Introduction

    Th e output least-squares approach t o inverse problems in seismology has at-

    tracted a great deal of attention in recent years. Also known as least-squares

    inversion, nonlinear iterative inversion, generalized linear inversion, and a

    variety of other names, it involves a systematic search for an earth model

    in some class which best fits some type of seismic data in a least-squares

    root-mean-squares, rms) sense. Recent contributors include Bamberger et

    al. 1979 and 1982), Tarantola and Valette 1982a and 1982b), Lesselier

    1982), Keys 1983), Tarantola 1984 and 1986), Lailly 1984), McAu lay

    1985 and 1986), Gauthier et al. 1986), Kolb et al. 198 6), Canadas and

    Kolb 1986 ), Mora 1987a and 1987b), Chapman and Orcu tt 1985 ), Shaw

    and Orcutt 198 5), and Pan et al. 1988). For a lucid discussion and many

    older references consult Lines and Treitel 1984). Further discussion may

    be found in a new monograph by Tarantola 1987).

    There seems to exist considerable confusion regarding the sort of in-

    formation about the subsurface which one might expect to extract using

    the least-squares approach to the inverse problem of reflection seismology,

    and also regarding the quality of least-squares inversion results relative

    to the output of conventional processing methods. Th e relation between

    least-squares inversion and m igration of both stacked and unstacked data is

    now well understood, at least in principle [see Lailly 198 4), also Tarantola

    1984 ), and Beylkin 1985)]. On the other hand, the possibility of reliable

    subsurface parameter estimation from realistically band-limited data seems

    to arouse various opinions. One reads several compelling argum ents in

    the literature that extraction o f velocity trends the main out^of-passband

    com ponents of interest in reflection seismology) from band-limited low -

    cut) data by least-squares inversion is impossible, or so difficult as to be

    infeasible Tarantola, 1986). One also encounters convincing simulations in

    1

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    11/164

    2 LEAST-SQ UARES INVERSION

    which suchband-extrapolation s accomplishedKolb et al., 1986;Canadas

    and Kolb, 1986; McAulay, 1985 and 1986).

    The purpose of the present work is to describe the circumstances under

    which least-squares nversion might be expected to succeed n a reasonably

    accurate recovery particularly of out-of-band components)of a layered

    velocity profile from an idealized band-limited common-shot gather, and

    also to explain those factors which make this approach computationally

    difficult. These aspects of the least-squaresapproach may be understood

    from consideration of very simple examples, and we shall devote most of

    our attention to these, leaving the mathematically involved general case to

    appendices.

    We concentrateon the layered acousticor SH-wave) velocity model

    because the ideas are most clearly expressed and illustrated numerically

    in that context, and because,at present, rigorous mathematical backup is

    available for that case only. We do so in full consciousnesshat the model

    studied here is so simple as to rule out immediate application to field data

    processing.

    Our purpose is didactic and limited: to explore the mathematical ca-

    pabilities and limitations of the output least-squaresapproach in a simple

    and revealing context in which some of the most important features of the

    reflection seismic experiment are modeled. Consequently our arguments

    will be simple and our examples almost toy-like. However, we emphasize

    that the conclusions eached regarding this simple model have direct impli-

    cationsabout more seriousmodelsof seismic xploration e.g., nonlayered

    elasticmedia). Natural conjectures ill emergeconcerninghesemoregen-

    eral and realistic models, some of which have already been explored in the

    references cited above. The reader may also consult the reference list for

    applications of the least-squaresapproach to field data.

    We make no claim, explicit or implied, that least-squaresor any other

    sort of) inversion s useful. Such a claim would necessarily est on two

    propositions: that the mechanical model underlying the inverse problem

    adequately represents he propagation of seismic waves, and that the re-

    lation between mechanical parameters and lithology is sufficiently unam-

    biguous to yield geologicallymeaningful conclusions.We offer no opinions

    concerning either proposition, noting merely that the former is an active

    subject of discussion n the literature, and that the latter is essential to

    the practice of seismologyper se. Note also that the subject of our work -

    the feasibility/reliability of data-derived model parameters- is basic o the

    resolution of both issues.

    The backbone of our analysis of least-squares nversion is fbrmed of

    familiar ideas, which underlie the everyday practice of exploration seisinol-

    ogy. We devote the remainder of this introduction to an overview of these

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    12/164

    1. INTRODUCTION 3

    ideas, and their less widely familiar computational consequences, nd to a

    description of our principal conclusions.We end the chapter with a sketch

    of the organization of our book.

    The most important and influential insight into the relation between

    earth models and seismic reflection data comes from the Wentzel-Kramers-

    Brioullin-JeffreysWKBJ) (or geometric ptics/acoustics,r high-frequency

    asymptotics) nalysisof the perturbationalseismogramor Born approx-

    imation, or linearized orward map). See Clayton and Stolt (1981), for

    example. This analysis also lies at the heart of the confusionover the effec-

    tivenessof the least-squares pproach n extracting out-of-band information

    about earth models, most especiallyvelocity trends. In fact, according o

    this analysis, it should not be possible to infer out-of-band components

    of the model perturbation at all: such components are filtered out in the

    seismogram.

    A convenientand precisedescription of the filtering action of the seis-

    mogram is provided by the languageof numerical linear algebra which we

    shall use throughout. Small changes n the seismogram re linearly related

    to small changes n the velocity, to good approximation. After suitable

    parameterization of the perturbations, any such inear relation is expressed

    by a matrix A. The normalrnatrizATA is symmetric, enceadmitsa

    principal-axesnalysis. he square-rootsf theeigenvaluesf ATA are he

    singular values of A, and are called collectively the singular spectrum. A

    smallsingular alue r, then,correspondso an eigenvectorof ATA, which

    yieldsa (relatively) small result when multipliedby A. The lengthof Az

    is just •r times the length of z.

    Thus we can restate the apparent result of the WKBJ analysis of the

    perturbational seismogram: out-of-band componentscorrespond o small

    singularvaluesof the perturbational velocity-to-seismogramelation, hence

    have little influenceon the seismogram.Conversely, uchout-of-band com-

    ponents of the velocity perturbation cannot be estimated reliably from the

    seismogramperturbation.

    By extension, an iterative solution method for the nonlinear least-squares

    problem which relies on repeated solution of the linearized problem should

    not be able to update the out-of-band components.

    One must remain uneasy, despite the compelling nature of this argu-

    ment, because t is common practice in exploration geophysicso estimate

    velocity trends from band-limited reflection data. Of course many veloc-

    ity analysismethodsand morerecentlyseismic eflection omography e.g.

    Bube et al., 1985) rely on traveltimepicks;nonetheless,heseare inherent

    in the data, so should somehowplay a role in least-squares nversion, which

    purports to make use of the entire seismic record.

    The key to the paradox is the assumption, absolutely essential in the

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    13/164

    4 LEAST-SQ UARES INVERSION

    WKBJ perturbational analysis, that the reference medium, about which

    the seismogram s expanded to first order, is slowly varying. A reasonable

    model earth velocity profile, or sonic log, is generally not slowly varying:

    it contains many reflectors, .e. thin zones of rapid variation in velocities

    and other mechanical arameters hopefully) ocatedat geologicallyignif-

    icant interfaces. A perusal of the cited referenceson least-squares nversion

    reveals that in every caseof successful and-extrapolation into the low fre-

    quency regime, the targel profile contained a fairly dense set of reflectors.

    Thus for these problems, the WKBJ analysis does not apply at the solution.

    We will show that the singular spectrum of the perturbational seismo-

    gram about a sufficiently rough referencevelocity profile has a completely

    different character than that about a smooth profile. Provided that reflec-

    tors are sufficiently dense, a modest part of the precritical perturbational

    seismogramsuffices o determine velocity trend perturbations which there-

    fore do not correspond o very small singular values. This result, which is

    already evident from analysis of a simple, single-layer example, stands in

    complete contrast to the slowly varying background situation.

    In fact, velocity trend perturbations correspond o rather large singular

    values, or a sufficiently ough background. This is understandable,as trend

    perturbations give traveltime perturbations, i.e., time shifts, which have a

    drastic effect on high-frequencycomponents.This coupling between bands

    is at the heart of velocityspectrumanalysis Taner and Koehler, 1969),

    and is responsible for both the successand the computational difficulty

    encountered in least-squares nversion.

    Recall that the eigenvectors orresponding o large singular values are

    directionsin modelspace) n which he seismogramhangesapidly,so hat

    the graph of the mean-squareseismogramerror is very steep in these direc-

    tions. On the other hand, many smallersingularvaluesexist, corresponding

    to directions in which the mean square seismogramerror changesslowly.

    (A linear map, suchas the linearizedseismogram, avinga very largerange

    of singularvalues, s called ill-conditioned).Thus the graph of the mean-

    square error has the shape of a long, narrow valley near the solution. The

    bottom of this valley is curved, moreover, reflecting the nonlinear nature

    of the model-seismogram.Finally, the range of values encounteredby the

    mean-squareerror is far smaller over a reasonable ange of models, than is

    predicted by the quadratic with principal curvaturesgiven by the singular

    values. Thus the mean-squareerror must diverge from its quadratic ap-

    proximation, quite rapidly in the steep directionscorrespondingo large

    singularvalues/velocity rend perturbations,and fiatten out.

    This Grand Canyon shape narrow valley surrounded by undulat-

    ing plateau of the mean-squareseismogramerror greatly reduces the

    efficiencyof gradient-based terative methods: the iterates tend to zig-

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    14/164

    1. INTRODUCTION 5

    zag rather than proceeddirectly to the solution.

    This zig-zag effect is enormously greater if postcritical energy is in-

    cluded in the residual seismogram. Such refracted arrivals are very much

    larger than typical reflectionsas are their responseso trend perturbations

    (when hey arrive within the same emporaland spatialwindow).Thus the

    least-squaresnverseproblemposed n terms of the entire (z - t) seismo-

    gram, including refracted arrivals, is very stiff, i.e. has very ill-conditioned

    linearization. We believe that this fact explains some of the numerical

    difficulties reported in the literature.

    We partly overcome his obstacleby redefining he least-squares rob-

    lem: we attempt to match only the precritical part of the data. This projec-

    tion onto the precritical components s most naturally accomplished n the

    p-tau (Radon transform,plane-wavedecomposition, lant-stack)domain,

    so we set most of our development n this domain.

    We have implemented a quasi-Newton code which solves his precritical

    least-squaresproblem. Its behavior conforms to the predictions of the the-

    ory. In particular, it convergesor exampleswhich have causeddifficulties

    for codesbasedon matching he full seismogram, nd is (sometimes) ble

    to extract rather precisevelocity trend information from precritical p-tau

    sections.t alsoexhibits he same ype of inefficiencyfailureto converge t

    a reasonableate) reported n the above-cited eferencesor other versions

    of the output least-squaresapproach.

    It is worth emphasizing he importance of velocity trends in determin-

    ing the quality of output-least-squares nversion results, quite apart from

    their role in algorithmic efficiency.Besides he obvious mportanceof slowly

    varying components n determining phase nformation, i.e., time-to-depth

    conversion, hey also have a more subtle but profound nfluenceon ampli-

    tude information of rapidly varying components, .e., reflectivity.

    This effect manifests tself in two generallydifferent ways, depending

    on aperture. First, least-squares nversion amplitudes for wide aperture

    data are critically dependenton correct velocity trends, for essentially he

    same reason that the amplitudes of a conventional CMP stack are criti-

    cally dependent n the velocityused n the NMO correction. The intimate

    relation between least-squaresnversionand NMO/stack is explained in

    AppendixA.) This effectwill be evident n someof the examples iscussed

    in Chapter 10, and is also displayed for example in the work of Ikelle et

    al. (1988), which ncludes n exampleshowinghow surprisingly ensitive

    are least-squares mplitudes o velocity trends. This sensitivitydisappears,

    on the other hand, or inversionrom smallaperture small-or zero-offset)

    data, which may account or the almost total lack of attention paid to the

    trend-to-reflectivity connection in earlier work on linearized inversion

    e.g., Cohenand Bleistein 1979), which was mostly concernedwith CMP

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    15/164

    6 LEAST-SQ UARES INVERSION

    data. Note that linearized inversion is essentially the solution of the

    linearized least-squaresproblem about a reference model usually assumed

    to include approximately correct velocity trends (Lailly, 1983 and 1984;

    Tarantola, 1984; kelle et al., 1988). Recently, ncreasing ttentionhasbeen

    paid to before-stackinearized nversion Clayton and Stolt, 1981;Beylkin,

    1985; Parsons,1986; Weglein and Foster, 1986; Bleistein, 1987; Beylkin and

    Burridge, 1987 and 1988), largely in an attempt to extract multiparame-

    ter estimates, i.e., acoustic or elastic reflectivity models, which in turn is

    an attempt to provide a rational basis for amplitude-versus-offsetanalysis

    for direct hydrocarbon detection. As has been thoroughly established n

    Santosaand Symes 1988b), Clayton and Stolt (1981), and Beylkin and

    Burridge 1988), suchmultiparameter stimates re grossly nreliable rom

    small-aperturedata. Spratt (1987) has recentlynoted that trend inaccura-

    ciesspecifically ausegrossamplitude anomalies n small-apertureRs/Rp

    estimation, n the contextof conventional VO (which is an approximation

    to linearizedelastic nversion).

    To summarize: the interest in amplitude recovery lies mostly in estima-

    tion of multiparameter models, especially elasticity. Reliable multiparam-

    eter amplitude estimation demands wide data aperture, and therefore also

    quite accurate velocity trends. Even though we do not specificallyaddress

    multiparameter models in this monograph, this conclusion underlies our

    emphasis on the possibilities and difficulties of velocity trend recovery in

    least-squares nversion.

    A number of limitations on the information content of reflection data

    emerge from our analysis. For example, in order for the band-limited data

    to contain trend information, it must correspond o a velocity profile con-

    taining a sufficiently dense set of reflectors. Intuitively, this condition is

    necessary n order that sufficienttraveltime information be present to de-

    termine velocitycomponents t spatial wavelengths elow he passband. t

    also ollows rom the singularvalue analysis or the perturbational problem,

    for which we give both theoretical description and numerical illustration.

    Finally, we have given a rigorous mathematical definition of sufficiently

    dense set of reflectors, which we review in an appendix.

    A second imitation stems from the role of moveout in uniquely speci-

    fying the traveltime-depth elation. We show hat a sufficiently arge data

    aperture in p-tau (at least 60 percentof the total precriticalrangeat each

    depth) is necessaryo ensure he effectivedeterminationof velocity rends.

    In particular, the structure of large very low velocity zones may be en-

    tirely undetermined. We illustrate this effect numerically. Since no rays

    are near turning in suchzones,our restriction o the precritical regime s

    not responsible or this indeterminacy.

    We emphasize that these limitations (density of reflectors, aperture

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    16/164

    1. INTRODUCTION 7

    needed o determinevelocity trends) are proper to the reflectionseismol-

    ogy problem over a layered earth--not to our choiceof problem formula-

    tion (leastsquares), pecificmodel layeredacoustics, lane-waveesponse),

    analysis,or algorithm. They represent undamental limits of the reflection

    method, at least insofar as the elastic model is appropriate.

    Our book beginswith a definition of the SH-wave model, the plane-wave

    decomposition,and the precritical p-tau section in Chapter 2. Chapter 3

    introduces the inverseproblem, and posesnatural requirementsof stability

    and feasibility to be satisfied by any practical formulation. Chapter 4 in-

    troduces the output least-squares formulation, and Chapter 5 reviews the

    general features of nonlinear least-squares roblems,and reveals he singu-

    lar spectrum of the linearized problem as the key determinant of stability.

    Chapters 6 and 7 form the heart of our book. In Chapter 6 we describe

    the spectrum of the linearized problem about a homogeneous ackground,

    and state a general theorem concerning he singular spectrum of the lin-

    earizedproblemabout a slowlyvarying smooth)background.n Chapter

    7 we perform a similar analysis for perturbations about a homogeneous

    layer over a homogeneous alf-space. The quantitative differencebetween

    the perturbation spectra in the smooth and nonsmooth cases s evident in

    this very simple example. We also state a general theorem concerning his

    point and exhibit singular value decompositionsor a number of examples,

    determined by numerical simulation. Chapter 8 outlines the implications of

    the spectral analysis or the performanceof least-squaresoptimization, and

    includesa discussion f the role of refracted energy, llustrated by singular

    value decompositionSVD) of 2-D perturbational seismograms.Chapter

    9 describes he implementation of our least-squarescode, and Chapter 10

    presents some examples. We restate our conclusions n Chapter 11.

    We cover several ancillary points in Appendices. We discuss he close

    relation between the output least-squaresormulation and the velocity spec-

    trum analysisof Tuner and Koehler (1969) (Appendix A), the relation

    between ms error measuresL2 norms) or (x, t) and (p-tan) sectionsap-

    pendix B), and give the detailed calculationsof the single-layer xample

    (AppendixC). In AppendixD we sketchour generalization f the rough-

    reference pectral analysis o a large classof arbitrary media. This is the

    only theoretical novelty in our work: it is a technicalextensionof geomet-

    ric acoustics. In Appendix E we briefly describe an alternate formulation

    of the inverse problem, based on an optimum coherencyprinciple which

    is closely related to the scan technique of velocity analysis. This alter-

    nate approach voids he stiffness ill-conditioning)-inducednefficiency

    inherent n least-squaresnversionwhile producing he samesort of model

    estimate. A more extensivediscussion,with examples, s given in Symes

    (1988). Finally, in AppendixF, we show hat moveout s entirelyresponsi-

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    17/164

    8 LEAST-SQ UARES INVERSION

    ble for the estimation of velocity trends. We give an acoustic2-D example in

    which two models with identical velocities but completely different density

    trends yield virtually identical band-limited common-sourceseismograms.

    Of coursedensity rends for fixed velocity)haveno effecton moveout.

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    18/164

    Chapter 2

    The Model

    We consider a linearly elastic isotropic medium confined to the half-space

    {z • 0], subject to prescribed raction on {z - 0]. We introducethe

    notation

    P

    -- positionvector - (Xl, x•2, 3) or -- (•, y, z) interchangeably;

    - displacement vector;

    - material density;

    - Lam• parameters;

    - •V. u• + •(V•u• + V•u•) - •u•,•,• + •(u•,• + u•,•)

    = (i, j)-component of stress

    - sourcewavelet time function).

    Then the responseo a horizontallypolarizedshear ine load with wavelet

    f, extended n the y- (x2-) direction, s the solutionof the initial boundary

    value problem consistingof the equationsof motion

    piii- •rij,j z • O, i-1,2,3

    j=l

    together with boundary conditions

    i- 1,2,3

    and initial conditions

    u-0, t((0.

    The field u_ is necessarily ndependentof y, and obeys the equation of

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    19/164

    10 LEAST-SQ UARES INVERSION

    motion and the boundary and initial conditions

    p/•2 - V. ItVu2

    •-•(•, O, ) -- •(O)V•,•(•, O, ) -- f(t)•(• -- •o)

    u2--O, t

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    20/164

    2. THE MODEL 11

    Clearly we can, if we wish, view the seismogram s a functionalof c, rather

    than of p:

    s[c, , x0l(x, t) := u(x, 0, t; x0).

    Second,we introduce he slant-stackp-tau, Radon ransformed)ield.

    Formally,

    •(p,,) f &00,•(0,,- p. 0;0).

    The t-derivative under the integral sign is a technical conveniencewhich

    partly offsets he smoothing nfluenceof the z integration. That is, we

    transform he SH velocity ield. SeeChapman 1978), Treitel et al. (1982),

    and Appendix B for more information.

    For reasonsto be explained below, we wish to restrict our attention to

    the precritical egionof (p, r)-spacedefined n terms of the vertical ravel-

    time

    . T(z,) - dC/1

    c(½) '

    Note that this vertical traveltimediffers rom the traveltimealonga ray at

    slownessp, which would be

    z 1 .

    j•0 Cc(C)N/1ca(C)p

    It is in fact the time required for a point on a plane wavefrontat slowness

    p with fixed horizontalcoordinate o reach depth z from the surfacez - 0.

    For any safetymargin A with 0 < A < 1 we define he (A) precritical

    depth function

    Za(p)-maxz' for

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    21/164

    12 LEAST-SQUARES INVERSION

    finitecableength. n SantosandSymes1988b),weshow hat for a suit-

    ably arranged utoff unction /(x,p), the truncated adon ransform f the

    surface trace

    t•(p,,) f •0•(•0,)0,•(0,,- p. 0,0)

    is, up to an error whichdecaysaster han any (negative) owerof fre-

    quency,he boundary alueof the solutionof the plane-wave quations

    (1

    •(•) p• o•t•(•,t;p) o•t•(•,t;p)0, • >0

    O•U(O,t;p) = F(t) := f'(t) (2.5)

    U _= O, t•O.

    We define he plane-wave SH) seismogram ,r p-tau section,as

    Sic,y](•, v) = u(0, •; v) =

    f a•oO,•[c,, 0](0,v. 0),(•0,), v,) r.

    $ is the Radon ransform r slant-stackf the SH-linesource eismogram.

    We shalloftensuppress in our notation or $, regardingt as fixed.

    One of our principal ools, or both theoretical nd computationalur-

    poses,will be the perturbational nalysis f the seismogram. he formal

    linearizationdifferentialeismogram,nhomogeneousackgroundornap-

    proximation) is given by

    where5U solves he perturbationalproblem

    (1_p:•)t•62

    - -O•SU =

    o•u(o, t; p) •

    $u •

    2•c tu

    c 3

    0

    0, t

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    22/164

    2. THE MODEL 13

    Remark. Because f the translational dentity (•.3a),

    v(o,;v)f d•O,(•, ,+v-•,o).

    This equation allows us to interpret U either as a plane-wave componentof

    the responseo the line source ocated t xo -O, or as the response rw of

    the medium to the plane-wave sourceboundarycondition

    v•,,,,,o•, o, ; r) - •'(t - r-

    at x-O:

    •(z, t, r) - •(0, z, t; r).

    In fact one can even interpret U as the 3-D slant-stack of the point-

    source esponse _at vectorslownessp, 0)'

    U(z,; ) f f dzoyoOtu•(O,,, pzo,o,o)

    where the line load boundary condition above is replaced by a shear point

    load at (xo, yo) with the same ime dependence.We shall occasionallyake

    advantage of this equivalence,as certain calculations with the Radon trans-

    form are easier n 3-D than in •-D (AppendixB).

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    23/164

    This page has been intentionally left blank

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    24/164

    Chapter 3

    The SH-wave

    Problem

    Inverse

    The most primitive version of the seismic nverse problem, specialized to

    the layered,/• = const. SH line-sourcemodel, is the functional equation

    Sic]- G. (3.1)

    The right hand sideof (3.1) is meant to represent he Radon transform

    of the measured line source SH-velocity surface trace, and we demand that

    the equationhold at least n the precriticalpart P of the (p, r) domain.

    Generally, quation 3.1) is overdetermined,nd will haveno solutions

    at all if G is producedby slant-stackinga noisy data set. Data G for which

    a solutionc of equation 3.1) exists are called consistent. Generic data

    are inconsistent. Therefore we must modify the statement of the inverse

    problem.

    Before stating alternative formulations, we shouldmake explicit the goal

    which any reformulation is to achieve. A modest objective might be the

    stability of the solution for near-consistent data. We could reasonably hope

    that any reasonable data set is near a consistent data set: otherwise, our

    model of the basic physics s erroneous. Thus suppose hat

    G=G*+N

    where

    S[c*] =

    for some easonable elocity profile c*, and N is a small noise erm (we

    shallbe moreexplicitabout the meaningof small ater). Then we should

    15

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    25/164

    16 LEAST-SQUARES INVERSION

    consider a restatement of the inverse problem successful f it enables us to

    derive from G a velocity estimate c which is close to c*.

    A second useful quality of a formulation of the inverse problem would

    be that computation of its solution should be easy or relatively inex-

    pensive and, at least, feasible).

    The above criteria are stated in vague terms. They are nonethelessuse-

    ful as guides in developinga theory of the inverseproblem and algorithms

    for its solution, and will be made more precise as we see how to meet them.

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    26/164

    Chapter 4

    The Output

    Least-squares Principle

    As mentioned in the introduction, a popular approach to the problem of

    inconsistent ata is to seeka model i.e., velocityprofilec) for which he

    mean-square error

    IlS[c]-11-f fr"'"rls[c](r,) •(r,) (4.1)

    is as small as possible. This is the output least-squares ormulation of the

    inverseproblem, speciahzed o the precritical p-tau section.

    Actually an even more popular approach s to attempt to minimize the

    mean-square rror in the full (x, t) seismogram:

    ils[c]_[[2Jdx t[[c](x,t)-(x,)I•. (4.2)

    The error defined n equation 4.1) is essentiallydentical to the error in

    the pointsource eismogramseeAppendixB; the extra "p" in the integral

    in (4.1) is not a misprint, ut is the correctweight o bringequation4.1)

    and the point source eismogramrror as closeas possible).The relation

    of the point-source eismogramrror with the line source eismogramrror

    (4.2) is morecomplicated. lso t is possibleo introduceweights"data

    covariancematrix") to reflect the presumed tructureof data errors. See

    Tarantolaand Valette (1982a and 1982b) or details.

    As we will explain, he minimizationof equation 4.1) is easier han the

    minimizationof equation 4.2), so we shallconcentratemostlyon equation

    (4.1).

    17

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    27/164

    18 LEAST-SQ UARES INVERSION

    Unfortunately, the solution of even this "precritical" output-least-squares

    problem is excessivelysensitive to data noise, for several reasons. This is

    so even in the "perfect" caseof impulsivedata, i.e., f(t) - 5(t). In that

    case, a stable estimate of c requires that highly oscillatory componentsbe

    constrained a priori, i.e., independently of the data. Thus resolution must

    be sacrificed to obtain stability. We emphasize that this loss of resolution

    is intrinsic to the problem: it stems from the nonlinear nature of the rela-

    tion between the coefficient and the solution of the wave equation, which

    strongly couples he high- and low-frequency egimes,and is present or any

    inverseproblem n wavepropagation, n which wavevelocitiesare (among)

    the unknowns. For an extensivediscussion ee Symes (1986a). We note

    also that this bandcoupling s the essence f velocity analysis, and likewise

    will explain most of the features, positive and negative, of least-squares

    inversion.

    The subject of our present discussion s the inverse problem for band-

    limited data, i.e., f(t) y• 5(t). In fact, a commonmodel wavelet , in a

    scale reasonable or exploration seismology, s depicted in Figure 1. It is a

    so-called ero phaseRicker wavelet scaledsecond erivativeof a Gaussian

    pulse)with peak frequency ear 20 Hz. As inspectionof its powerspectrum

    (Figure 2) reveals, t has little energycontentabove35 Hz or below4 Hz.

    The lack of energy content above 35 Hz causes ittle difficulty in con-

    structing approximate solutions o the inverse problems. It simply results

    in loss of resolution, which may be compensatedby a priori constraints on

    2 i I i i

    - 1

    o

    -1

    -2

    --3

    0.00 0.05

    1

    0.10 0.15

    FIG. 1. Ricker wavelet; peak frequency s approximately 20 Hz.

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    28/164

    4. THE 0 UTP UT LEAST-SQ UARES PRINCIPLE 19

    15

    10

    25

    20

    _

    _

    -

    -

    -

    _

    _

    _

    _

    _

    _

    _

    o •

    o

    I i i i i i i i ] i i i

    20 40 60

    FIG. 2. Power spectrum of Ricker wavelet; peak frequency s approximately 20

    Hz.

    highly oscillatory components n c, as must already be done to eliminate

    the intrinsic instability mentioned above. In this book we will restrict c to

    lie in a spaceof functions splines)with suitably imited frequency ontent.

    The absence of low-frequency energy in f has much more interesting

    (and very well known)consequenceshichare harder to understand han

    the effect of the lack of high-frequencyenergy. We begin to explore there

    consequencesn Chapter 6. Before doing so, we shall consider n a general

    way the factors which influence the stability of solutions of nonlinear least-

    squares problems.

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    29/164

    This page has been intentionally left blank

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    30/164

    Chapter 5

    Generalities on Nonlinear

    Least-squares Problems

    In this chapter we examine the sensitivity of the least-squares nversion to

    data noise or perturbation. We include this well-known material for the

    sake of completeness;t has been treated with great care, for instance, in

    Linesand Treitel (1984). In the notationof the previous hapters,we want

    to determine he effecton a (the) minimumof

    1 i:

    caused by a perturbation •G in the data G.

    We shall use here the standard notation from advanced calculus D

    for derivative: as applied to the plane-waveseismogram$ for a reference

    velocity c and a perturbation •c,

    DS[c]acnm {s[c eat]$[cl}.

    •---0 I[

    ThusDS[c]•Sc the directional erivative f S at c in the direction 5c )

    is exactly the first order perturbation in S due to the perturbation •c in

    velocity.DS[c] itself is a linear operator,mappingvelocityperturbations

    •c to corresponding erturbations n S.

    In Chapter 2, we defined he formal first orderseismogram erturbation

    •S as the solution f the perturbational oundary alueproblem 2.6). If

    the limit definingD$[c]•5c xists, hen t ought o be true that D$[c]•5c

    •S. Circumstances nder which this relation holdsare discussedn Symes

    (1986a)and Sanrosa nd Symes 1988b).

    21

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    31/164

    22 LEAST-SQ UARES LYVERSION

    Now J is a real valued unction of two arguments c and G), hencehas

    a gradientwith respect o each. Let ( , )e denotea suitable nner product

    for velocity perturbations, possibly ncorporating some weighting. A simple

    (but not the only) choice s

    (•5Cl,5C2)- dzCl(Z)•C2(Z)

    Then the c-gradient is that function gradcJ satisfying he identity: for any

    5c,

    DeJ[c,]Sc lime_•0[J[c eSc,] J[c, ]]

    = (gradcJ[c,G],

    (For functionsdependingon more than one argument,we use subscripts

    to denote the partial derivatives and gradients with respect to the various

    arguments,as above.)

    From calculus, f c is a (local) minimum of J, then the c-gradientvan-

    ishes:

    gradeJ[c,G]- DS[c]*(S[c] G) - 0 (5.1)

    and this remains true at the minimum c q-5c corresponding o G q- 5G.

    Here DS[c]* is the adjoint operator o DS[c]--see e.g., Tarantola 1984)

    and Lailly (1984).

    If all small data perturbations 5G correspond to small model perturba-

    tions5c, then we are ustified n usinga perturbationexpansionfirst order

    Taylor series)of the gradientabout c:

    gradcJ[cq- 5c,G + 5G] -

    grad•S[c,G] + Degrad•S[c,G]Sc+ Dagrad•S[c,a]aa +...

    where the omitted terms are of secondand higher order in the perturbations

    5c, 5G. Differentiating again with respect to c defines he Hessian operator

    (DcgradcJ[ca])Sc -. HesscJ[c, ]Sc

    which is given explicitly as

    Uessa[c, ]ec OS[c]*OS[c]ec Sic]

    On the other hand, the G-derivative of the gradient is

    DagradcJ[c,oleo - -OS[c]*ea.

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    32/164

    5. NONLINEAR LEAST-SQUARES PROBLEMS 23

    Thus we obtain the perturbational relation between small tic and tic:

    to first order,

    HesscJ[c, ltic = DS[cl*tiC. (5.2)

    If we assume also that G is consistent data, i.e., that

    sty] = c,

    then this relation simplifies, and we obtain

    =

    (5.3a)

    which we recognize s the normal equationof the linear least-squares rob-

    lem

    min IDS[c]acacll (5.3b)

    •c

    [seeGoluband van Loan (1983, p. 138)].

    To summarize: if small tic yields small tic as the solution of the linear

    problem 5.2) [or problem 5.3), in the caseof consistentata], then the

    linearization is valid and in fact sufficiently small tic will yield small tic

    for the nonlinearproblem 5.1) as well. A partial converses alsotrue: if

    we can producea solutionof equation 5.2) with tic large relative to tiC,

    then we cando the samewith equation 5.1) (thoughboth perturbationsn

    generalwill be small). Thus for small perturbations, he relation between

    tic and tic is determined y the linear equation 5.2).

    Recall that our aim is to assess he stability of the least-squaressolu-

    tion for near-consistentata (Chapter 3). A very detaileddescription f the

    sensitivityof the seismogramo model perturbations s contained n the sin-

    gular valuedecompositionSVD) of the perturbational eismogramS[el.

    For an extensive general discussionof this important concept, see Golub

    and van Loan (1983, p. 16-20 and p. 174-175). For examples f its use

    in the investigation f geophysical roblems,seeBube et al. (1985), Breg-

    man et al. (1986), Fawcett 1985), Linesand Treitel (1984), (many older

    referencesited there), Nolet (1985) and Van Riel and Berkhout 1985).

    Briefly,the singularvaluesof DS[c] are the square-roots f the eigen-

    valuesof the symmetric normal ) operator

    os[d'os[]

    [comparewith equation 5.3a)]. The correspondingigenvectorsre called

    (ri9ht) sintlular ectors f DS[c]. The collection f singular alues f DS[c]

    is called its sintlular spectrum.

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    33/164

    24 LEAST-SQ UARES INVERSION

    We have ust seen hat the effect of small data perturbationson the

    nonlineareast-squaresolutions governed y the linearnormalequations

    (5.3). In general, ecansay hat, for solutionsf equation5.3),

    where as usual)II II denoteshe L2-normand O'mi is the leastsingular

    valueof DS[c]. Thus 1/•rmi is the worst rrormagnificationactorpossible

    between6G and 6c, and we can say with certainty that the criterion of

    stability for near-consistentdata is satisfied f amin s not too small. This

    leadsus to study in the next two chapters he dependence f t7min n c.

    A further consequencef the preceding easonings that for consistent

    data (S[c] = G) the shape f the graph of

    IIS[c

    is determined by the shapeof the quadratic model

    IIDS[c]acll

    The singularvaluedecompositionSVD) of DS[c] givesexactly he princi-

    pal axes of this quadratic. Large singularvaluescorrespondo directions

    (principal xes) n which he quadraticmodel 5.5) [hencehe rms error

    (5.4), locally] s changing ery rapidly. Similar nterpretation pplies or

    smallsingular alues,which orrespondo directions f smallchangesn the

    rms error. Variousversions f Newton'smethod the only obvious venue

    of solution f the east-squaresnversionroblem, ecausef its size) esult

    fromrepeated olution f equation5.2) or equation5.3a). The accuracy

    and efficiencyand thus the effectiveness f Newton-like iteration with which

    these quationsanbesolved ependsnthedistributionf singular alues

    of DS[c]. Moreover,as pointedout in the introductionand discussedmore

    thoroughlyn Chapter , the distribution f singular alues f DS[c]at a

    minimum f J has mplicationsor the shapeof the graphof J evenoutside

    the regionn which t is closeo the quadratic5.5). Thuswewill need o

    consider arefully he dependencef the extreme ingular alues max nd

    tYmi n on c.

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    34/164

    Chapter 6

    Perturbations About A

    Slowly Varying Reference

    Velocity

    The singularspectrumof the normal operator D$[c]*D$[c] is easiest o

    analyze in case the referencevelocity c is slowly varying, i.e., smooth. In

    fact, this analysis underlies much of the heuristic reasoning n reflection

    seismology.

    We temporarily restrict our attention to a single plane-wavecomponent,

    whichmay as well be the normal ncidence omponentp-- 0), and write

    s0[•](t) := s[•](0, t).

    For constant reference velocity c ---- const., the derivative of $0 may

    be computed in closed form: This is the famous "Born approximation,"

    or convolutional model, which forms the basis of much seismic data pro-

    cessing.Seefor exampleWaters (1981), Cohen and Bleistein 1979), and

    Gray (1980). The following s also a specialcaseof the formuladerived n

    Appendix C:

    D$o[c]Sc(t)2 dz t 2_•)c(z) (6.1)

    -- cF . Sc(t)

    where5C(T) - 5C(•-) is the reparameterizationf 5c by two-way ime.

    Suppose for example that we take for F the 20 Hz Ricker wavelet of

    Figure 1, which has very little energybelow w• - 4 Hz. If 5c is very smooth,

    25

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    35/164

    26 LEAST-SQ UARES INVERSION

    so that it has almostall of its energy nside he band [0, f•] cycles/m, hen

    5c has very little energyoutside he [0,cf•/2] Hz band, and the convolution

    with F will be very small; provided hat c•/2 _<

    IIDo[C]Scll

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    36/164

    6. SLOWLY VARYING REFERENCE VELOCITY 27

    3

    -2

    0.0

    I I I I I I I I I I I I

    0.5 1.0 1.5

    t

    FIG. 4. Perturbational seismogramwith background velocity of c = 1500 m/s

    and perturbation shown in Figure 3. The vertical scale used is the same as

    that in Figure 5.

    approximation xpression6.1) shouldbe modified o

    D$[c]Sc-dz t- Sr(z)

    where

    dSc

    tir ----

    dz

    is the reflectivity profile, for comparisonwith the figures.

    Nonetheless, we shall stick with the displacement seismogram rather

    than the velocity seismogram, or our theoretical discussions.

    For comparison, the reference seismogram s shown in Figure 5, and

    the impulsive perturbational seismogram n Figure 6. The band-limited

    perturbational seismogram s negligible, and a substantial multiple of this

    ticcouldbe added o a minimumof equation 4.1) without muchdisturbing

    the value of the mean-square residual.

    As explained in Chapter 5, the sensitivity question is well-addressedby

    the SVD of DSo[c].

    We have computed he SVD of DSo restricted o a spaceB/v of (rel-

    atively) smooth perturbations ic. B/v is spannedby the cubic B-splines

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    37/164

    28 LEAST-SQUARES INVERSION

    • i I i i

    o

    -1

    0.0 0.5 1.0 1.5

    t

    FIG. 5. Seismogramor c-- 1500 m/s.

    0.6

    0.4

    0.2

    0.0

    -0.2

    -0.4

    -0.6

    0.0

    i i i i i i i i i

    0.5 1.0

    t (s)

    FIG. 6. Perturbational seismogramwith an impulsivesource. The background

    and perturbation are the same as for Figure 4. The "hair • is discretization

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    38/164

    6. SLOWLY VARYING REFERENCE VELOCITY 29

    0.8

    ,.½ o.2 -

    0 120 240 360

    FIG. 7. The trial space of cubic B-splines, used to õenerate sinõular value de-

    compositions.

    (DeBoor,1978)depictedn Figure7, eachof which s a translateof a single

    representative B-spline of ½:

    n=l

    zo + (n -- 1)Az.

    Of course, in performing numerical computations we must necessarily

    restrict D$o to some finite dimensional space. The B-splines provide a

    convenient way to generate such a finite-dimensional trial space, as they

    are quite localized, with no long oscillatory "tails," but also maximally

    smooth among piecewisepolynomial trial functions.

    We applied a Ricker wavelet plane-wave traction peaked at 35 Hz, sim-

    ilar to that in Figure 1, to the surface of a homogeneous alf-spacewith

    constant reference) elocityc = 2500 m/s. Using he finite difference ode

    mentionedabove, we computed he perturbationsD$o[c]5cas 5c ranged

    over the B-spline basis:

    5c,•(z) -- ½(z- z,•), n -- 1,... ,N.

    We stored he perturbationDSo[c]Sc,.,s the nth columnof the matrix A.

    The calculationof D$o[c] was performedusingthe finite difference ode

    described above.

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    39/164

    30 LEAST-SQ UARES INVERSION

    Remark. In this and other singular value calculations described here, we

    defined (and DS) to be he plane wavedisplacement eismogram,ather

    than the velocityseismogramin contrast o the other illustrations,and in

    commonwith the theoreticaldiscussion).

    Thus A was an NT x N matrix, where NT was the number of time

    steps. We choseNT (and the spatial step size) to ensureaccuracy n the

    finite difference calculation; with a seismogramduration of 0.5 s we chose

    N2 • - 1000.

    Havingcomputed , we computedhe N x N normalmatrix ATA, as

    well as the mass matrix

    - f -

    of •he splinebasis. We •hen calculated he eigenvalues,•) and eigenvec-

    •ors • of the generalized igenvalue roblem

    A TAv -- AMv

    using he IMSL (InternationalMathematicaland Statistical Library) rou-

    tine EIGZS.

    Finally, the singularvaluesof DS'o[c], estricted o our splinespace,are

    given by

    o.•-- X/•, n-- 1,...,N

    and the (v,•) are the correspondingright) singularvectors.

    In the simulations reported here we have used parameters z0 - 60 m,

    Az- 16 m. Unless otherwise noted, we chose N- 15.

    The results for the constant reference velocity case are summarized in

    Figures8 and 9. Figure 8 displays he singularvaluesof D$o[c] arranged

    in increasingorder and plotted against index. These range from o.• =

    1.18 • 10 4 to o.1• - 6.53 x 10 3.

    Note that the scale of the source wavelet F corresponds o an overall

    scaledegreeof freedom n D$o[C], hence n the o.'s. Consequently more

    meaningful measure of spectral spread is the condition number

    o.n

    O'1

    For the constant-background xample above, tc- 55.3.

    Note that the singular value distribution appears to be an asymmet-

    ric rearrangementof the sourcepower spectrum. This is not surprising:

    as equation 6.1) shows,D$o[c] amounts o convolutionwith F, which is

    diagonalized by the Fourier transform.

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    40/164

    6. SLOWLY VARYING REFERENCE VELOCITY 31

    0.015

    O.OLO

    0.005

    0.000

    0

    5 10 15

    index m

    FIG. 8. Singularvalue distribution or c ---- 500 m/s.

    In Figure 9, we depict the right singularvectorscorrespondingo the

    smallest a) and largest b) singularvalues.As expected.rom the Fourier

    analysis, heseare (roughly) he least and mostoscillatoryunit vectors n

    the trial space of B-splines.

    Of course,we have consideredsofar only a singleplane-wavecomponent.

    One might hope that the redundancyof the line-source ata set, consisting

    of an infinity of plane-wavecomponents,might ameliorate the instability

    outlined above. Recall that the plane-wave component U solves

    1 ) a2U

    _p• u

    t= az •

    -0

    ou

    U-0, f

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    41/164

    32 LEAST-SQUARES INVERSION

    0.15 ............

    - I I

    _

    _

    0.10 --

    _

    -

    -

    -

    0.05 --

    _

    _

    _

    -

    0.00

    -O.O5

    -0.10

    -0.15 • • I , ,

    0 120

    _ _

    240 360

    (a)

    0.15 ............

    - I

    0.10

    0.05

    o.oo

    -0.05

    -O.lO

    -0.15

    I I I I I I I i

    0 120 240 360

    z (m)

    (b)

    FIG. 9. (a) Right singularvector correspondingo smallestsingularvalue; (b)

    Right singular vector corresponding o largest singular value. The back-

    ground velocity s c = 2500 m/s.

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    42/164

    6. SLOWLY VARYING REFERENCE VELOCITY 33

    the plane-wave field V solves

    1 •92U

    c2

    OU

    •9z

    •9•U

    =0

    1

    If [a•t,•a]s he assbandfF, henx/1- :•p•t,/1- :•p•a]s he

    passband f Fp. That is, as p approachesritical slowness,he lowerband-

    limit of F is effectively extrapolated toward 0 Hz.

    1.0

    o.6

    o.4

    0.•

    0.0

    0.0 0.2 0.4 0.6 0.8 1.0

    normalized slowness

    FIG. 10. Extrapolation factor to scaleeffectivesourceband, as functionof cp.

    To illustrate the extent of this effect, we display in Figure 10 a plot

    of V/1- ca/9versusp. Clearly pmustbe ratherargen order hat

    V/1- ca/9 be significantlymallerhan 1. For exampleor cp - .87,

    V/1- ca/9 .5 whereasorcp- .98,V/1- c2p - .2. That s, n or-

    der to movethe passband oward 0 Hz by a factor of .2, we must probe the

    medium with a plane wave at essentially ritical angle.

    We exhibit in Figure 11 a plot of the plane wave racesat cp - 0,..., .84

    for the example of Figure 4. Plotted on the same scaleas the wavelet, the

    perturbation barely showsup in the cp = .84 trace. Even with the vertical

    scaleexpanded y a factorof 20 (Figure 12) the responses negligible elow

    cp = .84. In fact, a significant ortionof this perturbation Figure3) occurs

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    43/164

    34 LEAST-SQ UARES INVERSION

    1.0

    0.5

    .0

    0.0 0.6

    normalized slowness

    FIG. 11. Perturbational wave traces, cp = 0, .12, .24,..., .84. The source, refer-

    ence velocity, and velocity perturbation are the same as for Figure 4.

    1.0

    0.5

    0.0

    0.0 0.6

    normalized slowness

    FIG. 12. Same as Figure 11, verticalscaleexpandedby factor of 20.

       D  o  w  n   l  o  a   d  e   d   0   6

       /   2   2   /   1   4   t  o   1   3   4 .   1

       5   3 .   1

       8   4 .   1

       7   0 .

       R  e   d   i  s   t  r   i   b  u   t   i  o  n  s  u   b   j  e  c   t   t  o   S

       E   G   l   i  c  e  n  s  e  o  r  c  o  p  y  r   i  g   h   t  ;  s  e  e   T  e  r  m  s  o   f   U  s  e  a   t   h   t   t  p  :   /   /   l   i   b  r  a  r  y .  s  e  g .  o  r  g   /

  • 8/15/2019 An Analysis of Least-squares Velocity Inversion

    44/164

    6. SLOWLY VARYING REFERENCE VELOCITY 35

    8OOO

    ?ooo

    6000

    5OOO

    4000

    3000

    2000

    lOOO

    i i i i i i i i i i i i i i i i

    0 2 4 6 8 10

    k (l/m)

    FIG. 13. Powerspectrum f/ic (Figure3).

    at wavelengths f 1500 m or more, correspondingo a temporal frequency

    of .5 Hz. Sincehe ower and-limits 5 Hz, V/1- c2p - .1 is required

    to produce significant nteraction, which corresponds o cp - .99. See

    the powerspectrumof •c displayedn Figure 13. Clearly the information

    concerning he low-frequencyvelocity perturbation is minimal, and could

    easily be overwhelmedby noise.

    So far we have considered nly the perturbational problem about con-

    stantbackground.Actually,smoothly aryingbackgroundsieldessentially

    the samespectralstructure,as is evident rom the expression

    / [ /0 ]

    So[c]•c(t)- dzF(t- 2T(z)) •c(z) + dz'K(z,z')•c(z') (6.3)

    T( fodz'

    which s a directgeneralizationf the convolutionalormula 6.1). For a

    derivation f formula 6.3) seeSanrosa nd Symes 1988b). The correc-

    tion term involving he integralkernelK affectsonly the lower requency

    components,so i