12. CA2

26
Lecture 12: 11. Balanced 3-Phase Circuits Please Turn OFF Mobile Phones!

Transcript of 12. CA2

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 1/26

Lecture 12:

11. Balanced 3-Phase Circuits

Please Turn OFF Mobile Phones!

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 2/26

Analysis of Y-Δ circuit

The Δ connected load is converted into Y

For a balanced load, three Δ connectedimpedances are equal

Single-phase equivalent circuit can bemodelled with

c ba

c b1

ZZZ

ZZZ

3

ZZ Δ

Y

3

ZZ Δ

Y

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 3/26

Single phase equivalent circuit

Zga

Va’n

a A

ZY

Zla

IaA

n N

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 4/26

Δ load currents

The line currents are

calculated using the

equivalent circuit

Load currents in Δ arecalculated using the Δ

circuit

Phase voltage is the

same as line voltage

A

B

C

Z A Z C

ZB

IaA

IbB

IcC

I AB

IBC

ICA

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 5/26

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 6/26

Line and phase currents

Line current is times the

phase current

For a positive phase

sequence, phase currents

lead line currents by 300

For a negative phase

sequence, phase currents

lag line currents by 300

IAB

IBC

ICA

IaA

IcC

IbB

3

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 7/26

Exercise

Y connected source feeds a Δ connected load

Distribution line impedance 0.3 + j0.9 Ω/φ

Load impedance is 118.5 + j85.8 Ω/φ

a-phase internal voltage of generator is used as reference

1. Construct single-phase equivalent circuit

2. Calculate line currents IaA, IbB and IcC

3. Calculate phase voltages at the load terminals

4. Calculate the phase current of the load5. Calculate the line voltages at the source terminals

00120

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 8/26

Exercise (cont’d)

Zga

Va’n

a A

ZY

Zla

IaA

n N

0.2+j0.50.3+j0.9

(118.5+j85.8)/3

39.5+j28.600120

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 9/26

Exercise (cont’d)

IaA

IbB

IcC

VAN

VAB

VBC VCA

087.1564.2

00

Ylaga

0

87.364.230 j40

0120

ZZZ

0120

0

13.834.2

00 96.004.117)87.364.2)(6.28 j5.39( 0

AN

0 04.2972.202V303 0

96.9072.202 004.14972.202

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 10/26

Exercise (continued..)

IAB

IBC

ICA

Van

Vab

Vbc

Vca0

68.14994.205

aA I

0303

1

087.639.1

087.12639.1

0

13.11339.1

0

an

0 68.2994.205V303

032.9094.205

00 32.090.118)87.364.2)(5.29 j8.39(

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 11/26

Power calculations in balanced

three-phase circuits

Average power delivered to a

Y-connected load

P A = |VAN||IaA|Cos(θvA- θiA) PB = |VBN||IbB|Cos(θvB- θiB)

PC = |VCN||IcC|Cos(θvC- θiC)

Reference Chapter 10

V AN

VBN

VCN

A

NB

C

Z A

ZB

ZC

IaA

IbB

IcC

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 12/26

Power calculations in balanced

three-phase circuits

In a balanced 3-phase system Vφ=|VAN| =|VBN| =|VCN|

Iφ=|IaA| =|IbB| =|IcC|

θφ= θvA- θiA = θvB- θiB = θvC- θiC

Power delivered to each phase of the load P A= PB= PC= Pφ=Vφ Iφcos θ

Total Average power delivered PT = 3Pφ=3Vφ Iφcos θφ

Total Power delivered in terms of line voltage andcurrent

φLLφLL

T θcosIV3θcosI

3

V3P

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 13/26

Power calculations in balanced

three-phase circuits

Reactive Power in a Balanced Y load

Reactive Power in each phase

Total Reactive Power

Complex Power in a Balanced Y load

Sφ= V ANIaA* = VBNIbB

* = VCNIcC* = VφIφ

*

Sφ= Pφ+ jQφ = VφIφ*

ST

φφφφ θsinIVQ

φLLφT θsinIV3Q3Q

φLLφ θIV3S3

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 14/26

Power calculations in balanced

three-phase circuits

Average power delivered to a Δ-

connected load

P A = |VAB||IAB|Cos(θvAB- θiAB) PB = |VBC||IBC|Cos(θvBC- θiBC)

PC = |VCA||ICA|Cos(θvCA- θiCA)

Reference Chapter 10

A

B

C

Z A Z

C

ZB

V AB

VBC

VCA

I AB

IBC

ICA

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 15/26

Power calculations in balanced

three-phase circuits

In a balanced 3-phase system Vφ=|VAB| =|VBC| =|VCA|

Iφ=|IAB| =|IBC| =|ICA|

θφ= θvAB- θiAB = θvBC- θiBC = θvCA- θiCA

Power delivered to each phase of the load P A= PB= PC= Pφ=Vφ Iφcos θφ

Total Average power delivered PT = 3Pφ=3Vφ Iφcos θφ

Total Power delivered in terms of line voltage andcurrent

φLLφL

LT θcosIV3θcos3

IV3P

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 16/26

Power calculations in balanced

three-phase circuits

Reactive Power in a Balanced Δ load

Reactive Power in each phase

Total Reactive Power

Complex Power in a Balanced Δ load

Sφ= V ABI AB* = VBCIBC

* = VCAICA* = VφIφ

*

Sφ= Pφ+ jQφ = VφIφ*

ST

φφφφ θsinIVQ

φLLφT θsinIV3Q3Q

φLLφ θIV3S3

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 17/26

Instantaneous Power in 3-phase

circuits

p A = v ANiaA=Vm Im cos(ωt)cos(ωt - θφ)

pB = vBNibB =Vm Im cos(ωt -1200)cos(ωt – θφ -1200)

pC = vCNicC =VmIm cos(ωt +1200

)cos(ωt – θφ +1200

)

pT = p A + pB + pC = 1.5Vm Im cosθφ

Where θφis phase angle θvA- θiA

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 18/26

Instantaneous Power in 3-phase

circuits

In 3-φ balanced system Power is invariant

with time

Torque developed by 3-φ motor is constant

Less vibration in machines powered by 3-φ

motors

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 19/26

Measuring Average Power in 3-φ

circuits using two Watt-meters

V AN

VBN

VCN

A

NB

C

Z A

ZB

ZC

IaA

IbB

IcC

a

b

c

cc

cc

pc

pc

VAN

VBN

VCN

VAB

VCA

VBC

IaAIbB

IcC

300

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 20/26

Measuring Average Power in 3-φ

circuits using two Watt-meters

W1 = |VAB||IaA|Cosθ1 = VLILCosθ1

W2 = |VCB||IcC|Cosθ2 = VLILCosθ2

θ1 = θ + 300 = θφ + 300

θ2 = θ - 300 = θφ – 300

W1 = VLILCos(θφ + 300)

W2 = VLILCos(θφ - 300)

PT = W1 + W2 = 2VLILCosθφCos300 = φLLT θcosIV3P

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 21/26

Exercise (cont’d)

Wattmeter readings ?

Phase voltage at load

is 120 V

1. Zφ= 8 + j62. Zφ= 8 - j6

3. Zφ= 5 + j5√3

4. Zφ= 10-750

Verify total power for thefour cases

V AN

VBN

VCN

A

NB

C

Z A

ZB

ZC

IaA

IbB

IcC

a

b

c

cc

cc

pc

pc

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 22/26

Exercise (cont’d)

Zφ= 8 + j6 = 1036.870

VL= 120√3 V IL= 120/10=12 A

W1= (120√3)(12)cos(36.870+ 300)=979.75 W

W2= (120√3)(12)cos(36.870- 300)=2476.25 W

Zφ= 8 - j6 = 10-36.870

VL= 120√3 V IL= 120/10=12 A

W1= (120√3)(12)cos(-36.870+ 300)=2476.25 W

W2= (120√3)(12)cos(-36.87

0

- 30

0

)=979.25 W

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 23/26

Exercise (cont’d)

Zφ= 5(1 + j√3) = 10600

VL= 120√3 V IL= 120/10=12 A

W1= (120√3)(12)cos(600+ 300)=0 W

W2= (120√3)(12)cos(600- 300)=2160 W

Zφ= 10-750

VL= 120√3 V IL= 120/10=12 A

W1= (120√3)(12)cos(-750+ 300)=1763.63 W

W2= (120√3)(12)cos(-75

0

- 30

0

)=-645.53 W

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 24/26

Exercise (cont’d)

PT= 3(12)2(8) = 3456 W

W1+ W2= 979.75 + 2476.25 = 3456 W

PT= 3(12)2(8) = 3456 W

W1

+ W2

= 2476.25 + 979.75 = 3456 W

PT= 3(12)2(5) = 2160 W

W1+ W2= 0 + 2160 = 2160 W

PT= 3(12)2(2.5882) = 1118.10 W

W1+ W2= 1763.63 - 645.53 = 1118.10 W

If p.f. > 0.5 both Watt meters read positive If p.f. = 0.5 one Watt meter reads zero

If p.f. < 0.5 one Watt meter reads negative

Reversing the phase sequence will interchange the

readings on the two Watt meters

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 25/26

Summary

3-Phase Balanced Systems

3-Phase voltages

Y/ 3-Phase Balanced systems

3-phase system analysis Single-phase equivalent circuit

Y load Line voltages √3 times phase voltage

Line current same as phase current

Line voltages leading phase voltages by 300 in abcsequence

8/13/2019 12. CA2

http://slidepdf.com/reader/full/12-ca2 26/26

Summary

load Line current √3 times phase current Line voltage same as phase voltage

Line currents lag phase currents by 300 in abc sequence

Average, Reactive and Complex power delivered in3-Phase systems

Instantaneous power invariant to time

Measuring Total Power using 2 Watt-meters