03 time division-multiplexing

43
Claude Rigault, ENST 04/10/2004 Communication networks 03 1 Time Division Multiplexing Claude Rigault ENST [email protected]

description

 

Transcript of 03 time division-multiplexing

Page 1: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 1

Time Division Multiplexing

Claude RigaultENST

[email protected]

Page 2: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 2

Time division multiplexing

Page 3: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 3

Time Division multiplexing (1)

Time division multiplexing

• Time Slot 1

Multiplexer De-multiplexer

Page 4: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 4

Time Division multiplexing (2)

Time division multiplexing

• Time Slot 2

Multiplexer De-multiplexer

Page 5: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 5

Time Division multiplexing (3)

Time division multiplexing

• Time Slot 3

Multiplexer De-multiplexer

Page 6: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 6

Time Division multiplexing (4)

Time division multiplexing

• Time Slot 4

Multiplexer De-multiplexer

Page 7: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 7

Frames

Time division multiplexing

• Each rotation corresponds to a frame on the multiplex

TS0TS1TS2TS3Multiplexer De-multiplexer

Page 8: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 8

• Time division multiplexing is based on peak rate• TDM is adapted to constant rate sources (like voice)

maxdCnt =

Time Division multiplexing

trunks

Switchingnetwork Trunk circuits

J

J

J

J

J

J

J

J

SwitchingnetworkTrunk circuits

Time division multiplexing

Page 9: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 9

Sampling an analog signal

• Time division multiplexing requires that only samples of the signal are transmitted. If we have fs rotations /second, the sampling frequency is fs

Time division multiplexing

Page 10: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 10

Effect of sampling

Fs 2Fs

Energy

FrequencyFs-FmaxFmax

To recover the original signal, there should be no overlapping :

fs- fmax> fmaxor : fs> 2fmax

Time division multiplexing

Page 11: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 11

PAM modulation

Time division multiplexing

Fmax

Fs > 2 Fmax

Fs

Page 12: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 12

Voice spectrum

Frequency (Hz)

Energy

Cut off frequency of filter is at 4000 Hz ⇒ fs = 8000 Hz

Time division multiplexing

300 3400

4000filter

800

Page 13: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 13

PAM and Time division multiplexing

Time division multiplexing

• 8000 rotations / second• Advantage of TDM : the filter is the same everywhere• Disadvantage of PAM : analog system ⇒ noise sensitivity

Page 14: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 14

PCM and Time division multiplexing

Time division multiplexing

CODERPAM PAM

DECODER

PCM link

Page 15: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 15

Voice signal dynamics

• The dynamics of the voice signal is very large ⇒ quantization noise gets very large on small signals

Time division multiplexing

Page 16: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 16

Quantization noise

• Quantization produces « Quantization noise »• A linear measurement scale would result in a lower SNR for small

signals than for big signals

• What we want is an amplitude independent SNR

Time division multiplexing

Page 17: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 17

‘µ’ Law coding

, maxmax ccyv

vx ==

( )( )µµ++= 1Log

1Log xy

255=µ0

10

20

30

40

50

60

0 0,5 1 1,5

63

1,6

Code

Volts

Time division multiplexing

Page 18: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 18

‘A’ Law coding

0

20

40

60

80

100

120

140

0 0,5 1 1,5 2

Niveau du signal Code sur 13 bits Code sur 8 bits 0 à 25 mV 0 à 63 0 à 3325 à 50 mV 64 à 127 34 à 4950 à 100 mV 128 à 255 50 à 650,1 à 0,2 V 256 à 511 66 à 810,2 à 0,4 V 512 à 1023 82 à 970,4 à 0,8 V 1024 à 2047 98 à 1130,8 à 1,6 V 2048 à 4095 114 à 128

Time division multiplexing

Page 19: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 19

( ) par trame bits 1931824 =+×

Kbit/s 1544 trames/s8000193 =×

v0v1

IT0

IT1

IT23

v23

signalisation

Flag

Primary multiplex T1 (T1 carrier)

Time division multiplexing

Page 20: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 20

Primary multiplex E1

IT16IT0IT1 IT31

Time division multiplexing

Page 21: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 21

E1 frame organization

v1v2

v15v16 v30

IT16IT17

IT0IT1 IT15 IT31

IT30

v29IT0 : x001 1011 ou z1zz zzzz IT16 : supertrame de signalisation

Time division multiplexing

Page 22: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 22

In-band

1

31

215

016

17 30

signalisation500 Hz 8000 Hz

216-216-18

16-1516-31

15

31

16

Time division multiplexing

Page 23: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 23

PCM E1 : superframe

IT16-0IT16-1

IT16-2IT16-13 IT16-15

IT16-14

v 1-16 v 3-18 v 13-28 v 15-30v 2-17 v 14-29

Time division multiplexing

Page 24: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 24

Clock

Data 1 0 1 0 0 01 1

Line signal

The HDB 3 line code

Time division multiplexing

• 1 ⇒ Mark, 0 ⇒ Space• Alternate Mark Inversion

Page 25: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 25

The HDB 3 line code

1 0 1 0 0 0 00 0 0 00

• Coding of sequences of 4 zeros : alternate violations inversion

Time division multiplexing

0 0 0 0

Page 26: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 26

Line Termination

circuit 1

circuit 30

MUX LT

circuit 1

circuit 30

DE-MUXLT

HDB 3 Line code

RepeaterGalvanic insulationRemote feedingLine code

circuit 1

circuit 30

MUXLT

circuit 1

circuit 30

DE-MUX LT

Time division multiplexing

Page 27: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 27

Asynchronous Transmission

0 01 0 110 1

0 1 01 0 1 01

> te/2

( )re

r

er

e

ree

fff

ff

ftt

tn −=

=−= 2112

1

)(2

Time division multiplexing

• Slips occur after n bits

Page 28: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 28

Asynchronous Transmission

Time division multiplexing

• Start and Stop signals required• Caracter Oriented Procedure (COP)

Te

Tr Tr Tr Tr Tr

Te Te Te TeStart Stop

Page 29: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 29

Synchronous Transmission

0 0 01 1 1 1 0

HORLOGE

SIGNAL

Time division multiplexing

• 2 channels required : one for data, one for clock• Bit Oriented Procedure (BOP)

Page 30: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 30

Mixing clock and data

• Line codes such as the Manchester code give a mean to recover the clock, at the expanse of bandwidth

Time division multiplexing

0 0 01 1 1 1 0

Clock

DataLine code

Line code

Page 31: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 31

Asynchronous multiplexing

signal 1

signal 4

clock 1

clock 4

elastic store

elastic store

MUX

Clock out

Control ./. 4

1

4

f1

f4

fo

Time division multiplexing

Page 32: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 32

Justification

signal 1

signal 4

clock 1

clock 4

elastic store

elastic store

MUX

Clock out

Control ./. 4

1

4

f1

f4

fo

io

ij

ffnTT−

==

4

1

Time division multiplexing

Page 33: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 33

European PDH hierarchy1

30

E 1 1

464 kbit/s

2 Mbit/s

E 2 1

4

8 Mbit/s

E 3 1

4

34 Mbit/s

E 4 1

4

E 5

140 Mbit/s

565 Mbit/s

Time division multiplexing

Page 34: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 34

American PDH hierarchy

Time division multiplexing

1

24

T 1 1

456 kbit/s

1,5 Mbit/s

T 21

7

6 Mbit/s

T 344 Mbit/s

• Caution ! One T3 multiplexes 7 T2 !

Page 35: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 35

Point to point structure of PDH networks

64 kbit/s2 Mbit/s

2 Mbit/s

64 Kbit/s2 Mbit/s

2 Mbit/s

8 Mbit/s

E1

E2

E1

E2

Time division multiplexing

Page 36: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 36

SDH : Adding and Dropping

order>n+1ADM

The condition : synchronous multiplexing

Time division multiplexing

order norder norder norder n

order norder norder norder n

order norder norder norder n

order norder norder norder n

Page 37: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 37

SDH : the STM-1 frame

RegeneratorSectionoverhead

Pointers overhead Payload

9 Bytes 261 Bytes

9 rows

Time division multiplexing

STM-1 : Synchronous transfer module

MultiplexerSectionoverhead

Page 38: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 38

Container and Virtual Container

POH

C

VC

C + POH → VC

Time division multiplexing

Page 39: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 39

Synchronous multiplexing (high order)

• High Order Path (high order multiplex)

Time division multiplexing

pointerHigh order VC

Page 40: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 40

Synchronous multiplexing (low order)

pointer

POH

Low order VC

• Low Order Path (low order multiplex)

Time division multiplexing

Page 41: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 41

SDH mechanisms

• C + POH → VC• Low order VC + pointer → TU• High order VC + pointer → AU

Time division multiplexing

Page 42: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 42

SDH tributaries

E4 140Mbit/sC4

T3 44 Mbit/sC3

7E3 34Mbit/s

T2 6 Mbit/sC2

4E1 2Mbit/sC12

T1 1,5 Mbit/sC11

USEuropeContainer

Time division multiplexing

Page 43: 03 time division-multiplexing

Claude Rigault, ENST 04/10/2004

Communication networks 03 43

Multiplexing paths

C-4

C-12

C-2

C-11

C-3

VC-12

VC-11

VC-2

VC-3

TU-2

TU-12

TU-11

TUG-2

TU-3TUG-3

VC-4

VC-3

AU-4

AU-3

AUGSTM-1

1

3

4

77

3

3

Time division multiplexing