0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900...

45
Gillingwater 0.5 µm

Transcript of 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900...

Page 1: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Gillingwater

0.5 µm

Page 2: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

MEPPs

Synaptic recordings from the frog NMJ: B. Katz et al.

Page 3: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Ca2+

Mg2+

EPP

MEPP

5 mV

10.00 ms

5 mV

10.00 ms Log Vepp

Log Ca 2+o

Slope ~ 4

Page 4: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate
Page 5: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Synaptic responsesfluctuate randomly inresponse to constant

excitation

Page 6: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Binomial model:

Let: n=3p= 0.17(q=1-p)

m=n.p

P(0) = ?P(1) = ?P(2) = ?P(3) = ?

Page 7: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Binomial model:

Let: n=3p= 0.1(q=1-p)

m=n.p

P(0) = q3

P(2) = 3p2qP(1) = 3pq2

P(3) = p3

Page 8: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

P(x) =n!

x!(n ! x)!px.q(n! x)

Let :x<<np<<1

Thenq(n-x) ~ exp(-np)

andn!

(n ! x)!" n

x

Page 9: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

P(x) = exp(!m).m

x

x!

P(0) = ?P(1) = ?P(2) = ?P(3) = ?

Poisson Distribution

Page 10: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

P(x) = exp(!m).m

x

x!Poisson Distribution

P(0) = exp(-m)P(1) = m.exp(-m)P(2) = m2.exp(-m)/2P(3) = m3.exp(-m)/6

Page 11: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Freq

uenc

y

Poisson distribution of QuantalContents of EPPs (n=100 trials)

0 1 2 3 4 5 6 7 8 9 10 11 12

0

10

20

30

40

m=1

Quantal content

Page 12: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Freq

uenc

y

Poisson distribution of QuantalContents of EPPs (n=100 trials)

0 1 2 3 4 5 6 7 8 9 10 11 12

0

10

20

30

40

m=2

Quantal content

Page 13: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Freq

uenc

y

Poisson distribution of QuantalContents of EPPs (n=100 trials)

0 1 2 3 4 5 6 7 8 9 10 11 12

0

10

20

30

40

m=3

Quantal content

Page 14: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Freq

uenc

y

Poisson distribution of QuantalContents of EPPs (n=100 trials)

0 1 2 3 4 5 6 7 8 9 10 11 12

0

10

20

30

40

m=4

Quantal content

Page 15: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Freq

uenc

y

Poisson distribution of QuantalContents of EPPs (n=100 trials)

0 1 2 3 4 5 6 7 8 9 10 11 12

0

10

20

30

40

m=5

Quantal content

Page 16: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

Page 17: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

“God does not play dice ”

Page 18: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

--> Simulation:Excel

Page 19: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

y = exp(!(x ! µ)2 / 2" 2 ) /(" 2# )

The Normal (Gaussian) Distribution

x

yy 5

x2!( )

2 0.25"exp# $% &

0.5 2'=

(µ = 0; σ =0.5)

Page 20: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate
Page 21: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

P(x) = exp(!m)m

x

x!k =1

n

" .1

2#k$ 2

! x ! kx ( )2

2k$ 2

%

& ' '

(

) * *

+

, - -

.

/ 0 0

m=3 quantaσ= 0.2 mvx =1.1mv

y 153!( )exp 3

x"

x!# $% &' ( 1

0.2 2)k

x 1.1k!( )2!

2k0.22# $

% &' (

exp# $% &' (

# $% &' (

k 1=

10

*=

Page 22: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

q = MEPP

m =EPP

q

Quantal Size:

Quantal Content:

Px=e!m.m

x

x!MEPPEPP

Stim.

MEPPs

EPPs

Quantal analysism=Ln (Trials/Failures)

m=1/C.V.(EPP)2

Page 23: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Actual m

Threshold m

Quantal analysis of EPPs shows a “safety factor” of 2-5

Wood SJ & Slater CR. (1997) The contribution of postsynaptic folds to the safety factor forneuromusculartransmission in rat fast- and slow-twitch muscles. J Physiol.;500:165-76

Page 24: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Methods of quantal analysis:

1. Direct method : m=EPP/MEPP (better, EPC/MEPPC)

2. Failures method: P(0)=exp(-m); m=Ln(Tests/Failures) ( for binomial: P(0)=(1-p)n)

3. Variance method: m = 1/(C.V.)2 i.e. m=EPP2 /var(EPP) (for binomial: var(m)=npq)

4. Convolutions; graphical methods (e.g. see Clements & Silver, TINS 23, 105-113.)

Note: For all methods except the Failures Method, it is necessaryto assess and correct if required for non-linear summation ofsynaptic potentials. Synaptic currents sum linearly.

Page 25: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate
Page 26: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

McLachlan EM, Martin AR. Non-linear summation of end-plate potentials in the frog andmouse. J Physiol. 1981 Feb;311:307-24.PMID: 6267255

Page 27: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

v' = v /(1! v /(Em! E

r)

m =v!

q(1 ! v!

(Em ! Er )

v' = v /(1! fv(Em ! Er )

Correction Factors

Martin (1955):

v= EPP amplitudeq= MEPP amplitudem = quantal content

McLachlan & Martin (1981)

Where f = an empirically determined ('fudge’) factor

For mouse muscle, long fibres: f=0.8For frog muscle, long fibres: f=0.55

For short muscle fibres (e.g. FDB) the correction is unknown, butf=0.3 gives a good fit to our data.

Page 28: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Gillingwater D. Thomson

5 ms

EPPs - Facilitation

300 ms

10 mV

EPPs - Short-term Depression

Page 29: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Frog 200

Rat, mouse 50-75

Man 20-30

Species Quantal content

Quantal content varies in differentspecies

Page 30: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

0

50

100

150

200

250

0 500 1000 1500

Synaptic Area (?m2)

Qu

an

tal

Co

nte

nt

man

rat, mouse

frog Frog

Rat

ManSynaptic area (µm2)

Page 31: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Fibre diameter, synaptic area and quantal content are correlated

Kuno, Turkanis & Weakley (1971); frog nmj

Page 32: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

0 10 20 30 40 50 600

250

500

750

1000

1250R6/2

Wild type

Fibre Diameter (µm)

20 µm

…likewise in mice:

Page 33: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Wilkinson RS, Son YJ, Lunin SD.Release properties of isolated neuromuscular boutons of the garter snake.J Physiol. 1996 Sep 1;495 ( Pt 2):503-14.PMID: 8887760

Page 34: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

20 µm

10 ms

10 mv

fiber diameter (µm)

0end

plat

e ar

ea (µ

m2 )

300

600

900

1200

10 20 4030 50 7060

Harris JB, Ribchester RR. The relationship between end-plate size and transmitter release in normalanddystrophic muscles of the mouse.J Physiol. 1979 Nov;296:245-65.PMID: 231101

Costanzo EM, Barry JA, Ribchester RR. Co-regulation of synaptic efficacy at stable polyneuronallyinnervated neuromuscular junctions in reinnervated rat muscle. J Physiol. 1999 Dec 1;521 Pt 2:365-74.PMID: 10581308

0 10 20 30 40 50 60

0

20

40

60

Occupancy%

Page 35: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Vm

Ch.2

2.5 mV

1 mV

10.00 ms

Vm

Ch.2

2.5 mV

1 mV

10.00 ms

Vm

Ch.2

2.5 mV

1 mV

10.00 ms

10 mV

2 nA

mf

0

-2

-4

-6

-8

-10

mV

AC

1

190 200 210 220 230 240 250 260 270 280 290

s

Keyboard31

6

5

4

3

2

mV

AC

1

85 90 95 100 105 110 115 120 125 130 135 140 145

s

Ch.2

10 mV

5.00 ms

Ch.2

10 mV

5.00 ms

Rin

MEPPs

EPPs

ntSynaptic size-strength regulation maintains safety factor

20 ms

Page 36: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Stain Destain

hνHydrophobic Hydrophilic

“FM” styryl dye structure and function

Page 37: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Bewick

Page 38: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Bewick

Page 39: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

250 ms

10 mV

Synaptic depression

Page 40: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate
Page 41: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

…. but just 5 simple Principles of Chemical Synaptic Transmission:

Synthesis

Storage

Release

Action

Inactivation

A host of molecules...

Page 42: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate
Page 43: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

Neuromuscular transmission/Quantal Analysis Problems

1. In an experiment on a partially curarised frog neuromuscular junction,

acetylcholine (ACh) was applied to the endplate by iontophoresis, using 1 nA, 1 ms

current pulses at a frequency of 2 Hz. A train of five endplate potentials (EPPs) was

then evoked by stimulating the muscle nerve at 50Hz. The iontophoretic pulses were resumed within 20 ms of the end of the stimulus train.

The following data were obtained:

Mean ACh response before EPP train = 1.53 + 0.12 mV (mean ± S.D.; n=10) Mean ACh response after EPP train = 1.51 + 0.10 mV (mean ± S.D.; n=7)

EPP number 1 2 3 4 5

Amplitude (mV) 2.2 2.7 2.1 1.3 0.9

a) calculate the amount of charge delivered by each of the iontophoretic current

pulses;

b) sketch the characteristic responses to ACh and nerve stimulation indicating the

time course of the responses;

c) how might the iontophoretic responses to ACh change, if a low concentration

of ACh (1 M) were also continuously present in the medium?

d) is the hypothesis that short-term synaptic depression is caused by desensitisation

of ACh receptors supported or refuted by these data? Give your reasoning

Page 44: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

2. Intracellular recordings were made from a mouse neuromuscular junction. The

nerve supply was stimulated 150 times at 1Hz. The mean size of the EPP evoked was 1.00 mV. Five of the stimuli evoked no response (i.e. there were 5 'failures').

a What was the mean quantal content at this neuromuscular junction?

b What do you predict for the quantal size, the amplitude of the uniquantal event

(MEPP)? c How many of the EPPs would you predict to have quantal contents of 1,2,3 and 4

quanta?

d What do you predict would be the standard deviation of the EPP amplitudes? e If the baseline ‘noise’ level peak-to-peak was 500 !V, how would this affect the

accuracy of your estimates?

Page 45: 0.5 µm · 20 µm 10 ms 10 mv fiber diameter (µm) e 0 n d p l a t e a r e a (µ m 2) 300 600 900 1200 10 20 30 40 50 60 70 Harris JB, Ribchester RR. The relationship between end-plate

3. In an experiment on an isolated flexor digitorum brevis nerve-muscle preparation

dissected from a mouse, intracellular microelectrode recordings were made of spontaneous miniature endplate potentials (MEPP). Endplate potentials (EPP) were

then evoked by nerve stimulation at a frequency of 1 Hz. In total, 97 of the stimuli

applied to the nerve evoked an EPP but 3 stimuli failed to evoke any EPP. The

following mean data with their standard deviations were obtained:

Mean MEPP amplitude (± SD) : 1.20 ± 0.72 mV

Mean EPP amplitude (± SD) : 4.25 ± 2.42 mV

I. Speculate on the ratio of C a2+ to Mg2+ ions in the medium bathing this

preparation. II. Calculate the mean quantal content of the EPP using the Direct, Variance and

Failures Methods.

III. What does the standard deviation of the MEPP amplitude (quantal size)

indicate and how might this affect the estimation of mean quantal content? A. Give one other possible reason for a low quantal content, in the contexts of

health and disease.