QUANTITATIVE CO2 MONITORING WORKFLOW · Rock physics inversion. P-wave velocity map. Two-step...

8
QUANTITATIVE CO2 MONITORING WORKFLOW Bastien Dupuy, Anouar Romdhane, Peder Eliasson © Authors. All rights reserved

Transcript of QUANTITATIVE CO2 MONITORING WORKFLOW · Rock physics inversion. P-wave velocity map. Two-step...

Page 1: QUANTITATIVE CO2 MONITORING WORKFLOW · Rock physics inversion. P-wave velocity map. Two-step geophysical inversion ... Dry rock shear modulus G D. P-wave velocity V P. Acoustic FWI.

QUANTITATIVE CO2 MONITORING WORKFLOW

Bastien Dupuy, Anouar Romdhane, Peder Eliasson

© Authors. All rights reserved

Page 2: QUANTITATIVE CO2 MONITORING WORKFLOW · Rock physics inversion. P-wave velocity map. Two-step geophysical inversion ... Dry rock shear modulus G D. P-wave velocity V P. Acoustic FWI.

2

SEISMIC + EM DATA ROCK PHYSICS PROPERTIES

Seismicinversion

(FWI)

Saturation and fluid mixing maps

GEOPHYSICAL PROPERTIES

Rock physicsinversion

P-wave velocity map

Two-step geophysical inversion

Figures from Romdhane and Querendez (2014), Park et al. (2013), Bøe et al. (2017), Dupuy et al. (2017), Yan et al. (2018)

Seismic data

CSEM data

Resistivity map

CSEM inversion

Geophysicalinversion

© Authors. All rights reserved

Page 3: QUANTITATIVE CO2 MONITORING WORKFLOW · Rock physics inversion. P-wave velocity map. Two-step geophysical inversion ... Dry rock shear modulus G D. P-wave velocity V P. Acoustic FWI.

• CO2 separated from the produced gas in the Sleipner Vest gas field.

• CO2 injection site since 1996.• Approximately 1 Million tonnes per year of

injected CO2.• Injection into Utsira saline reservoir between

800 -1000 m depth.• Injection point is about 1010 m below sea

level.• Near critical state at reservoir conditions.• Storage reservoir: Utsira formation (Upper

Miocene to Lower Pliocene).

3

Location of the Sleipner East field and sketch of injection in Utsira formation (IPCC, 2005).

CO2 injection at Sleipner

© Authors. All rights reserved

Page 4: QUANTITATIVE CO2 MONITORING WORKFLOW · Rock physics inversion. P-wave velocity map. Two-step geophysical inversion ... Dry rock shear modulus G D. P-wave velocity V P. Acoustic FWI.

Well logs and core measurements:Specific rock frame properties (permeability, tortuosity…) Fluid phase properties (pressure, temperature, salinity)

Mineralogy. solid grains parameters (clay content)

Acoustic FWI

Bayesian RPI

Uncertainty quantification

Full seismogram

VP map + uncertainty

KD, GD, φ baseline maps (+ uncertainties)

BASELINE DATA MONITOR DATA

Seismic data Seismic data

Porosity φDry rock bulk modulus KD

Dry rock shear modulus GD

P-wave velocity VP

Acoustic FWI

Bayesian RPI

Full seismogram

VP map + uncertainty

P-wave velocity VP

CO2 saturation SCO2

Methods

Input data

Estimated properties

Time-lapse strategy at Sleipner

© Authors. All rights reserved4

Figure from Dupuy et al. (2020)

Page 5: QUANTITATIVE CO2 MONITORING WORKFLOW · Rock physics inversion. P-wave velocity map. Two-step geophysical inversion ... Dry rock shear modulus G D. P-wave velocity V P. Acoustic FWI.

Baseline

Monitor

Sleipner Inline 1836: seismic inversion (FWI) results, reservoir close-up

© Authors. All rights reserved

5

Figures from Yan et al. (2018)

Page 6: QUANTITATIVE CO2 MONITORING WORKFLOW · Rock physics inversion. P-wave velocity map. Two-step geophysical inversion ... Dry rock shear modulus G D. P-wave velocity V P. Acoustic FWI.

Saturation maps (2008) by rock physics inversion

Patchiness exponent e=1

Patchiness exponent e=5

CO2 saturation CO2 saturation uncertainty

© Authors. All rights reserved6 Figures from Yan et al. (2018)

Page 7: QUANTITATIVE CO2 MONITORING WORKFLOW · Rock physics inversion. P-wave velocity map. Two-step geophysical inversion ... Dry rock shear modulus G D. P-wave velocity V P. Acoustic FWI.

Acknowledgments:This publication has been produced with support from the NCCS Centre, performed under the Norwegian research program Centres for Environment-friendly Energy Research (FME). The authors acknowledge the following partners for their contributions: Aker Solutions, Ansaldo Energia, CoorsTek Membrane Sciences, Emgs, Equinor, Gassco, Krohne, Larvik Shipping, Norcem, Norwegian Oil and Gas, Quad Geometrics, Lundin, Total, Vår Energi, and the Research Council of Norway (257579/E20).

https://www.sintef.no/nccs

References:• Bøe, L., J. Park, G. Sauvin, and M. Vöge, 2017, Improvement of resistivity imaging for an offshore co2 storage by filtering out seabed

pipeline influence: Presented at the EAGE/SEG Research Workshop 2017.• Dupuy, B., Romdhane, A., Eliasson, P., Querendez, E., Yan, H., Torres, V. A., and Ghaderi, A. (2017). Quantitative seismic characterization

of co2 at the sleipner storage site, north sea. Interpretation, 5(4):SS23–SS42.• Dupuy B., Romdhane A., Eliasson P. and Yan H., Quantitative monitoring workflow for CO2 storage, submitted to IJGGC.• IPCC (2005). Intergovernmental Panel on Climate Change Special Report on Carbon Capture and Storage. Technical report, Prepared by

Working Group III of the Intergovernmental Panel on Climate Change. Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (Eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp.

• Park, J., Fawad, M., Viken, I., Aker, E., and Bjørnarå, T. I. (2013). CSEM sensitivity study for Sleipner CO2-injection monitoring. Energy Procedia, 37:4199 – 4206. GHGT-11.

• Romdhane, A. and E. Querendez, 2014, CO2 characterization at the Sleipner field with full waveform inversion: application to synthetic and real data: Energy Procedia, 63, 4358-4365.

• Yan, H., Dupuy, B., Romdhane, A., and Arntsen, B. (2019). CO2 saturation estimates at Sleipner (North Sea) from seismic tomography and rock physics inversion. Geophysical Prospecting, 67:1055–1071.7

© Authors. All rights reserved

Page 8: QUANTITATIVE CO2 MONITORING WORKFLOW · Rock physics inversion. P-wave velocity map. Two-step geophysical inversion ... Dry rock shear modulus G D. P-wave velocity V P. Acoustic FWI.

Teknologi for et bedre samfunn