10 Parachute Flight Dynamics and Trajectory Simulation Doher

71
Parachute Flight Dynamics and Trajectory Simulation Karl-Friedrich Doherr 1 Am Sundern 11 D-38108 Braunschweig, Germany E-mail: [email protected] based on lectures presented at the "Heinrich Parachute Systems Short Course", University of St. Louis, 2002 __________ 1 Dr.-Ing., M.Sc., Associate Fellow AIAA. Copyright © 2005 by Karl-Friedrich Doherr.

Transcript of 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Page 1: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Parachute Flight Dynamics and Trajectory Simulation

Karl-Friedrich Doherr1

Am Sundern 11D-38108 Braunschweig, GermanyE-mail: [email protected]

based on lectures presented at the "Heinrich Parachute Systems ShortCourse", University of St. Louis, 2002

__________

1 Dr.-Ing., M.Sc., Associate Fellow AIAA. Copyright © 2005 by Karl-Friedrich Doherr.

Page 2: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

- Knacke, T.W., "Parachute Recovery Systems Design Manual", NWC TP6575, Para Publishing, Santa Barbara, CA, 1992.Remark: Figs. 5-46 and 5-50 have been used in the following lecture.

- Cockrell, D.J., "The Aerodynamics of Parachutes", AGARDograph No.295, 1987.

- Wolf, D.F., "The Dynamic Stability of a Non-Rigid-Parachute and PayloadSystem", J. Aircraft, Vol. 8, No. 8, August 1971, pp 603-609.

- Doherr, K.-F. ; Schilling, H., "Nine-Degree-of-Freedom Simulation ofRotating Parachute Systems", J. Aircraft, Vol. 29, No. 5, Sept.-Oct. 1992.

- Doherr, K.-F., "Extended Parachute Opening Shock Estimation Method",AIAA 2003-2173, 17th Aerodynamic Decelerator Systems TechnologyConference and Seminar, 19-22 May 2003, Monterey, California.

Some Literature

Page 3: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Questions:

- TrajectoryWhere is the parachute-payload system at what time?

- Force historyWhat are the peak forces?

- Dynamic StabilityDoes the system oscillate?

Page 4: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

My Strategy:

Offering you a Bundle of Illusions by:

- Setting up Mathematical Models

- Presenting some Closed-form Solutions

- Applying Computer Codes

Page 5: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Why Illusions?

1. Parachutes are Stochastic Systemswith large scatter of their performance characteristics

2. The atmosphere is of stochastic character(gusts, wind-shear, up- and down-winds in the orderof the parachute velocity of descent)

3. There are almost never enough experimentsto validate the mathematical models(due to lack of time, money, test equipment, staff etc.)

4. Parachutes are literaly too cheapto attract big research money and public interest

Page 6: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

So, what will you get today?

Some tools to study the effect ofselected parachute parameters

Page 7: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Example:

Cylindrical Payload (L) released from climbing aircraft at

hA = 100 m, VA = 150 m/sA = + 10°, A = + 5°, A = +15°

shall be decelerated by a parachuteand land at steady state velocity Ve = 27.3 m/s

Find / calculate:1. suitable parachute2. time it takes to achieve steady state velocity3. snatch force4. opening shock (max inflation force)5. angle of attack oscillations, horizontal and vertical6. trajectory

Study Case

Page 8: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Study Case : Example

Page 9: 10 Parachute Flight Dynamics and Trajectory Simulation Doher
Page 10: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

- Rigid body mathematical models getalready very complex with 9 DoF =

6 DoF of payload +3 DoF of parachute rotatingrelative to payload

- We will consider simplified systemswith 2 DoF and 3 DoF

- Most important design parameter:Drag area CDS:

Parachute - Payload System

Page 11: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Trajectory analysis Point Mass PlanarRigidBody

6DOFRigidBody

9DOF2 RigidBodies

Degrees of freedom DOF 2 3 6 9Major Variables x, z x, z, x, y, z,

, ,x, y, z,, , ,

P, P, P

DeceleratorInput

MassInertiasCDS (drag area)CN (normal)Cl (roll)XCP (center of pressure)

ij (apparent masses)Coupling Conditions

Page 12: 10 Parachute Flight Dynamics and Trajectory Simulation Doher
Page 13: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

I Payload free flightCDS = const

II Parachute deployment tofully-stretched rigging;snatch force FS

III Inflation:CDS = f(t)opening shock Fx

IV Deceleration andStabilizationCDS -> constoscillation?

V System DescentCDS = const

System Flight Stages

Page 14: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Stage Analytical Solutions Computer Programs

IFree Flight

Point mass 2 DoFCDS = const- horizontal / vertical flight

2DOFT05

IIDeployment

Two point masses, each 1 DoF--> Snatch force Fs

SNATCH

IIIInflation

CDS = f(t)Pflanz' approximation--> Opening shock FX = F(t)max

Fx052DOFT05

IVDeceler andStabilization

CDS = const= (t); 3 DoF

OSCILALHOSCILALV

V Descent CDS = const 2DOFT05

Plan of Attack

Page 15: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

I Payload Free Flight

V System Steady Descent

with constant drag area CDS

Page 16: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Equations of motion in earth fixed coordinates (2DOFT05)

Non-linear differential equations:

Initial conditions:

Page 17: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Non-linear algebraic relations:

flight path angle

drag

drag area

density

atmosphere wind, thermal upwind, gusts

Page 18: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Simplified cases:

CDS = const., = const, VW = 0(no parachute; or parachute undeployed; or parachute fully open;small changes in altitude; no wind):

horizontal flight: vertical flight:

Page 19: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Vertical flight:

System decelerates (or accelerates) until drag becomes equal weight:

V ---> Ve

equilibrium for t

steady state velocity =velocity of descent

System parameters (m, , CD, S, g) can be replaced byone parameter Ve only!

Page 20: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

horizontal flight vertical flight

where: V V /Ve ; t t g /Ve ; x xg g /V 2e ; z zg g /V 2

e

a ( VA 1) / ( VA 1)

Page 21: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

0 0.2 0.4 0.6 0.8 1∆t * g / Ve

0

0.2

0.4

0.6

0.8

1

V/V

A

VA / Ve = 1.0VA / Ve = 1.05.05.0

10.010.020.020.0

Velocity decay in horizontal flight

range of practical interestrange of practical interestflight path angle < 15 degflight path angle < 15 deg

FIG2_2 | 27.4.1997

Page 22: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

0 0.2 0.4 0.6 0.8 1∆t * g / Ve

0

0.5

1

1.5

2

∆ xg

*g

/Ve2

VA / Ve = 1.0VA / Ve = 1.05.05.0

10.010.0

Distance travelled in horizontal flight

range of practical interestrange of practical interest

FIG2_3 | 26.4.1997

Page 23: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

0 0.2 0.4 0.6 0.8 1∆t * g / Ve

0

1

2

3

4

5

V/V

e

VA / Ve = 10.0VA / Ve = 10.05.05.02.02.01.01.00.50.5

Velocity decay in vertical flight

FIG2_4 | 26.4.1997

Page 24: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

0 0.5 1 1.5 2∆t * g / Ve

-5

-4

-3

-2

-1

0

∆h*

g/V

e2

VA / Ve = 0.5VA / Ve = 0.51.01.02.02.05.05.0

10.010.020.020.0

Altitude change in vertical flight

FIG2_6 | 26.4.1997

Page 25: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Task #1: Find suitable parachute

- select parachute: non-oscillating parachute, i.e. Guide Surface- determine parachute diameter:

Drag = (CDS)e /2 Ve2 = m g drag = weight in steady descent

(CDS)e = 40*9.81 / (0.5*1.224*27.32) = 0.860 m2 required drag area

CD = CDc = 0.65 drag coefficient, from parachute handbook

Sc = 0.86 / 0.65 = 1.324 m2 required parachute constructed area

Dc = (4 * 1.324 / ) 0.5 = 1.3 m required parachute constructed diameter

ls = 1.2 * Dc = 1.65 m selected length of suspension lines

Study Case: Parachute Selection

Page 26: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Task #2: Determine time until steady state

Rough estimate:

It takes about 1 step of non-dimensional time to delerate the system (withnon-reefed, fully open parachute).

t * g/Ve 1

t Ve / g = 27.3 / 9.81 2.8 s

Comparison with 2-DoF simulation(including free-flight phase without parachute):

t 3 s

Study Case: Deceleration Time

Page 27: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

II Parachute Deployment

with constant drag areas (CDS)L and (CDS)P

Snatch Force Fs

Page 28: 10 Parachute Flight Dynamics and Trajectory Simulation Doher
Page 29: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Snatch ForceVAVA

tAtA

VLVL VPVP

titi

tsts

VsVs VsVs

lsls∆ls∆ls

FsFs FsFs

mLmL mPmP

FIG4-1 | 30.4.1997

Page 30: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Snatch Force Estimation (SNATCH)

conservation of energy

conservation of momentum

kinetic energy that gets stored

Page 31: 10 Parachute Flight Dynamics and Trajectory Simulation Doher
Page 32: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

velocity difference at snatch

distance

distance at snatch

where VA initial velocity at begin of deployment, and

Page 33: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

potential energy storedin suspension lines

With

Hooke's law

spring constant

Page 34: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

snatch force forFs nk s s 2 n k E linear elongation

For general material properties of the type:

r = 1 -> linear material properties (Hooke'sches Law)

r =/ 1 -> nonlinear material properties

Fs n FB1(r 1) E

B ls n FB1

rr 1

Snatch Force

Page 35: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Measured T-10 Snatch Forces (from P. Schuett, DLR-Mitt. 69-11, p. 95)

Page 36: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Task #3 : Estimate Snatch Force (use SNATCH)

1 INPUT File SNATCH.DAT for SNATCH98.EXE2 for snatch force estimation3 University of Minnesota Parachute Technology Short Course4 _____________1.224 RO : air density kg/m^339.25 ML : mass of the load kg0.0314 CDSL : drag area of the load m^20.75 MP : mass of the parachute pack kg0.0314 CDSP : drag area of the pilot chute m^2150.0 V0 : initial speed of both masses m/s1.64 LS : length of suspension line m8 N : number of suspension lines -0.30 EPSB : relative elongation at break -6675 FB : break strength of susp. line N1 R : exponent of strain curve -0.0 TA : initial value of t2 s0.01 DT : step size of time s

Study Case: Snatch Force

Page 37: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Results of SNATCH:

Snatch occurs at t2 = 8.394841E-02 sec dels = 1.639999 m

snatch force Fs = 10081.66 Nvelocity at snatch Vs = 148.412 m/sdifference velocity delV = 35.67168 m/smass of the load mL = 39.25 kgCDS of the load CDSL = .0314 m*mmass of the parachute mP = .75 kgCDS of the parachute CDSP = .0314 m*minitial velocity V0 = 150 m/ssuspension line length ls = 1.64 mnumber of susp. lines n = 8 -relative break length epsB = .3 -break strength of 1 line FB = 6675 Nexponent of strain curve r = 1 -

achieved load factor Fs/n*FB = .1887952 -

Study Case: Snatch Force

Page 38: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

III Parachute Inflation

with drasticaly changing drag area CDS(t)

Opening Shock FX

Page 39: 10 Parachute Flight Dynamics and Trajectory Simulation Doher
Page 40: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Parachute inflation force:

or, non-dimensional,

where Vs = velocity at snatch and (CDS)e = steady state drag area.

Parachute Opening Shock (max. Inflation Force)

Page 41: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

We are looking for the maximum of x(t), called opening force factor CK,

Knowing CK, the opening shock (filling shock) follows from

Parachute Opening Shock (max. Inflation Force)

Page 42: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Pflanz- Ludtke Method:

Pflanz' (1942):

- introduced analytical functions for the drag area

- integrated the equation of motion in horizontal flight ( = 0°)

- calculated v(t) and x(t).

- found closed form expression for CK

Ludtke (1973): published method in a modified form in English

Doherr (2003): extended method for arbitrary flight path angle .

Parachute Opening Shock (max. Inflation Force)

Page 43: 10 Parachute Flight Dynamics and Trajectory Simulation Doher
Page 44: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Assume polynomial change of the drag area with time:

non-dimensional drag areatf inflation time,

time when the drag area reaches (CDS)e the first timej exponentCx opening force coefficient (over-inflation factor)

Parachute Opening Shock (max. Inflation Force)

Page 45: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

0 0.5 1 1.5t /tf0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

CKCKxx

v/vsv/vs

η = (t/tf)2η = (t/tf)2

Cx

Non-dimensional inflation variables

tmax/tfNONPAPER | 6.3.2003

Parachute Opening Shock

Page 46: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Introduce ballistic parameters A and B:

D0 parachute nominal diameter D0,Frs and Fre Froude numbers at snatch and at steady state,nf non-dimensional inflation time

Ve steady state velocity of descent ve, defined by

Parachute Opening Shock (max. Inflation Force)

Page 47: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

In horizontal flight ( = 0°) and for sufficiently large Vs/Ve,If:

then

else

Parachute Opening Shock (max. Inflation Force)

Page 48: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

If =/ 0, or if Vs/Ve is small, then

where

Parachute Opening Shock (max. Inflation Force)

Page 49: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Opening Force Factor CK vs. Mass Ratio of reefed Parachutes(from Knacke, NWC TP 6575, p5-57)

Page 50: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Task # 4: Estimate opening shock (use Fx05)

1 INPUT File Fx05.DAT of Fx05.EXE2 for opening shock estimation3 Pflanz method, see AIAA paper 2003-21734 _____________1.224 RO : air density kg/m^39.81 g : gravity constant m/s^21.373 D0 : parachute nominal diameter m40.0 M : system mass kg0.86 CDSe : steady state system drag area m^210.9 nf : non-dimensional inflation time -6 j : polynomial exponent -1.7 Cx : opening force coefficient -149.3 Vs : snatch velocity m/s10 gammas : initial flight path angle deg

Study Case: Opening Shock

Page 51: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Results:

Opening shock Fx = 17973.39 NLoad factor nx = 45.80374 -ballistic parameter A = 5.078238 -ballistic parameter B = 151.8693 -Opening force factor CK = 1.531595 -Uncorr opening force factor C0 = 1.535377 -Corr. factor for small Vs/Ve C1 = 0 -Corr. factor for gammas <> 0 C2 = -3.781822E-03 -air density RO = 1.224 kg/m^3gravity constant g = 9.81 m/s^2parachute nominal diameter D0 = 1.373 msystem mass m = 40 kgsteady state system drag area CDSe = .86 m^2steady state velocity Ve = 27.30484 m/snon-dimensnl inflation time nf = 10.9 -polynomial coefficient j = 6 -opening force coefficient Cx = 1.7 -velocity at snatch Vs = 149.32 m/sflight path angle at snatch gammas = 10 deg

Study Case: Opening Shock

Page 52: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

IV System Deceleration and Stabilisation

with constant drag area CDS

Velocity decreasing

Oscillation building up

Page 53: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Stability analysis of 3DoF-System (OSCILALx) with variables s, , andIntroduction of the parachute by the drag force DP only

Page 54: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

3DoF-equations of motion in trajectory coordinates:

Page 55: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Stability analysis

Case: Horizontal flight:A = 0; = const; gravity negelected: g = 0

The linearized equations of motions have two eigenmodes:

1. Exponential decay of the velocity along the flight path s

2. Angle of Attack Oscillation

Page 56: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Damping and frequency:

Conditions for dynamic stability:

< 0 amplitude decreases (stabil)= 0 amplitude remains constant (neutral stability)> 0 amplitude increases (instable)

Parachute reduces damping because of + (CDS)P/SL - term

Parachute increases oscillation frequency

Page 57: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Task #5a: Estimate Dynamic Stability in Horizontal Flight(Use OSCILALH.BAS)

170 DATA 0.351 : READ TA: REM initial time180 DATA 122.5 : READ VA: REM initial velocity190 DATA 0.200 : READ DL: REM reference diameter of the load200 DATA 40.00 : READ M: REM mass of the load210 DATA 2.1 : READ IY: REM moment of inertia about y-axis220 DATA 0.400 : READ XH: REM attachment point of parachute230 DATA -1.00 : READ CXL0: REM CX of load at alfa = 0240 DATA -2.78 : READ CZLALF: REM dCZL/dalfa of load250 DATA 1.11 : READ CMLALF: REM dCML/dalfa of load260 DATA -10.0 : READ CMLQ: REM pitch damping deriv. of load; q*D/2V270 DATA 0.0 : READ CMPQ: REM pitch damping derivative of parachute280 DATA 0.65 : READ CDP0: REM drag coeff. of chute at alfa = 0290 DATA 0.96 : READ CDSP: REM drag area of chute

Study Case: Dynamic Stability

Page 58: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Results of OSCILALH.BAS in horizontal flightInitial velocity VA = 122.5 m/sload diameter DL = .2 msystem mass M = 40 kgmoment of inertia Iy = 2.1 kg*m*mchute attachment point XH = .4 mload aerodynamics: CXL0 = -1 -

CZLALF = -2.78 -CMLALF = 1.11 -CMLQ = -10 -

parachute data:drag coefficient CDP0 = .65 -drag area CDSP = .96 -pitch damping coeff. CMPQ = 0 -diameter DP = 1.371305 m

angle of attack oscillation:CDSP DELTA [1/m] OMEGA*i [1/m].96 6.24099E-03 .3314168

VA [m/s] Ve [m/s] l[m]122.5 25.43085 18.95856

Study Case: Dynamic Stability

Page 59: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

0 20 40 60 80 100s [m]

-10-505

10α [deg]

Angle of attack in horizontal flight

0.5 1 1.5 2time [s]

-10-505

10α [deg]

0.5 1 1.5 2time [s]

0

50

100

150V [m/s]

l = const

T not const

FIG5_2 | 24.3.2004

Study Case: Dynamic Stability

Page 60: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Stability analysis

Case: Vertical flight:A = -90°; V(-90°) = Ve; = const; g = 9.81 m/s2

After small disturbances VA, A, and A from vertical flight:

1. Exponential decay of the velocity

2. Vertical glide motion

Page 61: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

3. Pendulum motion

The damping of the vertical pendulum motion is provided by theaerodynamic damping of the payload!

Page 62: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Task # 5b: Estimate Dynamic Stability in vertical flight(Use OSCILALV.BAS)

180 DATA 24.4 : READ VA: REM initial velocity190 DATA 0.200 : READ DL: REM reference diameter of the load200 DATA 40.00 : READ M: REM mass of the load210 DATA 2.1 : READ IY: REM moment of inertia about y-axis220 DATA 0.400 : READ LA: REM attachment point of parachute230 DATA -1.00 : READ CXL0: REM CX of load at alfa = 0240 DATA -2.78 : READ CZLALF: REM dCZL/dalfa of load250 DATA 1.11 : READ CMLALF: REM dCML/dalfa of load260 DATA -10.0 : READ CMLQ: REM pitch damping deriv. of load; q*D/2V270 DATA 0.0 : READ CMPQ: REM pitch damping derivative of parachute280 DATA 0.65 : READ CDP0: REM drag coeff. of chute at alfa = 0290 DATA 0.96 : READ CDSP: REM drag area of chute

Study Case: Dynamic Stability

Page 63: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Results of OSCILALV.BAS in vertical flightInitial velocity VA = 122.5 m/sload diameter DL = .2 msystem mass M = 40 kgmoment of inertia Iy = 2.1 kg*m*mchute attachment point XH = .4 mload aerodynamics: CXL0 = -1 -

CZLALF = -2.78 -CMLALF = 1.11 -CMLQ = -10 -

parachute data:drag coefficient CDP0 = .65 -drag area CDSP = .96 -pitch damping coeff. CMPQ = 0 -diameter DP = 1.371305 m

angle of attack oscillation:CDSP DELTA [1/m] OMEGA*i [1/m].96 -.1343E-02 0.3315E+00 in trajectory coordinates

DELTAt [1/s] OMEGAt*i [1/s]-.3416E-01 0.8430E+01 in the time domain

VA [m/s] Ve [m/s] l [m] T[s]24.4 25.43085 18.95535 .7453685

Study Case: Dynamic Stability

Page 64: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

0 5 10 15 20 25 30 35 40 45z g [m]

-10-505

10α [deg]

Angle of attack in vertical flight

7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9time [s]

-10-505

10α [deg]

7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9time [s]

01020304050

V [m/s]

l = constl = const

T = constT = const

FIG5_3 | 24.3.2004

Study Case: Dynamic Stability

Page 65: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Task #6: Trajectory simulation (use 2DOFT05)

Numerical integration of non-lineardifferential equations using Pflanz' dragarea model:

Study Case: Trajectory

Page 66: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Drag area model:

(CDS)a drag area at the beginning of the filling or disreefing

(CDS)e drag area at the end of the filling phase

tfmax filling time

jf exponent of the filling characteristic

Study Case: Trajectory

Page 67: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

Task #6: Input data

2DOFT05.DAT for Pascal program 2DOFT05.PAS (of June 2005)Study CaseParachute work shop 2005deceleration of 40 kg system by 4.5 ft Guide Surface Parachute18605 ID-number

initial data:9.81 g0 gravity constant0.0 TAU0 inital time0.001 DT step size for integration10.0 TAUE final time10 noutput every noutput'th data point is stored0.0 XG0 range100.0 HG0 altitude147.7 VXG0 horizontal velocity26.0 VHG0 vertical velocity, upwards positive

Page 68: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

system data for stage: System free flight1 STAGE stage numberDT controlls end of stage (perm inputs: characters T, DT, H, DH)0.17 value of (T , DT, H , DH) that initiates next stage40.0 MASS mass (kg)0.0314 CdS_payload (m*m) cylindrical payload0.0 S0 total refer. area (m*m) = S0max of all parachutes0.0 CD para drag coeff = CDr (reefed) or CD0 (disreefed)0 nc number of parachutes in cluster (=1,2,3..)n FILLING = y or n (if y then variable drag area)tf permitted inputs: characters tf (=tfmax) or nf0.0 value of (tf or nf); if nf then tfmax=nf*sqrt(4*S0/nc/pi)/V0.0 ETA = (CdS)a / (CdS)e = initial/final drag area0.0 JF filling exponent in (t/tfmax)^jf0.0 Cx opening force coefficient

Page 69: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

system data for stage: deployment of 4.5 ft Guide Surface parachute2 STAGE stage numberDT controlls end of stage (permitted inputs: T , DT, H , DH)0.08 value of (T , DT, H , DH) that initiates next stage40.0 MASS mass (kg)0.0314 CdS_payload (m*m)0.0314 S0 total refer. area (m*m) = S0max of all parachutes1.0 CD para drag coeff = CDr (reefed) or CD0 (disreefed)1 nc number of parachutes in cluster (=1,2,3..)n FILLING = y or n (if yes then variable drag area)nf permitted inputs: characters tf (=tfmax) or nf0.0 value of (tf or nf); if nf then tfmax=nf*sqrt(4*S0/nc/pi)/V0.0 ETAA = (CdS)a / (CdS)e = initial/final drag area0.0 JF filling exponent in (t/tfmax)^jf0.0 Cx opening force coefficient

Page 70: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

system data for stage: parachute inflation+system deceleration+steady descent3 STAGE stage numberT controlls end of stage (permitted inputs: T , DT, H , DH)10.0 value of (T , DT, H , DH) that initiates next stage40.0 MA mass (kg)0.0314 CdS_payload (m*m)1.48 S0 total refer. area (m*m) = S0max of all parachutes0.65 CD para drag coeff = CDr (reefed) or CD0 (disreefed)1 nc number of parachutes in cluster (=1,2,3..)y FILLING = y or n (if yes then variable drag area)tf permitted inputs: characters tf (=tfmax) or nf0.1 value of (tf or nf); if nf then tfmax=nf*sqrt(4*S0/nc/pi)/V0.0327 ETA = (CdS)a / (CdS)e = initial/final drag area6.0 JF filling exponent in (t/tfmax)^jf1.7 Cx opening force coefficient

system data for stage:0 STAGE stage number (if STAGE = 0, then simulation terminates)

Page 71: 10 Parachute Flight Dynamics and Trajectory Simulation Doher

0 2 4 6 8 10t [s]

0

20

40

60

80

100

120

h[m

]

Altitude

0 0.2 0.4 0.6 0.8 1t [s]

0.050.1

0.51

5

CDS

[m2 ]

free-

fligh

tfre

e-fli

ght

depl

oym

ent

depl

oym

ent

fillin

g / i

nfla

tion

fillin

g / i

nfla

tion

over-inflationover-inflation

canopy fully opencanopy fully open

System Drag Area

0 5 10t [s]

0

30

60

90

120

150

V[m

/s]

Velocity

0 0.2 0.4 0.6 0.8 1t [s]

0

5

10

15

20

___ D

[10

3N

] opening shockopening shock

System Drag

FIG3_9 | 13.6.2005

Study Case: Trajectory