3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm...

19
3D X-Ray Diffraction Microscopy Larry Margulies

Transcript of 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm...

Page 1: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

3D X-Ray Diffraction Microscopy

Larry Margulies

Page 2: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

200 µm

Metal Structures

HeatDefor-mation

200 µm5 µm

Challenges:- Multiple lengthscales- Heterogeneities- Predicting the dynamics

4D (space + time)

Traditional Microscopy is 2D

Page 3: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

3DXRD Vision

• 3D characterization of individual grains within bulk polycrystals– Volume– Crystallographic orientation (intragranular ODF)– Grain boundary morphology (3D mapping)– Elastic strain tensor– Structural refinement

• Statistics over 100-1000 structural units• In-situ annealing and deformation

studies(4D)

Page 4: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

3DXRD set-up

Area detector

Detector IL = 5-10 mmPosition and Orientation

Detector IIL = 40 cmOrientation and Strain

Acq. time: 1-10 sec 10-100 msec

Page 5: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

Two step process

Up to 1000’s grains:

CMS position volume: 1-10% average orientation: 0.2 deg average elastic strain: =10-4

1. Indexing:

GRAINSPOTTERIMAGED11

2. Reconstruction

GRAINSWEEPER

Page 6: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

Growth curvesFarfield detector only: Growth curves:

0 20 40 60 800

10

20

30

40

50

Nucleation time [min]

Fre

que

ncy

[%]

All orientations

0 20 40 60 800

10

20

30

40

50

Nucleation time [min]

Fre

que

ncy

[%]

Cube orientation

0 20 40 60 800

10

20

30

40

50

Nucleation time [min]

Fre

que

ncy

[%]

Rolling orientations

0 20 40 60 800

10

20

30

40

50

Nucleation time [min]

Fre

que

ncy

[%]

Other orientations

0 2 4 6

x 10-3

0

5

10

15

20

25

Growth rate [m/s]

Fre

que

ncy

[%]

All orientations

0 2 4 6

x 10-3

0

5

10

15

20

25

Growth rate [m/s]

Fre

que

ncy

[%]

Cube orientation

0 2 4 6

x 10-3

0

5

10

15

20

25

Growth rate [m/s]

Fre

que

ncy

[%]

Rolling orientations

0 2 4 6

x 10-3

0

5

10

15

20

25

Growth rate [m/s]

Fre

que

ncy

[%]

Other orientations

244 grains

StatisticsNew Avrami-type model

0 1 2 log (time)

log(

-ln(

1-V

V))

Page 7: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

a

b600 650 700 750 800 850 900

0.0

0.2

0.4

0.6

0.8

1.0 Measurement

CNT

(dN

/dt)

/(d

N/d

t) ma

x

T (oC)

0

20

40

60

80

100

Nto

tal

Pearlite – Ferrite – Austenite

0

10

20

30

R (

m)

600 700 800 900

T (oC)

600 700 8000

10

20

Growth curves

dN/dt

Phase Transformations in Carbon Steel

N

Activation energy off by 100!

Page 8: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

100 110

111

Grain rotation for 95 grains in Al,100 m grains, 5 mm thick

Tensile strain: 6 %

Grain rotation

Page 9: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

Third route in Crystallography

Single Crystal Powder

X-ray data:

Multicrystal

Page 10: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

Third route in Crystallography

Validation: Cu(C2O2H3)2.H2O.

70 grains of size < 1 micron Cell ~1400 Å3 (C2/c)

Result: Single crystal quality refinement!

Applications to:• Pharmacy• Photochemistry• Protein Crystallography

Page 11: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

Grain Mapping

Area detector

Detector IL = 5-10 mmPosition and Orientation

Detector IIL = 40 cmOrientation and Strain

Page 12: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

Video of growthof an internal grain

Recrystallization of 42% deformed pure Al during annealing at ~200 C.

Page 13: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

Grain growth

Sample: Al(0.1% Mg)

Initial 800 min anneal at 450 C

491 grains 49 grains

Page 14: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

Present detector

• Resolution: ~3µm

• Efficiency: ~1%

• Long tails in PSF

Sample

YAG:Ce25µm

YAG150µm

CCD

Page 15: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

Structured Scintillator

Principle: Electrochemical etch:@ KTH, Sweden

Page 16: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

LuAG 25µm SS 4µm pitch

Tomographic images of Al with W particles taken with a conventional LuAG 25µm thick screen and a structured scintillator with a 4µm pitch

Page 17: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

• 3D high resolution detector– mapping of deformed microstructures– “box beam” mapping

• Faster throughput for in-situ mapping

• 100 nm resolution 2D(3D) detector– R&D is needed for a solid state device

Future of 3DXRDfaster and smaller

Page 18: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

Acknowledgments

Risø: H.F. Poulsen, C. Gundlach, D. Juul Jensen, E. Knudsen, E.M. Lauridsen,W. Pantleon, S. Schmidt, H.O. Sørensen, G.

Winther

ESRF, ID11: A. Goetz, Å. Kvick, G. Vaughan, J. Wright

Page 19: 3D X-Ray Diffraction Microscopy Larry Margulies. 200 µm Metal Structures Heat Defor- mation 200 µm 5 µm Challenges: - Multiple lengthscales - Heterogeneities.

3DXRD Instrumentation3DXRD InstrumentationOptics (brown):

WB: White beam

LC: Bent Laue crystal

WBS: White beam stop

ML: Bent multi layer

MB: 2 dimensionally micro focussed monochromatic beam

BS: Monochromatic beam stop

Sample environment (yellow):

I: Cryostat

II: Furnace

III: 24kN Stress rig

Detectors / slits (purple):

1: Large area detector

2: Conical slit system

3: High resolution area detector

4: Optional detector system

5: Small area detector