07. Tecnicas de Biologia Molecular

download 07. Tecnicas de Biologia Molecular

of 136

Transcript of 07. Tecnicas de Biologia Molecular

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    1/136

    1

    Topic1: Nucleic acids

    Techniques of Molecular Biology

    1.Electrophoresis

    2.Restriction3.Hybridization4.DNA Cloning and gene expression

    5.PCR6.Genome sequence & analysis

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    2/136

    2

    Organismo Tamao genoma Nmero de genes

    H. Influenzae 1.8 Mb 1.700

    E.coli 4.2 Mb 4.200

    S.cerevisiae 12 Mb 6.000

    C. elegans 97 Mb 19.000

    A. thaliana 100 Mb 25.000

    D. Melanogaster 180 Mb 13.000

    Homo sapiens 3.200 Mb 30.000-40.000

    Manipulando genes

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    3/136

    3

    1. Gel electrophoresis separates

    DNA and RNA moleculesaccording to size, shape andtopological properties

    Gel matrix is an inserted, jello-likeporous material that support and

    allows macromolecules to movethrough. Agarose and polyacrylamideare two different gel matrices

    Electrophoresis

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    4/136

    4

    DNA and RNA molecules are

    negatively charged, thus move in thegel matrix toward the positive pole (+)

    Linear DNA molecules are separatedaccording to size

    The mobility of circular DNAmolecules is affected by theirtopological structures. The mobilityof the same molecular weight DNAmolecule with different shapes is:supercoiled> linear> nicked or relaxed

    Electrophoresis

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    5/136

    5

    Fig 20-1: DNA separation by gel electrophoresis

    large moderate small After electr

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    6/136

    6

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    7/1367

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    8/1368

    1. pUC19

    2. pUC19/HindIII

    3.

    4. /HindIII

    kb

    23.0

    9.46.5

    4.3

    2.3

    1 2 3 4

    2.0

    1% Agarose gel

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    9/1369

    To separate DNA of different

    size ranges

    Narrow size range of DNA: use

    polyacrylamide Wide size range of DNA: use

    agarose gel

    Very large DNA(>30-50kb): usepulsed-field gel electrophoresis

    Electrophoresis

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    10/136

    10

    pulsed-field gelelectrophoresis

    Switching between twoorientations: the larger theDNA is, the longer it takes

    to reorient

    Electrophoresis

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    11/136

    11

    Restriction endonucleases cleave

    DNA molecules at particular sitesNucleic

    acid

    Why use endonucleases?

    --To make large DNA molecules break intomanageable fragments

    --Important tools in recombinant technology

    --Have opened the way for gene cloning

    --Endonucleases provide protection tobacterial cell against foreign DNA

    --Bacterias own DNA is modified by

    methylation of bases

    Restriction digestion

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    12/136

    12

    Restriction endonucleases: thenucleases that cleave DNA atparticular sites by the recognition of

    specific sequences

    The target site recognized byendonucleases is usually palindromic.

    e.g. EcoRI5.GAATTC..3

    .CTTAAG.

    Restriction digestion

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    13/136

    13

    Enzymes are named from bacterial

    species that they are derived from

    EcoRI is the first enzyme to beisolated from E. colistrain RY13

    The enzymes recognise 4-6bp of

    DNA and cleave phosphodiester

    bond

    Restriction digestion

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    14/136

    14

    To name a restriction

    endonuclease:e.g. EcoRI

    the 1st

    suchenzyme found

    Escherichia coli

    Species category

    R13

    strain

    Restriction digestion

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    15/136

    15

    Frequency of the

    occurrence of hexamaericsequence:

    1/4096 (4-6)

    Randomly

    Restriction digestion

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    16/136

    16

    Consider a linear DNA

    molecule with 6 copiesofGAATTC:

    it will be cut into 7fragments which could

    be separated in the gelelectrophoresisby size

    (The largest fragment) (The smallestfragment)

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    17/136

    17

    Endonucleases are used to make

    restriction map:

    e.g. the combination ofEcoRI + HindIII

    Allows different regions of one molecule to be

    isolate and a given molecule to be identified A given molecule will generate a characteristic

    series of patterns when digested with a set ofdifferent enzymes

    Restriction digestion

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    18/136

    18

    Different enzymes recognize theirspecific target sites with differentfrequency

    EcoRI Recognize hexameric sequence: 4-6

    Sau3A1 Recognize terameric sequence: 4-4

    Thus Sau3A1 cuts the same DNA molecule

    more frequently

    Restriction digestion

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    19/136

    19

    sticky ends

    COHESIVOS

    blunt ends

    ROMOS

    Restriction digestion

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    20/136

    20

    The 5 protruding ends of are said to besticky because they readily anneal throughbase-pairing to DNA molecules cut with the

    same enzyme

    Reanneal with itscomplementarystrand or otherstrands with thesame cut

    Restriction digestion

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    21/136

    21

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    22/136

    22

    DNA hybridization can beused to identify specificDNA molecules

    Nucleic

    acid

    Hybridization: the process ofbase-pairing between

    complementary ssDNA or RNAfrom two different sources

    DNA hybridization

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    23/136

    23

    Probe: a labeled, definedsequence used to searchmixtures of nucleic acids formolecules containing a

    complementary sequence

    Labeling of DNA or RNA probes

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    24/136

    24

    Labeling of DNA or RNA probes radioactive labeling: display and/or magnify the

    signals by radioactivity

    Non-radioactive labeling: display and/ormagnify the signals by antigen labeling antibody binding enzyme binding - substrateapplication (signal release)

    End labeling: put the labels at the endsUniform labeling: put the labels internally

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    25/136

    25

    Single stranded DNA/RNA

    End labeling5-end labeling: polynucleotidekinase (PNK)

    3-end labeling: terminaltransferase

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    26/136

    26

    Labeling at both ends by kinase,then remove one end by restriction

    digestion

    ---------------------G---------------------CTTAAp5

    5pAATTCG

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    27/136

    27

    Nick translation:

    DNase I to introduce random nicks DNA polIto remove dNMPs from 3 to 5 and add new

    dNMP including labeled nucleotide at the 3ends.

    Hexanucleotide primered labeling:

    Denature DNA add random hexanucleotideprimers and DNA pol synthesis of new strandincorporating labeled nucleotide .

    Uniformly labeling of DNA/RNA

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    28/136

    28

    Strand-specific DNA probes:

    e.g. M13 DNA as template

    the missing strand can be re- synthesizedby incorporating radioactive nulceotides

    Strand-specific RNA probes:

    labeled by transcription

    Uniformly labeling of DNA/RNA

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    29/136

    29

    DNA on blot RNA on blot1. Genomic DNA preparation RNA preparation

    2. Restriction digestion -

    3. Denature with alkali -4. Agarose gel electrophoresis

    5. DNA blotting/transfer and fixation RNA

    6. Probe labeling 6. Hybridization (temperature)

    7. Signal detection (X-ray film or antibody)

    Southern and Northern blotting

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    30/136

    30

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    31/136

    31

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    32/136

    32

    Southern blothybridization

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    33/136

    33

    Fingerprinting

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    34/136

    34

    Hibridizacin de coloniaspara identificar clones

    que contengan un gen de inters

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    35/136

    35

    bI1 bI2 bI3 bI4 bI5

    Northern analysis COB RNAs in S. cerevisiae

    mRNA

    Pre-mRNAs

    Techniques of Molecular Biology

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    36/136

    36

    Techniques of Molecular Biology

    Blot

    type

    Target Probe Applications

    Southern DNA DNA orRNA

    mapping genomicclones

    estimating genenumbers

    Northern RNA DNA orRNA

    RNA sizes,abundance,

    and expression

    Western Protein Antibodies protein size,abundance

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    37/136

    37

    Polymerase chain reactionPCRThe PCR cycle

    TemplatePrimersEnzymes

    PCR optimization

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    38/136

    38

    PCR

    The polymerase chainreaction(PCR) is to used to

    amplify a sequence of DNAusing a pair of primers eachcomplementary to one end

    of the the DNA targetsequence.

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    39/136

    39

    The PCR cycle

    Denaturation: The target DNA(template) is separated into two standsby heating to 95

    Primer annealing: The temperature isreduced to around 55 to allow theprimers to anneal.

    Polymerization (elongation,extension): The temperature is increasedto 72 for optimal polymerization stepwhich uses up dNTPs and required Mg++.

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    40/136

    40

    Template

    Any source of DNAthat providesone or more target molecules canin principle be used as a templatefor PCR

    Whatever the source of template

    DNA, PCR can only be applied ifsome sequence information isknownso thatprimers can bedesigned.

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    41/136

    41

    Primers

    PCR primers need to be about 18 to 30 ntlong and have similar G+C contents sothat they anneal to their complementary

    sequences at similar temperatures.Theyare designed to anneal on oppositestrands of the target sequence.

    Tm=2(a+t)+4(g+c): determine annealingtemperature. If the primer is 18-30 nt,annealing temperature can be Tm5oC

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    42/136

    42

    Degenerate primers:an oligo poolderived from protein sequence.

    E.g. His-Phe-Pro-Phe-Met-Lys cangenerate a primer

    5-CAY TTYCCN TTYATG AAR

    Y= PyrimidineN= any baseR= purine

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    43/136

    43

    Enzymes and PCR Optimization

    The most common is Taqpolymerase. It has no 3 to 5proofreading exonuclease activity.Accuracy is low, not good forcloning.

    We can change the annealing

    temperature and the Mg++concentration or carry out nestedPCR to optimize PCR.

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    44/136

    44

    PCR

    amplificacin

    DNA

    (molcula sencilla)

    Muchas

    molculas

    PCR

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    45/136

    45

    Sntesis por DNA polimerasa

    -A T G C A T G C A T G C * *

    A CG-T

    primers de DNA especficos hibridizan con la cadena quetiene que ser copiada > 18 bp

    5 3

    PCR

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    46/136

    46

    Sntesis por DNA polimerasa

    -A T G C A T G C A T G C * *

    A CGT-T5 3

    PCR

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    47/136

    47

    Sntesis por DNA polimerasa

    -A T G C A T G C A T G C * *

    A CGT-T A5 3

    PCR

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    48/136

    48

    Sntesis por DNA polimerasa

    -A T G C A T G C A T G C * *

    A CGT-T A C5 3

    PCR

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    49/136

    49

    Sntesis por DNA polimerasa

    -A T G C A T G C A T G C * *

    A CGT-T A CG5 3

    PCR

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    50/136

    50

    Sntesis por DNA polimerasa

    -A T G C A T G C A T G C * *

    A CGT-T A CGT5 3

    PCR

    Polymerase chain reaction

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    51/136

    51

    Sntesis por DNA polimerasa

    -A T G C A T G C A T G C * *

    A CGT-T A CGTA5 3

    PCR

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    52/136

    52

    Despues del primer perodo de sntesis deDNA, tenemos copiada una cadena de DNA

    Primer1 Extensin de la cadena

    Cadena original de DNA

    Cmo produce este proceso una AMPLIFICACIN?

    Reaccin en cadena de la polimerasa - PCRPolymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    53/136

    53

    Primero, la fusin separa las dos cadenas de DNA a alta

    temperatura (~100

    C)

    Reaccin en cadena de la polimerasa - PCRPolymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    54/136

    54

    Primero, la fusin separa las dos cadenas de DNA a alta

    temperatura (~100

    C)Luego, usando un segundo primer, se copia la nuevacadena con la DNA polimerasa

    Al mismo tiempo, la cadena original se copianuevamente, dado que hay un exceso de Primer 1

    2

    1

    Ahora tenemos dos copias de la molcula original

    Reaccin en cadena de la polimerasa - PCRPolymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    55/136

    55

    Para controlar el proceso, necesitamos controlar la temperatura

    Si repetimos el ciclo, tendremos cuatro copias

    Reaccin en cadena de la polimerasa - PCR

    Fusin95C

    Hibridizacin50-60C

    Extensin deLa cadena

    75C

    Primer Ciclo

    2do Ciclo95C

    50 - 60C75C

    Mltiples ciclos darn un incremento exponencial enel nmero de copias

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    56/136

    56

    Primero, la fusin separa las dos cadenas de DNA a alta

    temperatura (~100

    C)

    Reaccin en cadena de la polimerasa - PCRPolymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    57/136

    57

    Template

    Primers

    Enzymes

    Fig.Steps of PCR

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    58/136

    58

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    59/136

    59

    ADN polimerasa termoestable

    Oligonucleotidos iniciadores (primers)

    Desoxiribonucletidos trifosfatados (dNTPs)

    Cationes divalentes

    Buffer (para mantener el pH)

    Cationes divalentes

    ADN molde (Templado)

    PCR

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    60/136

    60

    And more PCR

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    61/136

    61

    And more PCR

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    62/136

    62

    ADN polimerasas termoestables

    Llevan a cabo la sntesis de ADN dependiente deltemplado.

    Estabilidad Taq: 9 min at 97C, Pwo >2 hr a 100C Fidelidad Taq: baja, Pfu: alta

    Algunas presentan actividad transferasa terminal en elextremo 3, ej. Taq agrega una A al extremo 3,especialmente si en el extremo hay una C. Pwo y Tligeneran extremos romos

    Cantidad usada = 5 x 1012 molculas (1.5 unidades) La m

    s com

    nmente usada = Taq ADN polimerasa

    TaqThermus aquaticus,Pwo Pyrococcus woesei, PfuPyrococcus furiosus, Tli Thermococcus littoralis

    PCRPolymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    63/136

    63

    Oligonucletidos iniciadores

    (primers)

    Se conoce su secuencia

    Es el factor mas importante para laeficiencia y la especificidad del proceso

    Deben estar presentes en exceso (1013 =30 cycles, 1 kb)

    Requieren de un cuidadoso diseo Reglas de diseo:

    (a) longitud = 18-25

    (b) Contenido de G+C entre 40-60%

    PCR

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    64/136

    64

    Evitar las secuencias repetidas

    55

    33

    553

    3

    Dmero de primer

    PCR

    3repetido

    5-NNNNNNNNNNNNNTATA-35-NNNNNNNNNNNNNTATA-3

    5-NNNNNNNNTATA-33-ATATNNNNNNNN-5

    PCR

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    65/136

    65

    Evitar las secuencias repetidas

    55

    33

    no hay extensin

    PCR

    5repetido

    5-TATANNNNNNNNNNNNN-35-TATANNNNNNNNNNNNN-3

    5-TATANNNNNNNN-33-NNNNNNNNATAT-5

    55

    33

    PCRPolymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    66/136

    66

    Evitar las secuencias repetidas

    5

    5

    3

    3

    Productos de PCR no deseados

    PCR

    Formacin de horquillas

    5-NNNNNNNNNNNGCATGC-35-NNNNNNNNNNNNNNNNN-3

    5-NNNNNNNNNNNGCA3-CGT

    5

    3

    PCRPolymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    67/136

    67

    Oligonucletidos iniciadores

    Se conoce su secuencia

    Es el factor mas importante para la eficiencia y laespecificidad del proceso

    Deben estar presentes en exceso (1013 = 30 cycles, 1kb)

    Requieren de un cuidadoso diseo

    Reglas de diseo:

    (a) longitud = 18-25(b) Contenido de G+C entre 40-60%

    (c) Evitar las secuencias repetidas

    (d) Valores de Tm de no ms de 5C

    uno del otro

    PCRolymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    68/136

    68

    ADN molde (templado) Puede ser ssDNA o dsDNA (simple o

    doble cadena)

    ADN circular y cerrado es levemente

    menos efectivo que el ADN lineal Usualmente se utilizan varios miles de

    copias, ej: 1 g de humano, 10 ng delevadura, 1 ng de bacteriano o 1 pg de

    plasmdico Se puede amplificar a partir de una sola

    molcula de ADN molde, pero lascondiciones deben estar muy

    optimizadas

    PCRPolymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    69/136

    69

    El ciclo de PCR Desnaturalizacin - 94-95C por 45 segundos si G+C < 55%

    Temperatura de hibridizacin (Annealing) debe ser calculadao determinada empiricamente para cada par de primers

    - demasiado alta = poco o nada de producto

    - demasiado baja = annealing no especfico= prod.incorrectos

    Extensin - a la temperatura ptima de la ADN polimerasautilizada

    ej.: 72

    C para Taq1 min/kb de longitud, dado que la Taq polimeriza 2000 pb/min

    solo a partir del 3r ciclo son producidos ADN duplex de lalongitud deseada, los cuales a partir de all se tornan en elproducto principal

    PCRolymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    70/136

    70

    Variantes de la PCR

    Touchdown PCR

    Colony PCR

    Multiplex PCRHot start PCR

    Nested PCR

    Inverse PCR

    Long PCR

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    71/136

    71

    Diagnstico

    So much DNA that you

    can see it with staining!

    Medicina Forense: Cebadores para amplificar areas con

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    72/136

    72

    M C p p f

    VNTRs (Variable Number Tandem Repeats), que difieren en

    diferentes cromosomas y en individuos diferentes

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    73/136

    73

    Three areasamplified to

    generate a DNAfingerprint

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    74/136

    74

    Multiplex PCR

    Describe una PCR en la cual haypresentes mltiples pares de primers(hasta 8) lo que da una serie de

    productos. Los mismos pueden versecomo mltiples bandas en un gel deagarosa

    Multiplex PCR es frecuentemente usada

    en diagnstico mdico Ahorra templado, tiempo y gastos

    Requiere una cuidadosa optimizacin

    PCR

    Polymerase chain reaction

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    75/136

    75

    Nested PCR

    A veces 1 ronda de PCR no da un productonico a partir de un templado complejo,apareciendo un bandeo inespecfico

    Se puede resolver utilizando un segundo parde primers que hibriden un poco masinternamente que los primeros

    Realizar una segunda ronda de PCR usando elproducto de la primera (bandeo inespecfico)

    Rinde un producto nico porque solo elfragmento correcto de ADN posee los sitioscorrectos de hibridizacin para el segundo parde primers

    PCR

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    76/136

    76

    Nested PCR

    2da PCR

    Bandeo de ADN

    1era PCR

    ADN especfico

    PCR

    Clonamiento

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    77/136

    77

    Clonamiento

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    78/136

    78

    Clonado con PCR: clonado T-A

    3-AA-3

    T-3'

    3'-T

    A A

    T-3'

    3'-T

    Ligamiento con extremo adhesivo de 1 base = 50 veces mejorque ligamiento con extremos romos

    ligamiento

    Producto de PCRa partir de Taq

    Vector con cola-T

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    79/136

    79

    Mutagnesis por PCR

    Introduce cambios de secuencia dentrode fragmentos (clonados) de ADN

    El mtodo de extensin solapada

    requiere 2 primers mutagnicos y otros2

    Amplifica un fragmento 5 y unfragmento 3 que se solapan. Ambos

    portan la mutacin Usa los productos en otra reaccin para

    producir el ADN mutado de longitudcompleta

    Polymerase chain reaction

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    80/136

    80

    Para amplificar copias de cDNA de RNA

    Es especialmente til cuando solose dispone depequeas cantidades de RNA

    Frecuentemente usada para amplificar genesespecficos (como cDNAs) si algo de su secuencia esconocida

    Requiere primer antisense y un DNA polimerasadependendinte de RNA

    Puede ser usada para construir bibliotecas de cDNA

    Primero se hace un cDNA a partir del templado deARN

    Luego se usa un segundo primer (sense) para hacerel duplex de cDNA por PCR

    RT-PCR = PCR con transcriptasa reversa

    Polymerase chain reaction

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    81/136

    81

    RT-PCR

    AAAAAAAAAA-3

    TTTTTTTTTT-5

    Transcripcin reversa

    PCR usando

    GSP+GSP1

    AAAAAAAAAA-3

    TTTTTTTTTT-5

    mRNA

    (sense)

    Primer Antisense:

    oligo(dT)o

    1ra cadena cDNA

    GSP1 (sense)

    GSP (antisense)

    GSP1

    GSP

    Requiere el conocimiento de la secuencia para disear GSP and GSP1

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    82/136

    82

    SequencingNucleic

    acid

    Two ways for sequencing:

    1. DNA molecules(radioactively labeled at 5termini) are subjected to 4regiments to be brokenpreferentially at Gs, Cs, Ts,

    As, separately.2. chain-termination method

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    83/136

    83

    Chain-termination method ddNTPs are chain-terminating nucleotides:

    the synthesis of a DNA strand stops when addNTP is added to the 3 end

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    84/136

    84

    The absence of 3-hydroxyl lead to theinefficiency of the nucleophilic attack onthe next incoming substrate molecule

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    85/136

    85

    DNA synthesis abortsat a frequency of 1/100every time thepolymerase meets addGTP

    Tell from the gel theposition of each G

    DNA sequencing gel

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    86/136

    86

    4 systems with dNTP+ddGTP, dNTP+ ddATP dNTP+ ddCTP, d NTP+

    ddTTP separately

    read the sequencing

    gel to get thesequence of the DNA

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    87/136

    87

    Shortgun sequencing a bacterial genome

    The bacterium H. influenzae was thefirst free-living organism to have a

    complete genome sequenced andassembled.

    This organism is chosen as itsgenome is small (1.8Mb) andcompact.

    NUCLE

    IC

    ACIDS

    It h l h d i t

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    88/136

    88

    Its whole genome was sheared into manyrandom fragments with an average length of

    1kb.

    This pieces are cloned into a plasmid vector.And these clones are sequenced respectively.

    All these sequence information are loadedinto the computer. The powerful program will

    assemble the random DNA fragment basedon containing matching sequence, forming asingle continuous assemble, called a contig.

    To ensure every nucleotide in the genome

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    89/136

    89

    To ensure every nucleotide in the genomewas captured in the final genome assemble,30000~40000 clones are needed, which isten times larger as the genome. This iscalled 10sequence coverage.

    This method might seem tedious, but itsmuch faster and cheaper than thedigestion-mapping-sequencing method. As

    the computer is much faster at assemblingsequence than the time required to mapthe chromosome.

    permits a partial

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    90/136

    90

    The shortgun strategy permits a partialassembly of large genome sequence

    If we want to sequence a much largerand more complicate eukaryotic

    genome using the shortgun strategy.What can we do?

    Firstly, libraries in different level shouldbe constructed.

    NUCLE

    ICACIDS

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    91/136

    91 DNA microarrays

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    92/136

    92 Microarreglos de DNA

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    93/136

    93

    (DNA microarrays) Microarreglos de DNA: basado en

    las propiedades de hibridizacin de

    los Acidos Nucleicos para monitoreara escala genmica la abundancia deDNA or RNA en distintos tipos de

    clulas.

    Nucleic acid

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    94/136

    94

    Nucleic acidhybridization

    Microarrays

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    95/136

    95

    Microarrays Place probes from many different

    genes on a glass microscope slide,

    then hybridize to cDNA made frommessenger RNA isolated from atissue. You see which genes areactive in that tissue.

    Mostly done with 60mers: 60 baseslong, synthetic oligonucleotides,made using sequence informationfrom the genes.

    cDNA is fluorescently labeled Often 2 conditions are compared

    (control and experimental), usingred and green fluorescent tags.

    Semi-quantitative

    Can also be used to screen for DNA

    mutations.

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    96/136

    96

    The processBuilding the chip:

    MASSIVE PCR PCR PURIFICATION

    AND PREPARATION

    PREPARING

    SLIDES

    PRINTING

    RNA preparation:

    CELL CULTURE

    AND HARVEST

    RNA ISOLATION

    cDNA PRODUCTION

    Hybing the

    chip:

    ARRAY HYBRIDIZATION

    PROBE LABELING DATA ANALYSIS

    POSTPROCESSING

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    97/136

    97

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    98/136

    98

    The arrayer

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    99/136

    99

    Ngai Lab arrayer , UC Berkeley

    The arrayer

    Print-tip head

    Pins collect cDNAfrom wells

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    100/136

    100

    384 wellplate

    Contains cDNA

    probesGlass Slide

    Array of bound cDNA probes

    4x4 blocks = 16 print-tip groups

    Print-tipgroup 6

    cDNA clones

    Spotted in duplicate

    Print-tipgroup 1

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    101/136

    101

    Samplepreparation

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    102/136

    102

    Hybridization

    Hybridize for

    5-12 hours

    Binding of cDNA target samples to cDNA probes on the slide

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    103/136

    103

    LABEL

    3XSSC

    HYB CHAMBER

    ARRAY

    SLIDE

    LIFTERSLIP

    SLIDE LABEL

    Humidity Temperature

    Formamide

    (Lowers the Tm)

    Hybridization chamber

    Scanning

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    104/136

    104

    Detector

    PMT

    Image

    Duplicatespots

    RGB overlay of Cy3 and Cy5

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    105/136

    105

    images

    Mic oa a life c le

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    106/136

    106

    Biological

    Question

    SamplePreparation

    DataAnalysis &Modelling

    Microarray

    Reaction

    MicroarrayDetection

    Taken from Schena & Davis

    Microarray life cyle

    Biological questionDifferentially expressed genesS l l di i

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    107/136

    107

    Sample class prediction etc.

    Testing

    Biological verification

    and interpretation

    Microarray experiment

    Estimation

    Experimental design

    Image analysis

    Normalization

    Clustering DiscriminationR, G

    16-bit TIFF files

    (Rfg, Rbg), (Gfg, Gbg)

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    108/136

    108

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    109/136

    109

    Part II proteins

    Specific proteins can be purified from

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    110/136

    110

    cell extracts

    The purification of individual proteins iscritical to understanding their function.(why?)

    Although there are thousands ofproteins in a single cell, each proteinhas unique properties that make itspurification somewhat different fromothers.

    proteins

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    111/136

    111

    The purification of a protein isdesigned to exploit its uniquecharacteristics, such as size,charge, shape, and in manyinstance, function.

    Separation of proteins on polyacrylamide gels

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    112/136

    112

    Separation of proteins on polyacrylamide gels

    The native proteins have neither auniform charge nor a uniformsecondary structure.

    If we treat the protein with a strongdetergent SDS, the higher structure isusually eliminated. And SDS confersthe polypeptide chain a uniformnegative charge.

    pr

    oteins

    A d ti t th l i

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    113/136

    113

    And sometimes mercaptoethanol isneed to break the disulphide bond.

    Thus, the protein molecules can beresolved by electrophoresis in thepresence of SDS according to thelength of individual polypeptide.

    After electrophoresis, the proteins canbe visualized with a stain, such as

    Coomassie brilliant blue.

    Antibodies visualize electrophoretically-

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    114/136

    114

    p y

    separated proteins

    The electrophoretically separatedproteins are transferred to a filter. And

    this filter is then incubate in a solutionof an antibody to our interested protein.Finally, a chromogenic enzyme is used

    to visualized the filter-bound antibody.

    pr

    oteins

    Western Blotting

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    115/136

    115

    Protein denature(SDS)

    SDS-PAGE gel

    Blot

    Blocking (BSA) 1 Ab serum (probe)

    Wash

    2 Ab serum

    Wash Development

    Analysis of protein samples by SDSpolyacrylamide gel electrophoresis and Western

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    116/136

    116

    polyacrylamide-gel electrophoresis and Western

    blotting

    Protein bandsdetected byspecific antibody

    SDS-PAGE Western blot

    ELISA

    http://d/My%20Documents/3EIMMBLOT.MOVhttp://d/My%20Documents/3EIMMBLOT.MOVhttp://d/My%20Documents/3EIMMBLOT.MOVhttp://d/My%20Documents/3EIMMBLOT.MOV
  • 7/28/2019 07. Tecnicas de Biologia Molecular

    117/136

    117

    ELISA (Enzyme-Linked Immunosorbent Assay)

    Coating of antigen in microplate Block unbound sites in wells

    Apply antibody to wells

    Add anti-mouse IgG (conjugate to an enzyme

    Substrate reaction for color indication

    Purification of a protein requires a

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    118/136

    118

    specific assay To purify a protein requires that you

    have an assay that is unique to thatprotein.

    In many instance, its convenient touse a measure for the function of theprotein, or you may use the antibody

    of the protein. It is useful to monitor the purification

    process.

    proteins

    Proteins can be separated from oneh i l h h

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    119/136

    119

    another using column chromatography

    In this approach, protein fractionsare passed though glass columnsfilled with appropriated modifiedsmall acrylamide or agarose beads.

    There are various ways columns canbe used to separate proteinsaccording to their characteristics.

    proteins

    Ion exchange chromatography

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    120/136

    120

    Ion exchange ch omatog aphy

    The proteins are separated accordingto their surface charge.

    The beads are modified with eithernegative-charged or positive-chargedchemical groups.

    Proteins bind more strongly requiresmore salt to be eluted.

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    121/136

    121

    Gel filtration chromatography

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    122/136

    122

    Gel filtration chromatography

    This technique separate the proteins onthe bases of size and shape.

    The beads for it have a variety ofdifferent sized pores throughout.

    Small proteins can enter all of the pores,and take longer to elute; but largeproteins pass quickly.

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    123/136

    123

    Affinity chromatography can facilitate

    id i ifi i

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    124/136

    124

    more rapid protein purification

    If we firstly know our target protein canspecifically interact with something else,

    we can bind this something else tothe column and only our target proteinbind to the column.

    This method is called affinitychromatography.

    pr

    oteins

    Immunoaffinity chromatography

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    125/136

    125

    Immunoaffinity chromatography

    An antibody that is specific for thetarget is attached to the bead, andideally only the target protein canbind to the column.

    However, sometimes the binding is

    too tight to elute our target protein,unless it is denatured. But thedenatured protein is useless.

    Sometimes tags (epitopes) can be addedto the N- or C- terminal of the protein

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    126/136

    126

    to the N- or C- terminal of the protein,using molecular cloning method.

    This procedure allows the modifiedproteins to be purified using

    immunoaffinity purification and aheterologous antibody to the tag.

    Importantly, the binding affinity canchange according to the condition. e.g. theconcentration of the Ca2+ in the solution.

    Immunoprecipitation

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    127/136

    127

    p p

    We attach the antibody to the bead,and use it to precipitate a specificprotein from a crude cell extract.

    Its a useful method to detect whatproteins or other molecules areassociated with the target protein.

    Th i i l h d

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    128/136

    128

    Three principle methods

    1. 2-D gel electrophoresis for proteinseparation.

    2. MS for the precise determination of aprotein.

    3. Bioinformatics technology.

    rotein molecules can be directly sequence

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    129/136

    129

    Two sequence method: Edmandegradation &Tandem massspectrometry(MS/MS).

    Due to the vast resource ofcomplete or nearly completegenome, the determination of evena small stretch of protein sequenceis sufficient to identify the gene.

    pr

    oteins

    Ed d d ti

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    130/136

    130

    Edman degradation

    Its a chemical reaction in which theamino acids residues aresequentially release for the N-terminus of a polypeptide chain.

    Step 1: modify the N-terminal amino withPITC, which can only react with the free -

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    131/136

    131

    , yamino group.

    Step 2: cleave off the N-terminal by acidtreatment, but the rest of the polypeptideremains intact.

    Step 3: identify the released amino acids byHigh Performance Liquid

    Chromatography (HPLC).

    The whole process can be carried out in an

    automatic protein sequencer

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    132/136

    132

    Tandem mass spectrometry

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    133/136

    133

    Tandem mass spectrometry

    MS is a method in which the massof very small samples of a

    material can be determined.

    Step 1: digest your target protein intoshort peptide.

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    134/136

    134

    Step 2: subject the mixture of the

    peptide to MS, and each individualpeptide will be separate.

    Step 3: capture the individual peptide

    and fragmented into all the componentpeptide.

    Step 4: determine the mass of each

    component peptide. Step 5:Deconvolution of these data and

    the sequence will be revealed.

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    135/136

    135

    Proteomics

  • 7/28/2019 07. Tecnicas de Biologia Molecular

    136/136

    Proteomics

    Proteomics is concerned with theidentification of the full set ofproteins produced by a cell or atissue by a particular set ofconditions.

    pr

    oteins