1 Interconnect and Packaging Lecture 2: Scalability Chung-Kuan Cheng UC San Diego.

21
1 Interconnect and Packaging Lecture 2: Scalability Chung-Kuan Cheng UC San Diego
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    213
  • download

    0

Transcript of 1 Interconnect and Packaging Lecture 2: Scalability Chung-Kuan Cheng UC San Diego.

1

Interconnect and PackagingLecture 2: Scalability

Chung-Kuan ChengUC San Diego

2

Outlines

I. Trends of Interconnect and Packaging

II. Scalability

References

3

I. Trends of High Performance Interconnect and Packaging

Year 2005 2010 2015

D1/2 Pitch nm 80 45 25

Chip size (mm2) 310 310 310

Pin count 3,400 4,009 6,402Cents/pin 1.78 1.37 1.05

On-chip (MHz) 5,170 12,000 -

Off-chip (MHz) 3,125 - 29,103

Power Density (w/mm2)

0.54 0.64 -

4

I. Trends

• On-Chip Interconnect

• Delay (5-40 times of Speed of Light 5ps/mm)

• Power Density (> ½)

• Clock Skew: Variations (5GHz)

• Off-Chip Interconnect and Packaging• Number of pins (limited growth)

• Wire density (scalability)

• Speed and distance of interconnect

5

I. Trends

• On-chip Global Interconnect trend

• Concerns: Speed, Power, Cost, Reliability

0

40

80

120

160

200

180 150 130 100 90 80 70 65 57 50Process Technology Node (nm)

Dela

y (p

s)

1mm Global I nterconnect with Scattering(source: I TRS Roadmap 2004)

FO4 I nverter Delay (Estimated by0.36*Ldraw)

1mm distortionless Transmission Line (Speedof Light)

6

I. Trend

• Scalability• Latency, Bandwidth• Attenuation, Phase Velocity

• Distortion• Intersymbol Interference, Jitter, Cross Talks

• Clock Distribution• Skew, Jitter, Power Consumption

• IO Interface• Density• Impedance Matching• Cross Talks, Return loops

7

II. Scalability: Interconnect Models

RΔl LΔlCΔl

RΔl LΔl

CΔl …

i(z,t)

RΔl LΔl RΔl LΔl

Voltage drops through serial resistance and inductance

Current reduces through shunt capacitance

Resistance increases due to skin effect

Shunt conductance is caused by loss tangent

8

II. Scalability: Interconnect Models• Telegrapher’s equation:

),(),(),(

),(),(

),(

tzGVdt

tzdVC

dz

tzdIdt

tzdILtzRI

dz

tzdV

• Propagation Constant:

jCjGLjR ))((

• Wave Propagation:

//,),( 0 tzveVtzV tjzjz

• Characteristic Impedance

)/()( CjGLjRZ

9

II. Scalability of Physical Dimensions• R= p /A = p/(wt)• Z= ¼ (u/e)1/2 ln (b+w)/(t+w)• C= v Z• L= Z/v

b

w

t

p: resistivity of the conductoru: magnetic permeabilitye: dielectric permittivityv: speed of light in the medium

10

II. Scalability of Physical Dimensions • Resistance: Increases quadratically with

scaling, e.g. p=2um-cm

R=0.0002ohm/um at A=10umx10um

R=0.02ohm/um at A=1umx1um

R=2ohm/um at A=0.1umx0.1um

• Characteristic Impedance: No change

• Capacitance per unit length: No change

• Inductance per unit length: No change

11

II. Scalability of Frequency Ranges

1. RC Region

2. LC Region

3. Skin Effect

4. Loss Tangent

12

II. Scalability of Frequency Ranges

2/2/

))((

RCjRCRCj

CjGLjRj

1. RC Region 0,/ GLR

RCv

jwC

RZ

2,

e.g. on-chip wires R=2ohm/um(A=0.01um2)L=0.3pH/um, C=0.2fF/umR/L=0.67x1012

13

II. Scalability of Frequency Ranges: RC Region

gw

w

wg

ns

sclcc

lrr

lcsfcc

srr

2/

2/

/

2

1

1

Elmore delay model with buffers inserted in intervals

ltr: length from transmitter to receiverl: interval between buffersrn: nmos resistancecn: nmos gate capacitancecg=(1+g)cn, g is pn ratio.rw: wire resistance/unit lengthcw: wire capacitance/unit lengthf: cd/cg

l

ltr

l

llscrl

crcfslc

s

rlDelay tr

gwww

gwn

tr }2

))1(({)( 2

14

II. Scalability of Frequency Ranges: RC Region

l

llscrl

crcfslc

s

rlDelay tr

gwww

gwn

tr }2

))1(({)( 2

ww

gn

cr

crfl

)1(2

gw

wn

cr

crs

Elmore delay model with buffers inserted in intervals

Optimal interval

wgwntrtr ccrrfllDelay ))1(22(/)(

Optimal buffer size

Optimal delay

15

II. Scalability of Frequency Ranges

mcr

crfl

ww

gn 242)1(2

41gw

wn

cr

crs

Example: w= 85nm, t= 145nm

Optimal interval

mmpsmfsccrrfllDelay wgwntrtr /194/194))1(22(/)(

Optimal buffer size

Optimal delay

rn= 10Kohm,cn=0.25fF,cg=2.34xcn=0.585fFrw=2ohm/um, cw=0.2fF/um

16

II. Scalability of Frequency Ranges: RC Region

Year

(On-Chip)

2005 2010 2015

rncn (ps) 0.86 0.39 0.18

rwcw (ps/mm)* 284 616 1510

l (um) 168 77 33

D (ps/um) 0.096 0.095 0.101

*no scattering, p=2.2uohm-cm

17

II. Scalability of Frequency Ranges: RC Region

• Device delay, rncn, decreases with scaling

• Wire delay, rwcw, increases with scaling

• Interval, l, between buffers decreases with scaling

• In order to increase the interval, we add the stages of each buffer.

18

II. Scalability of Frequency Ranges2. LC Region 0,/ GLR

LCjZ

RCjLjR

CjGLjRj

2)(

))((

LCvCLZ /1,

19

II. Scalability

3. Skin Effect Skin Depth:

/2

)2/( ZR

e.g. 0.7um @ f=10GHz, p=2uohm-cmFor 100umx25umRDC=0.000008ohm/um= 8ohm/mR= 0.000114ohm/um=114ohm/m

20

II. Scalability4. Loss Tangent

tan),tan1( 0,00 CGCCj

)(/62/,02.0tan polyimidemGZp

)(/6.02/,002.0tan glassmGZg )(/06.02/,0002.0tan quartzmGZq

LCjGZ

Z

R

CjGLjRj

22

))((

21

References• E. Lee, et al., “CMOS High-Speed I/Os – Present and Future,” ICCD

2003.• http://www.itrs.net/Common/2004Update/2004Update.htm• G.A. Sai-Halasz G.A. "Performance Trends in High-End Processors,“

IEEE Proceedings, pp. 20-36, Jan. 1995.• M.T. Bohr, “Interconnect scaling-the real limiter to high performance

ULSI” Electron Devices Meeting, 1995., International10-13 Dec. 1995 pp.241 – 244.