A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion...

33
A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata (Jefferson Lab) / [email protected] Vasiliy Morozov (Jefferson Lab) / [email protected] Alex Castilla (ODU) / [email protected] http://www.toddsatogata.net/ 2015- USPAS

Transcript of A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion...

Page 1: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 1

USPAS Accelerator Physics 2015 Old Dominion University

Colliders, Luminosity, & Crabbing

Todd Satogata (Jefferson Lab) / [email protected]

Vasiliy Morozov (Jefferson Lab) / [email protected] Alex Castilla (ODU) / [email protected]

http://www.toddsatogata.net/2015-USPAS

Page 2: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 2

Outline

Colliders Why and where? Issues

Accelerator Physics of Colliders Event rate Luminosity

Looking at the luminosity Fixed target Colliders: Gaussian bunches, head-on Optimization knobs and complications

Hourglass effect Crossing angle Crabbing

Page 3: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 3

Colliders

Where?

Butchered slide from Steve Myers IPAC2012 New Orleans.

STAR detector at RHIC,J.G. Cramer UW Colloquium 2002.

Page 4: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 4

Colliders (2)

Why?

www.businessinsider.com Laurent Egli.

Because they are super

cool!

True! But also:

Colliding beams

Fixed target

Page 5: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 5

Probing “small things”

SUSY??

Weak nuclear force

Proton and neutron

Quarks, muon

Nuclear states transitions

Electron

Transitions in the inner-shell atomic states

Atomic states transitions

Lattice vibration in solids (phonons)1

1

1

1

1

1 ≈125

?? Higher energy →

higher resolution

Page 6: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 6

Accelerator Basics of Colliders

More events in time → better statistic/resolution of the

processes.

- interactions per second,

- interaction cross section (machine independent),

- luminosity, relativistic invariant, independent of

the interaction and –very important- measurable.

Page 7: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 7

Accelerator Basics of Colliders (2)

*F. Zimmermann, SLAC Summer Institute (2012).

Page 8: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 8

Shining Beam on a Fixed Target

The interaction rate will be a function of:

- interaction cross section.

- beam particles flux.

- target density.

- target size. 𝒍=𝑐𝑜𝑛𝑠𝑡

𝝆𝑻=𝑐𝑜𝑛𝑠𝑡

𝝓

Page 9: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 9

The interaction rate will be a function of:

- Then:

- bunch frequency.

- number of particles per bunch.

- beam transverse profile.

Shining Beam on a Beam (Collider)

𝒍

𝝆𝑻=𝑐𝑜𝑛𝑠𝑡

target =

moving beam!

Page 10: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 10

Collider Luminosity

Per bunch crossing:

]

Where .

And is the kinematic factor .

Head-on collisions (), then .

For uncorrelated distributions:

𝑛1 𝑛2

𝑠0

Page 11: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 11

Luminosity of Gaussian Bunches

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

For two bunches with and particles respectively:

Where are the rms

horizontal/vertical beam sizes.

No offset and head-on collision.

𝑡=1𝑓

𝑛1 𝑛2

𝑠0

Page 12: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 12

For two beams:

]

The Gaussian distributions can be written:

, ;

where and indicates the bunch number.

Luminosity of Gaussian Bunches (2)

Page 13: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 13

Normal distributions are 0K for bunches in equilibrium.

Not Gaussian? → (most likely) numerical integration.

Simplest case: Identical bunches:

, , and

Even and can be easily calculated (we will keep ).

We will also consider no dispersion at the collision point.

Let’s try a bit of real-time math!

Luminosity of Gaussian Bunches (3)

Page 14: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 14

Luminosity of Gaussian Bunches (4)

𝑡=1𝑓

𝑛1 𝑛2

Then

Again, for identical

beams, no crossing angle,

no dispersion, no off-set.

Where at the IP:

and

Is this “optimizable”?

What happens to the bunch’s shape here?

Page 15: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 15

Turning Knobs for Luminosity

Not head-on collisions (crossing angle ).

Beam deformations at IP (hour-glass effects).

Desired or non-desired offsets.

Dispersion at IP.

Strong coupling, etc.

energy and

injector and beam-beam

total beam current

Reduction factor:hourglass effect,crossing angle…

More a complication rather than a knob?

Page 16: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 16

Hourglass Effect

-functions dependent on , usually:

Then :

Results important if .

*Werner Herr, CAS-Lectures, Bulgaria (2010).

Page 17: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 17

So the luminosity reduction factor:

Hourglass Effect (2)

“Enigmatic” dependency mentioned before!

Page 18: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 18

A Bit More Interesting Case (Crossing Angle)

Reduce parasitic collisions.

Physical space for magnets.

Better detector resolution.

𝑛1𝑛2

s

x

𝜃𝑐

2

𝜃𝑐

2

Page 19: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 19

Rotating Reference Frames (for each bunch)

s

x

, .

𝑠1

𝜃𝑐

2

𝑥1

𝑠2

𝜃𝑐

2

𝑥2

, .

Page 20: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 20

For the Distributions in the New Systems

For two beams:

]

Now we will use:

With some approximations: fairly small (mrad ~deg),

then:

Page 21: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 21

For the Distributions in the New Systems (2)

Some more approximations since is small:

discarding

And so the result is slightly different:

• is ?• .

𝑹 (𝜽𝒄 ,𝝐 ,𝜷❑∗ ,𝝈𝒔)

Page 22: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 22

Crossing Angle w/o Correction

IP

𝜽𝒄

Page 23: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 23

*R. Palmer, SLAC-PUB-4707 (1988)..

electrons protons

The Crabbing Concept

Page 24: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 24

RF Transverse Deflection

𝑉 𝑇=∫−∞

[𝐸𝑥 (𝑧 ) cos𝜔𝑧𝑐

+𝑐𝐵𝑦 (𝑧 ) sin𝜔𝑧𝑐 ]𝑑𝑧

𝑉 𝑇

𝑡

Page 25: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 25

RF Transverse Deflection (special case)

𝑉 𝑇=∫−∞

[𝐸𝑥 (𝑧 ) cos𝜔𝑧𝑐

+𝑐𝐵𝑦 (𝑧 ) sin𝜔𝑧𝑐 ]𝑑𝑧

𝑉 𝑇

𝑡

Page 26: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 26

Local Crab Crossing Correction

IP

𝜽𝒄

Page 27: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 27

Jefferson Lab’s Medium Energy Electron-Ion Collider

Page 28: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 28

The MEIC at JLab

Y. Zhang, et al. arXiv:1209.0757v2 (2012).

A. Accardi, et al. arXiv:1110.1031v1 (2011).

• () and luminosity.

Deep inelastic scattering.

Page 29: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 29

The MEIC Layout

V. S. Morozov , MEIC study group (2013).

IP’s

IP

Ions

Ions

Electrons

Electrons

Page 30: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 30

The MEIC Luminosity Approach

Short bunches for both species.

Small transverse emittance.

Ultrahigh collision frequency CW beams.

Staged electron cooling.

Small final focusing .

Large beam-beam tune shift.

Crab crossing.

Page 31: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 31

MEIC Crabbing Requirements

𝑉 𝑇=𝑐𝐸𝑏 tan

𝜽𝒄

2

𝜔𝑟𝑓 √𝛽𝑥∗𝛽𝑥

𝑐

Parameter Units Electron Proton

Beam energy GeV 5 60Bunch frequency MHz 750.0Crossing angle mrad 50Betatron function at the IP cm 10Betatron fn. at the crab cavity m 300 1400Integrated kicking voltage MV 1.35 8

• High repetition.• Big crossing angle. 𝒑

𝒆−

Page 32: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 32

Transverse Kick (e.g. 750 MHz SRFD)

𝑉 𝑇=∫−∞

[𝐸𝑥 (𝑧 ) cos𝜔𝑧𝑐

+𝑐𝐵𝑦 (𝑧 ) sin𝜔𝑧𝑐 ]𝑑𝑧

Electric Field Magnetic Field 𝐸𝑇=𝑉 𝑇

𝜆2

⇒𝑉 𝑇∗=0.2𝑀𝑉

𝐸𝑇∗=1

𝑀𝑉𝑚

𝑉 𝑇 ,𝐻∗ =−0.2𝑀𝑉

𝑉 𝑇 ,𝐸∗ =0.4𝑀𝑉

Page 33: A. Castilla / January 2015 USPAS Accelerator Physics 1 USPAS Accelerator Physics 2015 Old Dominion University Colliders, Luminosity, & Crabbing Todd Satogata.

A. Castilla / January 2015 USPAS Accelerator Physics 33

Most of the Content Borrowed from

W. Herr “Concepts of luminosity for particle colliders” CAS-Lectures, Varna, Bulgaria 2010.

F. Zimmermann “LHC: The machine”, SLAC Summer Institute 2012.

J. G. Cramer “Surprises from RHIC” UW Phys. Dept. Colloquium 2002.

And many more…