6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning...

31
2/12/20 1 Chemical/Nuclear Propulsion Space System Design, MAE 342, Princeton University Robert Stengel Thermal rockets Performance parameters Propellants and propellant storage Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html 1 1 Chemical (Thermal) Rockets Liquid/Gas Propellant Monopropellant Cold gas Catalytic decomposition Bipropellant Separate oxidizer and fuel Hypergolic (spontaneous) ignition External ignition Storage Ambient temperature and pressure Cryogenic Pressurized tank Throttlable Start/stop cycling Solid Propellant Mixed oxidizer and fuel External ignition Burn to completion Hybrid Propellant Liquid oxidizer, solid fuel Throttlable Start/stop cycling 2 2

Transcript of 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning...

Page 1: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

1

Chemical/Nuclear PropulsionSpace System Design, MAE 342, Princeton University

Robert Stengel

• Thermal rockets• Performance parameters• Propellants and propellant

storage

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only.http://www.princeton.edu/~stengel/MAE342.html

1

1

Chemical (Thermal) Rockets

• Liquid/Gas Propellant–Monopropellant

• Cold gas• Catalytic decomposition

–Bipropellant• Separate oxidizer and fuel• Hypergolic (spontaneous)

ignition• External ignition• Storage

– Ambient temperature and pressure

– Cryogenic– Pressurized tank

–Throttlable–Start/stop cycling

• Solid Propellant–Mixed oxidizer and fuel–External ignition–Burn to completion

• Hybrid Propellant–Liquid oxidizer, solid fuel–Throttlable–Start/stop cycling

2

2

Page 2: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

2

Cold Gas Thruster(used with inert gas)

3

Moog Divert/Attitude Thruster and Valve

3

Monopropellant Hydrazine Thruster

4

• Catalytic decomposition produces thrust

• Reliable• Low performance• Toxic

Aerojet Rocketdyne

4

Page 3: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

3

Bi-Propellant Rocket MotorThrust / Motor Weight ~ 70:1

5

5

Hypergolic, Storable Liquid-Propellant Thruster

6

• Spontaneous combustion

• Reliable• Corrosive, toxic

Titan 2

6

Page 4: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

4

Pressure-Fed and TurbopumpEngine Cycles

7

Gas-Generator Rocket Cycle, with Nozzle Cooling

Pressure-Fed Rocket Cycle

7

Staged Combustion Engine Cycles

8

Staged Combustion Rocket Cycle

Full-Flow Staged Combustion Rocket Cycle

8

Page 5: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

5

German V-2 Rocket Motor, Fuel Injectors, and Turbopump

9

9

Combustion Chamber Injectors

10

10

Page 6: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

6

11

11

12

12

Page 7: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

7

• Air Force legacy (1955)• Design undertaken before

vehicle or mission were identified

• Big engine, big problems• 16:1 nozzle expansion• 6.67 MN thrust

• F-1 turbopumps• Oxygen: 24,811 gal/min• RP-1: 15,741 gal/min

• F-1 injector• Combustion instability

• Significant theoretical work by Luigi Crocco and David Harrje, Princeton 13

Origins of the F-1

13

14

14

Page 8: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

8

USSR RD-107/8 Rocket MotorsRD-107

4 combustion chambers, 2 verniersRD-108

4 combustion chambers, 4 verniers

R-7 Base4-RD-107, 1-RD-108

15

15

16

(used on Atlas V)

16

Page 9: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

9

Special Shuttle Main Engine (RS-25)

17

17

SpaceX Merlin Family

18

Merlin 1C (vacuum nozzle)

Merlin 1D (throttlable)

Merlin 1A (ablative nozzle)

Roll control from turbine exhaust

18

Page 10: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

10

19

• LOX/Liquefied natural gas

• United Launch Alliance has chosen as motor for the Vulcan launch vehicle

• Thrust = 2.5 MN (550,000 lb)

Blue Origin BE-4

19

20

RD-181 and RD-191RD-181 RD-191

to be used on Orbital-ATK Antares

to be used on NPO Energomash Angara

20

Page 11: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

11

Solid-Fuel Rocket Motor

21

21

22

22

Page 12: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

12

Solid-Fuel Rocket Motor

Thrust is proportional to burning areaRocket grain patterns affect thrust profile

Propellant chamber must sustain high pressure and temperatureEnvironmentally unfriendly exhaust gas 23

23

Hybrid-Fuel Rocket Motor

• SpaceShipOne motor– Nitrous oxide– Hydroxy-terminated polybutadiene (HTPB)

• Issues– Hard start– Blow back– Complete mixing of oxidizer and fuel toward completion of burn

24

24

Page 13: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

13

Rocket Thrust

Thrust = !mpropellantVexhaust + Aexit pexit − pambient( ) ≡ !m ceff

25

ceff =Thrust!m

= Effective exhaust velocity

!m ≡Mass flow rate of on-board propellant

25

Specific Impulse

• go is a normalizing factor for the definition• Chemical rocket specific impulse (vacuum)

– Solid propellants: < 295 s– Liquid propellants: < 510 s

Isp =Thrust!m go

=ceffgo

, Units = m / sm / s2 = seconds

go ≡ Gravitational acceleration at earth's surface

• Space Shuttle Specific Impulses–Solid boosters: 242-269 s–Main engines: 455 s–OMS: 313 s–RCS: 260-280 s

26

26

Page 14: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

14

Specific Impulse

Isp =Thrust!m go

=ceffgo

= CF c* go

= Vexhaustgo

when CF = 1, pe = pambient

Specific impulse is a product of characteristic velocity, c*, and rocket

thrust coefficient, CF

• Characteristic velocity is related to– combustion chamber performance– propellant characteristics

• Thrust coefficient is related to– nozzle shape– exit/ambient pressure differential

27

27

The Rocket EquationIdeal velocity increment of a rocket stage, ΔVI (gravity and aerodynamic effects

neglected)

dVdt

= Thrustm

=!m ceffm

= −dm

dt Ispgom

Konstantin Tsiolkovsky

dVVi

Vf

∫ = −Ispgo dmm

mi

mf

∫ = −Ispgo lnm mi

mf

Vf −Vi( ) ≡ ΔVI = Ispgo lnmi

mf

⎝⎜⎞

⎠⎟≡ Ispgo ln µ

28

28

Page 15: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

15

Volumetric Specific Impulse

ΔVI = Ispgo lnµ = Ispgo lnmfinal +mpropellant

m final

⎝⎜⎞

⎠⎟= Ispgo ln 1+

mpropellant

m final

⎝⎜⎞

⎠⎟

= Ispgo ln 1+Densitypropellant •Volumepropellant

m final

⎝⎜⎞

⎠⎟

≈ goIspρ propellant •Volpropellant

m final

⎝⎜⎞

⎠⎟= go Ispρ propellant( )Volpropellantm final

Specific impulse

Volumetric specific impulse

Ispvol !VIsp = Ispρ propellant29

29

Volumetric Specific Impulse

• For fixed volume and final mass, increasing volumetric specific impulse increases ideal velocity increment

•Saturn V Specific Impulses, vacuum (sea level)–1st Stage, 5 F-1 LOX-Kerosene Engines: 304 s (265 s)–2nd Stage, 5 J-2 LOX-LH2 Engines: 424 s (~360 s)–3rd Stage, 1 J-2 LOX-LH2 Engine: 424 s (~360 s) 30

Density, g/cc Isp, s, SL

VIsp, s (g/cc), SL Isp, s, vac

VIsp, s (g/cc), vac

LOX/Kerosene 1.3 265 345 304 395

LOX/LH2 (Saturn V) 0.28 360 101 424 119LOX/LH2 (Shuttle) 0.28 390 109 455 127

Shuttle Solid Booster 1.35 242 327 262 354

30

Page 16: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

16

Typical Values of Chemical Rocket Specific Impulse • Chamber pressure = 7 MPa (low by

modern standards)• Expansion to exit pressure = 0.1 MPa

Solid-Propellant Rockets

Double-Base Isp, sVIsp, kg-s/m^3 x 10^3

AFU 196 297ATN 235 376JPN 250 405

CompositeJPL 540A 231 383TRX-H609 245 431PBAN (SSV) 260 461

Liquid-Fuel Rockets

Monopropellant Isp, sVIsp, kg-s/m^3 x 10^3

Hydrogen Peroxide 165 238Hydrazine 199 201Nitromethane 255 290

Bipropellant

Fuel Oxidizer Isp, sVIsp, kg-s/m^3 x 10^3

Kerosene Oxygen 301 307Flourine 320 394Red Fuming Nitric Acid 268 369

Hydrogen Oxygen 390 109Flourine 410 189

UDMHNitrogen Tetroxide 286 339

Hybrid-Fuel RocketFuel Oxidizer Isp, sHTPB N2O 250

SSME

31

31

Exhaust Velocity vs. Thrust Acceleration

32

32

Page 17: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

17

Rocket Characteristic Velocity, c*

c*= 1Γ

RoTcM

, where Γ = γ 2γ +1

⎛⎝⎜

⎞⎠⎟

γ +12 γ −1( )

33

Ro = universal gas constant = 8.3×103 kg m2 s2 °K

Tc = chamber temperature, °KM = exhaust gas mean molecular weightγ = ratio of specific heats ~1.2-1.4( )

33

Rocket Characteristic Velocity, c*

c*= pcAt

!m= exhaust velocity if CF = 1

34

34

Page 18: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

18

Rocket Thrust Coefficient, CF

CF typically 0.5 - 2

CF =ThrustpcAt

= λΓ 2γγ −1

⎛⎝⎜

⎞⎠⎟1− pe

pc

⎛⎝⎜

⎞⎠⎟

γ −1( ) γ⎡

⎣⎢⎢

⎦⎥⎥+ pe − pambient

pc

⎛⎝⎜

⎞⎠⎟AeAt

Thrust = λ !m ve + Ae pe − pambient( )λ : reduction ratio (function of nozzle shape)

35

35

Thrust Coefficient, CF, vs. Nozzle Expansion Ratio

• xx

36

36

Page 19: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

19

Mixture Ratio, r

• Stoichiometric mixture: complete chemical reaction of propellants

• Specific impulse maximizedwith lean mixture ratio, r (i.e., below stoichiometric maximum)

r =!moxidizer

!mfuel

; !mfuel =!mtotal

1+ r; "leaner"< r < "richer"

37

37

Effect of Pressure Ratio on Mass Flow

!m = Γ pcAtR oTc

M

In choked flow, mass flow rate is maximized

pepc

≤ 2γ +1

⎛⎝⎜

⎞⎠⎟

γ γ −1

≈ 0.53

Choked flow occurs when

38

38

Page 20: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

20

Combustion Instability

39

Harrje, NASA SP-194, 1972

• Complex mix of species, phases, pressures, temperatures, and flows

• Cavity resonance

39

Combustion Instability

40Harrje, NASA SP-194, 1972

Stable Response to Disturbance

Unstable Response to Disturbance

40

Page 21: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

21

Shock DiamondsWhen pe ≠pa, exhaust flow is over- or underexpanded

Effective exhaust velocity < maximum value

Vikinghttps://www.youtube.com/watch?v=qiMSko4HBe8

41

41

Rocket Nozzles

42

42

Page 22: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

22

Rocket Nozzles• Expansion ratio, Ae/At,

chosen to match exhaust pressure to average ambient pressure– Ariane rockets: Viking V for

sea level, Viking IV for high altitude

• Rocket nozzle types– DeLaval nozzle– Isentropic expansion nozzle– Spike/plug nozzles– Expansion-deflection nozzle

43

43

Rocket Nozzles

44

44

Page 23: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

23

Linear Spike/Plug Nozzles

45

45

Throttling, Start/Stop Cycling

46

CECE Demonstrator PintleInjector

46

Page 24: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

24

Reaction Control Thrusters• Direct control of angular rate• Unloading momentum wheels or control-moment gyros• Reaction control thrusters are typically on-off devices using

– Cold gas– Hypergolic propellants– Catalytic propellant– Ion/plasma rockets

• Thrusters commanded in pairs to cancel velocity change

Apollo Lunar Module RCS Space Shuttle RCS

• Issues– Specific impulse– Propellant mass– Expendability

47

RCS Thruster

47

Divert and Attitude Control Thrusters

48

https://www.youtube.com/watch?v=W8efpDBvTDE

https://www.youtube.com/watch?v=KBMU6l6GsdM

https://www.youtube.com/watch?v=JURQYH669_g

https://www.youtube.com/watch?v=71qgI6bddM8

48

Page 25: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

25

Nuclear Propulsion

49

• Nuclear reaction produces thermal energy to heat inert working fluid– Solid core– Liquid core– Gaseous core

• High propellant temperature leads to high specific impulse

• Working fluid chosen for low molecular weight and storability

c*= 1Γ

RoTcM

49

Solid-Core Nuclear Rocket

50

• Operating temperature limited by – melting point of reactor materials– cracking of core coating– matching coefficients of expansion

• Possible propellants: hydrogen, helium, liquid oxygen, water, ammonia

• Isp = 850 – 1,000 sec• T / W ~ 7:1

50

Page 26: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

26

Project Rover, 1955-1972

Kiwi-B4-A Reactor/Rocket

NERVA Rocket, Isp ~ 900 sec

NERVA-Powered Mars Mission

51

51

52

52

Page 27: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

27

Liquid/Particle-Core Nuclear Rocket

53

• Nuclear fuel mixed with working fluid• In principle, could operate above

melting point of nuclear fuel• Isp ~ 1,300 – 1,500 sec• Conceptual• Massive radioactive waste

53

Open-Cycle Gas Core Nuclear Rocket

54

• Toroidal circulation of working fluid confines nuclear fuel to center

• Fuel does not touch the wall• Conceptual• Massive radioactive waste• Isp ~ 3,000 – 5,000 sec

54

Page 28: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

28

Closed-Cycle Gas Core Nuclear Rocket

55

• “Nuclear light bulb”• Nuclear fuel contained in quartz container• Isp ~ 1,500 – 2,000 sec• Conceptual

55

Nuclear-Pulse (“Explosion”) Rocket - Project Orion

56

“Physics packages” ejected behind the pusher plate

https://en.wikipedia.org/wiki/Project_Orion_(nuclear_propulsion)

56

Page 29: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

29

Next Time:Launch Vehicles

57

57

Supplemental Material

58

58

Page 30: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

30

Propellant Tanks

59

Propellant must be kept near the exit duct without bubbles during thrusting

59

Ion/Plasma Thrusters

60

Engine Propellant Required power Specific impulse ThrustkW s mN

NSTAR Xenon 2.3 3,300 to 1,700 92 maxNEXT[ Xenon 6.9 4,300 236 maxHiPEP Xenon 20–50 6,000–9,000 460–670

Hall effect Xenon 25 3,250 950FEEP Liquid Cesium 6×10−5–0.06 6,000–10,000 0.001–1

VASIMR Argon 200 3,000–12,000 ~5,000DS4G Xenon 250 19,300 2,500 max

60

Page 31: 6. Chemical-Nuclear Propulsion MAE 342 2016Solid-Fuel Rocket Motor Thrust is proportional to burning area Rocket grain patterns affect thrust profile Propellant chamber must sustain

2/12/20

31

Variable Specific Impulse Magnetoplasma Rocket (VASIMR)

61

PropellantRequired

powerSpecific impulse Thrust

kW s mNArgon 200 3,000–12,000 ~5,000

61

DAWN Spacecraft

62

Engine Propellant Required power Specific impulse ThrustkW s mN

NSTAR Xenon 2.3 3,300 to 1,700 92 max

62