Irfb4310 Mosfet

12
 01/31/06 Benefits Improved Gate, Avalanch e and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche  SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free www.irf.com 1 D 2 Pak IRFS4310PbF TO-220AB IRFB4310PbF TO-262 IRFSL4310PbF IRFB4310PbF IRFS4310PbF IRFSL4310PbF HEXFET  Power MOSFET Applications High Efficiency Synchronous Rectification in SMPS Uninterruptible Power Supply High Speed Power Switching Hard Switched and High Frequency Circuits S D G S D G S D G S D G V DSS 100V R DS on  typ. 5.6m   max. 7.0m  I D 130A Absolute Maximum Ratings Symbol Parameter Units I D  @ T C  = 25°C Continuous Drain Current, V GS  @ 10V A I D  @ T C  = 100°C Continuous Drain Current, V GS  @ 10V I DM Pulsed Drain Current  P D  @T C  = 25°C Maximum Power Dissipation W Linear Derating Factor W/°C V GS Gate-to-Source Voltage V dV/dt Peak Diode Recovery  V/ns T J Operating Junction and ° C T STG Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw Avalanche Characteristics E AS (Thermally limited) Single Pulse Avalanche Energy  mJ I AR Avalanche Current  A E AR Repetitive Avalanche Energy  mJ Thermal Resistance Symbol Parameter Typ. Max. Units R θJC Junction-to-Case   ––– 0.50 R θCS Case-to-Sink, Flat Greased Surface , TO-220 0.50 ° C/W R θJA Junction-to-Ambient, TO-220   ––– 62 R θJA Junction-to-Ambient (PCB Mount) , D 2 Pak   ––– 40 300 Max. 130  92  550 980 See Fig. 14, 15, 22a, 22b, 300 14 -55 to + 175  ± 20 2.0 10lb in (1.1N m)

description

mosfet

Transcript of Irfb4310 Mosfet

  • 01/31/06

    Benefits Improved Gate, Avalanche and Dynamic dV/dt

    Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt CapabilityLead-Free

    www.irf.com 1

    D2PakIRFS4310PbF

    TO-220ABIRFB4310PbF

    TO-262IRFSL4310PbF

    IRFB4310PbFIRFS4310PbF

    IRFSL4310PbFHEXFETPower MOSFETApplications

    High Efficiency Synchronous Rectification in SMPSUninterruptible Power SupplyHigh Speed Power SwitchingHard Switched and High Frequency Circuits

    S

    D

    G

    SDGSDG

    SDG

    VDSS 100VRDS(on) typ. 5.6m max. 7.0mID 130A

    Absolute Maximum RatingsSymbol Parameter Units

    ID @ TC = 25C Continuous Drain Current, VGS @ 10V AID @ TC = 100C Continuous Drain Current, VGS @ 10VIDM Pulsed Drain Current PD @TC = 25C Maximum Power Dissipation W

    Linear Derating Factor W/CVGS Gate-to-Source Voltage VdV/dt Peak Diode Recovery V/nsTJ Operating Junction and CTSTG Storage Temperature Range

    Soldering Temperature, for 10 seconds(1.6mm from case)Mounting torque, 6-32 or M3 screw

    Avalanche CharacteristicsEAS (Thermally limited) Single Pulse Avalanche Energy mJIAR Avalanche Current AEAR Repetitive Avalanche Energy mJ

    Thermal ResistanceSymbol Parameter Typ. Max. Units

    RJC Junction-to-Case 0.50RCS Case-to-Sink, Flat Greased Surface , TO-220 0.50 C/WRJA Junction-to-Ambient, TO-220 62RJA Junction-to-Ambient (PCB Mount) , D2Pak 40

    300

    Max.13092550

    980See Fig. 14, 15, 22a, 22b,

    300

    14-55 to + 175

    202.0

    10lbin (1.1Nm)

  • 2 www.irf.com

    Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75ARepetitive rating; pulse width limited by max. junction

    temperature. Limited by TJmax, starting TJ = 25C, L = 0.35mH RG = 25, IAS = 75A, VGS =10V. Part not recommended for use above this value. ISD 75A, di/dt 550A/s, VDD V(BR)DSS, TJ 175C. Pulse width 400s; duty cycle 2%.

    S

    D

    G

    Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.R is measured at TJ approximately 90C.

    Static @ TJ = 25C (unless otherwise specified)Symbol Parameter Min. Typ. Max. Units

    V(BR)DSS Drain-to-Source Breakdown Voltage 100 VV(BR)DSS/TJ Breakdown Voltage Temp. Coefficient 0.064 V/CRDS(on) Static Drain-to-Source On-Resistance 5.6 7.0 mVGS(th) Gate Threshold Voltage 2.0 4.0 VIDSS Drain-to-Source Leakage Current 20 A

    250IGSS Gate-to-Source Forward Leakage 200 nA

    Gate-to-Source Reverse Leakage -200RG Gate Input Resistance 1.4 f = 1MHz, open drainDynamic @ TJ = 25C (unless otherwise specified)

    Symbol Parameter Min. Typ. Max. Unitsgfs Forward Transconductance 160 SQg Total Gate Charge 170 250 nCQgs Gate-to-Source Charge 46 Qgd Gate-to-Drain ("Miller") Charge 62 td(on) Turn-On Delay Time 26 nstr Rise Time 110 td(off) Turn-Off Delay Time 68 tf Fall Time 78 Ciss Input Capacitance 7670 pFCoss Output Capacitance 540 Crss Reverse Transfer Capacitance 280 Coss eff. (ER) Effective Output Capacitance (Energy Related) 650 Coss eff. (TR) Effective Output Capacitance (Time Related) 720.1 Diode Characteristics

    Symbol Parameter Min. Typ. Max. UnitsIS Continuous Source Current 130 A

    (Body Diode)ISM Pulsed Source Current 550

    (Body Diode)VSD Diode Forward Voltage 1.3 Vtrr Reverse Recovery Time 45 68 ns TJ = 25C VR = 85V,

    55 83 TJ = 125C IF = 75AQrr Reverse Recovery Charge 82 120 nC TJ = 25C di/dt = 100A/s

    120 180 TJ = 125CIRRM Reverse Recovery Current 3.3 A TJ = 25Cton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

    ConditionsVDS = 50V, ID = 75AID = 75A

    VGS = 20VVGS = -20V

    MOSFET symbolshowing the

    VDS = 80V

    Conditions

    VGS = 10V VGS = 0VVDS = 50V = 1.0MHzVGS = 0V, VDS = 0V to 80V , See Fig.11VGS = 0V, VDS = 0V to 80V , See Fig. 5

    TJ = 25C, IS = 75A, VGS = 0V

    integral reversep-n junction diode.

    ConditionsVGS = 0V, ID = 250AReference to 25C, ID = 1mAVGS = 10V, ID = 75A VDS = VGS, ID = 250AVDS = 100V, VGS = 0VVDS = 100V, VGS = 0V, TJ = 125C

    ID = 75ARG = 2.6

    VGS = 10V VDD = 65V

  • www.irf.com 3

    Fig 1. Typical Output Characteristics

    Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature

    Fig 2. Typical Output Characteristics

    Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage

    3.0 4.0 5.0 6.0 7.0 8.0

    VGS, Gate-to-Source Voltage (V)

    1

    10

    100

    1000

    I D,

    Dra

    in-to

    -So

    urc

    e

    Curr

    en

    t ()

    VDS = 50V 60s PULSE WIDTH

    TJ = 25C

    TJ = 175C

    -60 -40 -20 0 20 40 60 80 100 120 140 160 180

    TJ , Junction Temperature (C)

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    RD

    S(o

    n) ,

    Dra

    in-to

    -So

    urc

    e

    On

    Re

    sist

    an

    ce

    (No

    rma

    lize

    d)

    ID = 75AVGS = 10V

    1 10 100

    VDS, Drain-to-Source Voltage (V)

    0

    2000

    4000

    6000

    8000

    10000

    12000

    C,

    Capa

    cita

    nce

    (pF)

    CossCrss

    Ciss

    VGS = 0V, f = 1 MHZCiss = Cgs + Cgd, Cds SHORTEDCrss = Cgd Coss = Cds + Cgd

    0 40 80 120 160 200 240 280 QG Total Gate Charge (nC)

    0

    4

    8

    12

    16

    20

    V GS,

    Ga

    te-to

    -So

    urc

    e

    Volta

    ge

    (V) VDS= 80V

    VDS= 50VVDS= 20V

    ID= 75A

    0.1 1 10 100

    VDS, Drain-to-Source Voltage (V)

    1

    10

    100

    1000I D

    ,

    Dra

    in-to

    -So

    urc

    e

    Curr

    en

    t (A)

    60s PULSE WIDTHTj = 25C4.5V

    VGSTOP 15V

    10V8.0V6.0V5.5V5.0V4.8V

    BOTTOM 4.5V

    0.1 1 10 100

    VDS, Drain-to-Source Voltage (V)

    10

    100

    1000

    I D,

    Dra

    in-to

    -So

    urc

    e

    Curr

    en

    t (A)

    60s PULSE WIDTHTj = 175C

    4.5V

    VGSTOP 15V

    10V8.0V6.0V5.5V5.0V4.8V

    BOTTOM 4.5V

  • 4 www.irf.com

    Fig 8. Maximum Safe Operating Area

    Fig 10. Drain-to-Source Breakdown Voltage

    Fig 7. Typical Source-Drain DiodeForward Voltage

    Fig 11. Typical COSS Stored Energy

    Fig 9. Maximum Drain Current vs.Case Temperature

    Fig 12. Maximum Avalanche Energy Vs. DrainCurrent

    0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    VSD, Source-to-Drain Voltage (V)

    0.1

    1.0

    10.0

    100.0

    1000.0

    I SD

    ,

    Re

    vers

    e

    Dra

    in

    Curr

    en

    t (A)

    TJ = 25C

    TJ = 175C

    VGS = 0V

    -60 -40 -20 0 20 40 60 80 100 120 140 160 180

    TJ , Junction Temperature (C)

    100

    105

    110

    115

    120

    V (BR

    )DSS

    ,

    Dra

    in-to

    -So

    urc

    e

    Bre

    akd

    ow

    n

    Volta

    ge

    0 20 40 60 80 100 120

    VDS, Drain-to-Source Voltage (V)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Ene

    rgy

    (J)

    25 50 75 100 125 150 175

    Starting TJ, Junction Temperature (C)

    0

    400

    800

    1200

    1600

    2000

    2400

    E AS,

    Sin

    gle

    Puls

    e

    Ava

    lan

    che

    Ene

    rgy

    (mJ)

    I DTOP

    12A 17ABOTTOM

    75A

    1 10 100 1000VDS , Drain-toSource Voltage (V)

    0.1

    1

    10

    100

    1000

    10000

    I D,

    Dra

    in-to

    -So

    urc

    e

    Curr

    en

    t (A)

    Tc = 25CTj = 175CSingle Pulse

    1msec

    10msec

    OPERATION IN THIS AREA LIMITED BY R DS(on)

    100sec

    DC

    25 50 75 100 125 150 175 TC , Case Temperature (C)

    0

    20

    40

    60

    80

    100

    120

    140

    I D,

    Dra

    in

    Curr

    en

    t (A)

    Limited By Package

  • www.irf.com 5

    1E-006 1E-005 0.0001 0.001 0.01 0.1

    t1 , Rectangular Pulse Duration (sec)

    0.0001

    0.001

    0.01

    0.1

    1

    The

    rma

    l Re

    spo

    nse

    ( Z th

    JC

    )

    0.200.10

    D = 0.50

    0.020.01

    0.05

    SINGLE PULSE( THERMAL RESPONSE )

    Notes:1. Duty Factor D = t1/t22. Peak Tj = P dm x Zthjc + Tc

    Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

    Fig 14. Typical Avalanche Current vs.Pulsewidth

    Fig 15. Maximum Avalanche Energy vs. Temperature

    Ri (C/W) i (sec)0.1962 0.001170.2542 0.016569

    JJ

    11 2

    2

    R1R1 R2

    R2

    C

    Ci= i/RiCi= i/Ri

    Notes on Repetitive Avalanche Curves , Figures 14, 15:(For further info, see AN-1005 at www.irf.com)1. Avalanche failures assumption:

    Purely a thermal phenomenon and failure occurs at a temperature far inexcess of Tjmax. This is validated for every part type.

    2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max) is exceeded.3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.4. PD (ave) = Average power dissipation per single avalanche pulse.5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase

    during avalanche).6. Iav = Allowable avalanche current.7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as

    25C in Figure 14, 15).tav = Average time in avalanche.D = Duty cycle in avalanche = tav fZthJC(D, tav) = Transient thermal resistance, see Figures 13)

    PD (ave) = 1/2 ( 1.3BVIav) =T/ ZthJCIav = 2T/ [1.3BVZth]EAS (AR) = PD (ave)tav

    25 50 75 100 125 150 175

    Starting TJ , Junction Temperature (C)

    0

    200

    400

    600

    800

    1000

    E AR

    ,

    Ava

    lan

    che

    Ene

    rgy

    (mJ)

    TOP Single Pulse BOTTOM 1% Duty CycleID = 75A

    1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

    tav (sec)

    0.1

    1

    10

    100

    Ava

    lan

    che

    Curr

    en

    t (A)

    0.05

    Duty Cycle = Single Pulse

    0.10

    Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25C and Tstart = 150C.

    0.01

    Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150C and Tstart =25C (Single Pulse)

  • 6 www.irf.com

    Fig 16. Threshold Voltage Vs. Temperature

    -75 -50 -25 0 25 50 75 100 125 150 175

    TJ , Temperature ( C )

    1.0

    2.0

    3.0

    4.0

    5.0V G

    S(th

    ) Ga

    te

    thre

    sho

    ld

    Volta

    ge

    (V) ID = 1.0A

    ID = 1.0mAID = 250A

    100 200 300 400 500 600 700 800 900 1000

    dif / dt - (A / s)

    0

    4

    8

    12

    16

    20

    I RR

    M

    -

    (A)

    IF = 30AVR = 85VTJ = 125C TJ = 25C

    100 200 300 400 500 600 700 800 900 1000

    dif / dt - (A / s)

    0

    100

    200

    300

    400

    500

    Q RR

    -

    (nC)

    IF = 30AVR = 85VTJ = 125C TJ = 25C

    100 200 300 400 500 600 700 800 900 1000

    dif / dt - (A / s)

    0

    100

    200

    300

    400

    500

    Q RR

    -

    (nC)

    IF = 45AVR = 85VTJ = 125C TJ = 25C

    100 200 300 400 500 600 700 800 900 1000

    dif / dt - (A / s)

    0

    4

    8

    12

    16

    20

    I RR

    M

    -

    (A)

    IF = 45AVR = 85VTJ = 125C TJ = 25C

  • www.irf.com 7

    Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms

    VGS

    VDS90%

    10%

    td(on) td(off)tr tf

    VGSPulse Width < 1sDuty Factor < 0.1%

    VDD

    VDSLD

    D.U.T

    +

    -

    Fig 22b. Unclamped Inductive WaveformsFig 22a. Unclamped Inductive Test Circuit

    tp

    V(BR)DSS

    IAS

    RG

    IAS

    0.01tp

    D.U.T

    LVDS

    +-

    VDD

    DRIVER

    A

    15V

    20VVGS

    Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform

    Vds

    Vgs

    Id

    Vgs(th)

    Qgs1 Qgs2 Qgd Qgodr

    Fig 21. !for N-ChannelHEXFETPower MOSFETs

    1K

    VCCDUT

    0

    L

    P.W. Period

    di/dt

    Diode Recoverydv/dt

    Ripple 5%

    Body Diode Forward DropRe-AppliedVoltage

    ReverseRecoveryCurrent

    Body Diode ForwardCurrent

    VGS=10V

    VDD

    ISD

    Driver Gate Drive

    D.U.T. ISD Waveform

    D.U.T. VDS Waveform

    Inductor Curent

    D = P.W.Period

    "

    "

    +

    -

    +

    +

    +-

    -

    -

    !"!!

    #$$ !"!!%"

  • 8 www.irf.comTO-220AB packages are not recommended for Surface Mount Application.

    !"!#

    $%$&'

    ()

    (**+,

    -(

    ()

    .

    )/,

    *0

  • www.irf.com 9

    TO-262 Part Marking Information

    TO-262 Package OutlineDimensions are shown in millimeters (inches)

    !

    "

    ##

  • 10 www.irf.com

    !

  • www.irf.com 11

    Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

    Qualification Standards can be found on IRs Web site.

    IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105TAC Fax: (310) 252-7903

    Visit us at www.irf.com for sales contact information. 01/06

    !

    3

    4

    4

    TRR

    FEED DIRECTION

    1.85 (.073)1.65 (.065)

    1.60 (.063)1.50 (.059)

    4.10 (.161)3.90 (.153)

    TRL

    FEED DIRECTION

    10.90 (.429)10.70 (.421)

    16.10 (.634)15.90 (.626)

    1.75 (.069)1.25 (.049)

    11.60 (.457)11.40 (.449)

    15.42 (.609)15.22 (.601)

    4.72 (.136)4.52 (.178)

    24.30 (.957)23.90 (.941)

    0.368 (.0145)0.342 (.0135)

    1.60 (.063)1.50 (.059)

    13.50 (.532)12.80 (.504)

    330.00(14.173) MAX.

    27.40 (1.079)23.90 (.941)

    60.00 (2.362) MIN.

    30.40 (1.197) MAX.

    26.40 (1.039)24.40 (.961)

    NOTES :1. COMFORMS TO EIA-418.2. CONTROLLING DIMENSION: MILLIMETER.3. DIMENSION MEASURED @ HUB.4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.

  • Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/