4.1 IV characteristics of MOSFET -...

30
4.1 I-V characteristics of MOSFET Current in MOSFET

Transcript of 4.1 IV characteristics of MOSFET -...

  • 4.1 I-V characteristics of MOSFET

    Current in MOSFET

  • Physical design

    2

    Physical parameters

    The length of MOSFET. Itis typically a feature size of

    the technology.

    The width of n-chMOSFET

    The width of the power source wiring. It depends on

    the power consumption.

    The width of p-chMOSFET

    The performance of the logic circuit depends on the physical parameters of MOSFET and interconnects.

  • 4.1.1 Summary of I-V characteristics

  • 4

    Definition of voltage and current in MOSFET

    n-ch MOSFET p-ch MOSFET

    Gate Gate

    Drain Drain

    Source Source

    Body Body

    Current Idsn Current Idsp

    Vgsn Vgsp

    VdgpVdgn

    Vsbn Vsbp

    VdspVdsn

    Note: A p-ch MOSFET operates with negative voltages and current.

  • Measurement circuits of I-V characteristics

    5

    Idsn-Vdsn characteristicIdsn-Vgsn characteristic

    Constant

    ConstantVariable Variable

    VariableVariable

    When Vsbn = 0, the variables are Vgsn, Vdsn, and Idsn.

    Nore: The values of Vgsn, Vdsn, Idsn are negative for p-ch MOSFET.

  • 6

    Regions of I-V characteristicsVdsn

    Idsn

    VgsnVtn0

    Idsn

    Vdsn

    Vgsn

    Vdsn = Vgsn –Vtn0 = Vov

    Saturation region

    Linear region(Triode region)

    Sub-threshold

    Sub-threshold region

    Threshold voltage(閾値電圧)is controlled by the manufacture.

    Boundary of the regions

  • 7

    Approximate expression of I-Vcharacteristics

    VdsnIdsn

    VgsnVtn0

    Idsn

    Vdsn

    Vgsn

    Vdsn = Vgsn –Vtn0 = Vov

    Saturation region

    Linear region

    Sub-threshold region

    Quadratic Linear QuadraticConstant

    Idsn ≒ 0

    Exponential(I ≒ 0)

    Saturation region

    Linear region

  • 8

    Threshold voltage

    MOS interface

    The gate voltage is divided into Vox in SiO2 and s in Si. The channel is generated when the gate voltage exceeds the threshold voltage.

    p-type Si

    Depletion layer

    A depletion layer is generated near MOS interface.

    (Animation)

    SiO2

    Metal (poly-Si)

    Si

    ○ Acceptor ion, h+ Hole, - Free electron

    Charge

    Free electron (Inversion layer)

    Acceptor ion (Depletion layer)

    Gate

  • 4.1.2 Saturation characteristic

    9

  • Pinch-off

    10

    p

    n

    GateDrainSource

    Body

    nVgsn

    n-ch MOSFET

    Vdsn = Vgsn – Vtn0 = Pinch-off voltage

    Vtn0 is applied between the gate and the drain edge of the channel.

    When Vdsn = Vgsn - Vtn0, the channel disappears at the drain edge.

  • 11

    Saturation of the current

    p

    n nEl

    ectro

    n po

    tent

    ial

    Vdsn > Vgsn – Vtn0

    SG

    D

    B

    Vgsn > Vtn0

    Vdsn < Vgsn – Vtn0Vdsn = Vgsn – Vtn0Vdsn > Vgsn – Vtn0

    The resistance of the pinch-off point is higher than the channel.

    The flow rate of the water does not depend on the waterfall.

  • 4.1.3 Mathematical expression of I-V characteristics

    12

  • 13

    Shape and size of MOSFETpoly-Si (G)

    S Dcontact contact

    n-activep-well

    W

    LL: Gate length (ゲート長)W: Gate width (ゲート幅)Leff: Effective channel lengthWeff: Effective channel widthxj: Junction depthtox: Gate oxide thickness (ゲート酸化膜厚)toxf: Field oxide thicknesstm: Poly-Si thickness

    contact

    substratep-well

    n+n+

    xj

    toxf

    Leff

    Shallow Trench Isolation

    GD

    SB

    p+

    D

    STISTI

    toxtm

    poly

    -Si

    p-w

    ell

    subs

    trate

    Weff

    G

    STI

    STI

    p-active

    B

    Note: p+ and n+ mean the highly-doped semiconductors.

  • 14

    Parameters of MOSFETPara-meter

    Description Typical values in 0.5um technology

    Responsibility

    L Gate length 0.5um DesignerW Gate width > 3um DesignerLeff Effective gate length Leff < L ManufacturerWeff Effective gate width Weff < W Manufacturerxj Junction depth 0.2um Manufacturertox Thickness of gate oxide 10nm (100Å) Manufacturertoxf Thickness of field oxide 1um Manufacturertm Thickness of gate 0.5um Manufacturer

    Note: Strictly speaking, the electrical characteristics of MOSFET depends on Leff, Weff, and tOX. Leff and Weff can be approximated by L and W, respectively.

  • 15

    Ids-Vds characteristic of MOSFET

    Linear region Saturation region

    Sub-threshold region (Exponential)

    0tngsndsn VVV 0tngsndsn VVV

    0tngsn VV

    0tngsndsn VVV

    Vdsn

    I dsn

    Linear region(Quadratic)

    Saturation region(Constant)

  • 16

    Ids-Vgs characteristic of MOSFET

    Linear region(Linear)

    Saturationregion(Quadratic)

    Sub-thresholdregion(Exponential)

    Vgsn

    I dsn

    Vtn0

  • 17

    Mathematical expression of linear region

    }21){(

    }21){(

    20

    20

    dsndsntngsnn

    dsndsntngsnOnn

    ndsn

    VVVV

    VVVVCLWI

    Linear region (Gradual Channel Approximation*)

    Linear function of Vgsn Quadratic function of Vdsn

    * See appendix for more information.

    (1)

    𝜇 :𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑚 /𝑉𝑠𝐶 :𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑔𝑎𝑡𝑒 𝑜𝑥𝑖𝑑𝑒 𝐹/𝑚2

    𝑉 :𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑉 𝑎𝑡 𝑉 0𝑉

  • 18

    Boundary of the regions

    0tngsndsn VVV

    0}){( 0 dsntngsnndsn

    dsn VVVdVdI

    0tngsndsn VVV

    Peak of the curve in linear region

    Vdsn

    I dsn

    0tngsn VV

    Linear Saturation

    (1)

    Boundary of linear region and saturation region (Overdrive voltage)

    0tngsndsn VVV

    (2)

  • 19

    Mathematical expression of saturation region

    20

    2000

    )(2

    })(21)(){(

    tngsnn

    tngsntngsntngsnndsn

    VV

    VVVVVVI

    Saturation region (Gradual Channel Approximation)

    Quadratic function of Vgsn

    Constant for Vdsn

    Overdrive voltage

    (3)

    𝑉 𝑉 𝑉 𝑉

  • 4.1.4 Improved model of MOSFET

    20

  • 21

    Channel length modulation0V Vgsn Vdsn

    0tndsngsn VVV

    Gate

    DrainSourcep

    n n

    ΔL

    0tndsngsn VVV Saturation region

    Channel length = Leff – ΔL (ΔL is proportional to Vdsn0.5 )

    The channel length is decreased with increasing Vdsn and the Idsn is gradually increased with increasing Vdsn.

    Channel length modulation parameter

    Eq. (3)Vdsn

    I dsn

    Eq. (3)Eq. (4)

    (4)

    Leff

    𝐼𝛽2 𝑉 𝑉 1 𝜆 𝑉 𝑉

  • 22

    Body effect 1

    MOSFET typically operates under the condition that the body potential VB = GND potential, but the substrate voltage Vbsn isnot equal to zero, when the source potential VS ≠ GND potential.

    )2(212 0 bsnfpArO

    fpFBtn VNqCVV

    Substrate voltageImpurity concentration in channel region

    When Vbsn< 0, The threshold voltage Vth0 is increased. (See next slide.)

    gsn

    dsn

    bsn

    (5)

    VB

    VS

  • 23

    Body effect 2

    Vgsn

    I dsn

    Vbsn < 0

  • 24

    Short channel MOSFET

    1. Short channel effect– A threshold voltages Vtn0 and |Vtp0| are decreased with decreasing a

    gate length L.

    2. Velocity saturation of carrier– In a long channel MOSFET, a drift velocity of a carrier is

    proportional to an electric field. On the other hand, a drift velocity of a carrier is constant in a high electric field of a short channel MOSFET.

    – As the result, Ids-Vgs characteristic in a saturation region is not expressed by a quadratic function, but a linear function.

    Short channel MOSFET (L < 0.3μm)

    A device model incorporated in circuit simulators takes the short channel effects into account.

  • 4.1.5 Summary of MOSFET model

    25

  • 26

    Summary of n-ch MOSFET modelRegion Model equation

    Linear region

    Saturation region

    Onn

    nn

    dsndsntngsnndsn

    CLW

    VVVVI

    }21){( 20

    0tngsndsn VVV

    20

    20

    )(2

    )1()(2

    tngsnn

    dsntngsnn

    dsn

    VV

    VVVI

    0tngsndsn VVV

    Ln and Wn are determined by the circuit designer.CO is controlled by the semiconductor manufacturer.

    OXSiOO t

    C 120

    Capacitance of a gate oxide(F/m2)

    n:Electron mobility (m2/Vs)An electron mobility is a material constant.

  • 27

    Summary of p-ch MOSFET modelRegion Model equation

    Linear region

    Saturation region

    Opp

    pp

    dspdsptpgsppdsp

    CLW

    VVVVI

    }21){( 20

    |||| 0tpgspdsp VVV

    20

    20

    )(2

    )1()(2

    tpgspp

    dsptpgspp

    dsp

    VV

    VVVI

    |||| 0tpgspdsp VVV

    Note: Vgsp, Vdsp, Idsp < 0

    OXSiOO t

    C 120

    Capacitance of a gate oxide(F/m2)

    n:Electron mobility (m2/Vs)An electron mobility is a material constant.

    Ln and Wn are determined by the circuit designer.CO is controlled by the semiconductor manufacturer.

  • p-ch and n-ch MOSFET

    28

    n-chIds

    VgsVtn0

    Ids

    Vds

    Ids: A current flowing from a drain to a source is positive.

    Vdsn =Vgsn –Vtn0

    Vtp0

    p-chVdsp =Vgsp –Vtp0

    n-ch

    p-ch

    The polarity of the voltage and the current of a p-ch MOSFET and a n-ch MOSFET are opposite each other.

  • Reference potential of MOSFET

    29

    p-ch MOSFET

    n-ch MOSFET

    Reference level of p-ch MOSFET

    Reference level of n-ch MOSFET

    Vgsp < 0

    Vgsn > 0

    Vdsp < 0

    Vdsn > 0

  • 30

    Type of MOSFET

    FBBBFBBOX

    BASitn VVC

    qNV

    222

    22 00

    n-chIds

    Vgs

    Vtn0> 0

    Vtp0< 0

    p-ch

    Vtn0< 0

    Vtp0> 0

    The threshold voltage is controlled by VFB (Flat-band voltage) and NA(Acceptor concentration).

    n-chVtn0 > 0 Enhancement modeVtn0 < 0 Depletion mode

    p-chVtp0 > 0 Depletion modeVtp0 < 0 Enhancement mode

    The enhancement mode MOSFET isused both of logic and analog circuits.