01 Teknik Reaksi Kimia Lanjut

38
1 Teknik Reaksi Kimia Lanjut Advanced in Reaction Engineering Dr.-Eng. IGBN Makertihartha Lab. Teknik Reaksi Kimia dan Katalisis

Transcript of 01 Teknik Reaksi Kimia Lanjut

  • 1Teknik Reaksi Kimia LanjutAdvanced in Reaction Engineering

    Dr.-Eng. IGBN MakertiharthaLab. Teknik Reaksi Kimia dan Katalisis

  • 2Reaksi Kompleks padaReaktor Ideal

    Kinetika kompleks Reaksi Kompleks pada Reaktor-

    Reaktor Ideal

  • 3Kinetika Reaksi Kompleks

    Dalam sebuah Reaktor Aliran Sumbat (RAS): Pada sebuah sistem reaksi kimia yang melibatkan

    komponen A, B, C, , neraca massa masing-masingkomponen dapat digambarkan oleh sistem persamaandiferensial:

    ,...),,(

    ,...),,(

    ,...),,(

    CBACC

    CBABB

    CBAAA

    CCCrdz

    dCu

    CCCrdz

    dCu

    CCCrdz

    dCu

    =

    =

    =

  • 4Kinetika Reaksi Kompleks

    Dalam sebuah Reaktor Tangki Ideal Kontinyu(RTIK):

    1

    2

    3

    ( , , ,...) 0( , , ,...) 0( , , ,...) 0

    A B C

    A B C

    A B C

    f C C Cf C C Cf C C C

    ===

  • 5Kinetika Reaksi Kompleks

    Suku rA, rB, rC identik dengan laju reaksi kimia untuk sistemdalam reaktor partaian.

    Suku-suku ini akan lebih representatif jika juga merupakanfungsi dari temperatur yang merupakan operator utamapada besarnya laju reaksi spesifik atau tetapan laju reaksi.

    Pada kasus realistik, sistem persamaan diferensial di atasharus diselesaikan secara numerik karena hampir dapatdipastikan bahwa penyelesaian analitik sebuah sistempersamaan diferensial tak linier tidak terdefinisi.

  • 6Model Kinetika Reaksi Kompleks

    Pada prinsipnya, proses penentuan parameter kinetika pada sebuah model kinetika kompleksadalah mencari parameter-parameter kinetika yang menyebabkan akumulasi kesalahan yang diakibatkanperbedaan nilai antara data kinetika dengan nilaihasil perhitungan dengan model sekecil mungkin.

    ( ),untuk 1: dan , ,...

    j ik C

    j n i A B

    == =

    r f

  • 7Perkiraan Parameter Kinetika Kompleks

    Fungsi obyektif yang harus diminimalkan:

    = i dataimi CC ,,E

    ( ) = i dataimi CC 2,,2E

  • 8Algoritma

    Evaluasi fungsi obyektif optimasiFOBJ berdasarkan harga k

    terbaru

    Evaluasi Ci,m denganmenyelesaikan sistempersamaan diferensial

    Hitung FOBJ

    FOBJ min?

    Yes

    No

    Parameterkinetika k

    Selesai

    Masukkan:1. Data kinetika CA,data2. Model kinetika3. Tebakan awal ko4. Parameter optimasi

    Perkirakan harga kbaru dengan metoda

    optimasi

    ( ) = i dataimi CC 2,,2E

  • 9Contoh 1Kinetika Reaksi Kompleks Tentukan harga parameter kinetika (m, n, ki) dari

    reaksi kompleks berikut yang terjadi dalam sebuahreaktor RAS:

    DCmB

    nAC

    mB

    nAA

    k

    CkCkCCkrDC

    CCkrCBAk

    k 321

    11

    2

    3+=

    =+

  • 10

    Data Kinetika

    (jam) C A (mol/m3)

    C C (mol/m3)

    (jam) C A (mol/m3)

    C C (mol/m3)

    (jam) C A (mol/m3)

    C C (mol/m3)

    0.000 50.00 0.00 0.230 25.56 21.22 1.665 3.42 32.420.001 49.79 0.21 0.294 21.99 23.58 1.962 2.68 32.810.006 48.94 1.06 0.372 18.53 25.61 2.306 2.09 33.140.016 47.29 2.68 0.463 15.46 27.21 2.705 1.62 33.410.031 45.08 4.82 0.568 12.77 28.45 3.168 1.26 33.640.049 42.45 7.30 0.691 10.45 29.43 3.668 0.98 33.810.072 39.46 10.04 0.833 8.48 30.22 4.168 0.79 33.930.101 36.20 12.91 0.997 6.83 30.88 4.668 0.65 34.020.136 32.76 15.79 1.188 5.46 31.46 5.000 0.58 34.060.178 29.18 18.60 1.409 4.33 31.97

  • 11

    Persamaan Kinetika

    DCmB

    nA

    C

    mB

    nA

    A

    CkCkCCkd

    dC

    CCkd

    dC

    321

    1

    +=

    =

    Neraca Massa( )( ) ( )CCoAAoDoD

    AAoBoB

    CCCCCCCCCC

    ++==

  • 12

    Metoda Optimasi untuk KinetikaKompleks Fungsi Obyektif

    ( )=

    =CAi

    dataimi CCFOBJ,

    2,,

    Metoda Numerik fminsearch : peminimum fungsi obyektif ode23 : integrasi (sistem) persamaan diferensial

  • 13

    Program MATLAB

    Program utama:% tebakan awalk = [.5 1 3 1 .5];%eksekusi optimisasiKonstanta =

    fminsearch('kinetics',k)

    Program persamaankinetika:

    function dYdt = laju(t,Y,FLAG,Co,k)A = Y(1);B = Co(2) - (Co(1) - A);C = Y(2);D = Co(5) + Co(4)+(Co(1) - A) - C;dYdt = [ -k(1)*A.^k(4)*B.^k(5)

    k(1)*A.^k(4)*B.^k(5) - k(2)*C + k(3)*D];

  • 14

    Program MATLAB

    B. Program menghitungfungsi obyektif:

    function minimize = kinetics(k)tdat = [ 0

    0.00020.0012

    :

    4.66795.0000 ];

    Ydat =[ 50.00 0 49.96 0.03 49.79 0.20 48.93 1.05 47.29 2.67 45.08 4.81

    :0.65 34.01

    0.57 34.06 ];

  • 15

    Program MATLABLanjutan% Parameter ODECo = [Ydat(1,1) 50 Ydat(1,2) 0];[t,Y] = ode23('laju',tdat',[Co(1) Co(3)],[ ],Co,k);% Plot hasil parsial dari estimasi kplot(t,Y,'black-',tdat,Ydat,'blacko')title('Plot estimasi parameter kinetika')xlabel('t [detik]')ylabel('Konsentrasi')gridpause(.05)% Akumulasi kesalahan FOBJminimize = sum(sum(Y-Ydat).^2);

  • 16

    Hasil Estimasi Parameter

    Dengan tebakan awal k1=0,5, k2=1, k3=3, n=1, m=0,5, diperoleh harga parameter kinetika sebagai berikut:

    k1 = 0.4975 k2 = 1.1141 k3 =2.3440 n = 0.9899 m = 0.5035

  • 17

    Simulasi Kinetika

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50Plot estimasi parameter kinetika

    t [jam]

    K

    o

    n

    s

    e

    n

    t

    r

    a

    s

    i

    [

    m

    o

    l

    /

    m

    3

    ]

  • 18

    Complex Kinetics of Ethanol Oxidation on the Ag Gauzed Catalyst

    IGBN MakertiharthaDepartment of Chemical EngineeringInstitut Teknologi BandungJalan Ganesha 10, Bandung 40132Indonesia

  • 19

    Acetaldehyde

    Important intermediate aliphatic chemicals for producing acetic acid, acetic anhydride, pentaerythritol, pyridine, etc

    Process: Metal oxide catalysed process Ag catalysed process

  • 20

    Acetaldehyde Production Routes

    Hydration of acetylene Oxidation of Ethylene Oxidation of saturated HC Oxidation of Ethanol Dehydrogenation of Ethanol

  • 21

    Silver vs Metal-Oxide CatalystVariables Silver Catalysed Process Metal-Oxide Catalyst

    Catalyst metal (silver) Fe/Mo Oxide

    Conversion 85 95 % > 99 %

    MeOH/air ratio Higher than flammability limit of mixture (> 36 %-vol)Lower than flammability limit of mixture (< 6,7 %-vol)

    Opr. Pressure 1 atm 1 atm

    Opr.Temperature 600 650 C 330 380 C

    Tolerance to contaminant Low High

    Reaction Oxidative and non-oxidative pathway (dehydrogenation) Direct oxidation

  • 22

    Problem Definition

    Very active catalyst. Low selectivity compared with the metal

    oxide catalyst process. Catalyst development Modification of Ag catalyst active site

    Stability and kinetics study of complex reaction of Ethanol Oxidation.

  • 23

    Research Destination

    to suggest some plausible mechanisms for building model for complex kinetics of ethanol conversion to acetaldehyde over silver catalyst

  • 24

    Form metalWeight 0.038-0.042 grThick 0.05 cmDiameter 2-2.3 cmColor-fresh off-white

    spent dark grey/blackUseful life 3-12 monthsPoisoned by transition metals

    (Fe, S, etc)

    Silver Catalyst Data

  • 25

    Operating Variables

    Operation Pressure 1 atmEthanol to Air Ratio 1.2 % (vol)

    Reaction Temperature 475 550 CSpace Time (Wcat/Ffeed) 0.034 0.674 gr.hr/mole

  • 26

    Apparatus Set-Up

    300

    b

    u

    b

    l

    e

    s

    o

    a

    p

    f

    l

    o

    w

    m

    e

    t

    e

    r

    o

    x

    y

    g

    e

    n

    t

    a

    i

    l

    g

    a

    s thermocouple

    thermocoupledisplay

    tail gas nickelinwire

    air

    furnacereactor

    heaterset upacetaldehyde

    tail gas

    termolyneN2 O2

    n

    i

    t

    r

    o

    g

    e

    n

    syringe pump

    ethanol

  • 27

    Possible Reactions ETHANOL OXIDATION

    C2H5OH + O2 CH3CHO + H2O ETHANOL DEHYDROGENATION

    C2H5OH CH3CHO + H2, EXCESSIVE OXIDATION OF H2

    H2 + O2 H2O, OXIDATION OF ACETALDEHYDE

    CH3CHO + 5/2 O2 2 CO2 + 2 H2O, DEHYDRATION OF ETHANOL

    C2H5OH C2H5OC2H5 + H2O

  • 28

    Kinetic Model

    )pKpKpKpK(ppKkr

    CCWWAA/

    OO

    /OEOsr

    221

    211

    1 1 ++++=

    22225

    254

    4 1 )pKpKpKpK(pKpKkr

    WWCC/

    OOAA

    /OOAAsr

    ++++=

    r5 = kdee pEn

    Ethanol oxidation

    Acetaldehyde oxidation

    Ethanol dehydration

  • 29

    Ethanol Conversion

    0.88

    0.9

    0.92

    0.94

    0.96

    0.98

    1

    0 0.2 0.4 0.6 0.8

    W/F [gr cat.hr/mole EtOH]

    E

    t

    h

    a

    n

    o

    l

    C

    o

    n

    v

    e

    r

    s

    i

    o

    n

    T = 475 oC

    T = 525 oC

    T = 550 oC

  • 30

    CO2 and (C2H5)2O Selectivity

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

    0.002

    0.004

    0.006

    0.008

    0.01

    0.012

    0.014

    0.016

    0.018

    0.02

    space time [gr.hr/mole etOH]

    C

    O

    2

    S

    e

    l

    e

    c

    t

    i

    v

    i

    t

    y

    T=475 oCT=525 oCT=550 oC

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    space time [gr.hr/mole etOH]

    d

    i

    e

    t

    h

    y

    l

    e

    t

    h

    e

    r

    s

    e

    l

    e

    c

    t

    i

    v

    i

    t

    y

    T=475 oCT=525 oCT=550 oC

  • 31

    Kinetic Model

    Kinetic Rate Constants :

    ksrI = 1.914x104 exp (-11447.66/RT)

    ksrII = 1.918x104 exp(-12374.49/RT)

    kIII = 3.830x103 exp(-2818.64/RT)

  • 32

    Kinetic Model

    214472 .78 12 .608ln OK R T R

    =

    R861.15

    RT72.15630Kln A =

    R818.20

    RT98.16117Kln 2CO =

    R336.23

    RT44.16823Kln W =

  • 33

    Parity Plot T = 475 C

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12T = 475oC

    space time

    p

    a

    r

    t

    i

    a

    l

    p

    r

    e

    s

    s

    u

    r

    e

    pE exp pE model pA exp pA model pCO2 exp pCO2 modelpDEEexp pDEE model

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.180

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18data vs model at T=475oC

    [partial pressure] data

    [

    p

    a

    r

    t

    i

    a

    l

    p

    r

    e

    s

    s

    u

    r

    e

    ]

    m

    o

    d

    e

    l

    pE pA pCO2pDEE

  • 34

    Parity Plot T = 525 C

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12T = 525oC

    space time

    p

    a

    r

    t

    i

    a

    l

    p

    r

    e

    s

    s

    u

    r

    e

    pE exp pE model pA exp pA model pCO2 exp pCO2 modelpDEEexp pDEE model

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.180

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18data vs model at T=525oC

    [partial pressure] data

    [

    p

    a

    r

    t

    i

    a

    l

    p

    r

    e

    s

    s

    u

    r

    e

    ]

    m

    o

    d

    e

    l

    pE pA pCO2pDee

  • 35

    Parity Plot T = 575 C

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12T = 550oC

    space time

    p

    a

    r

    t

    i

    a

    l

    p

    r

    e

    s

    s

    u

    r

    e

    pE exp pE model pA exp pA model pCO2 exp pCO2 modelpDEEexp pDEE model

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.180

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18data vs model at T=525oC

    [partial pressure] data

    [

    p

    a

    r

    t

    i

    a

    l

    p

    r

    e

    s

    s

    u

    r

    e

    ]

    m

    o

    d

    e

    l

    pE pA pCO2pDee

  • 36

    Consistency

    Statistical Consistency!!

  • 37

    Consistency

    Thermodynamic Consistency (Boudarts Rule) Boudarts rule (1), Sao < 0 for all components

    there is a reduction in entropy caused by a changed in dimensional phase when a gaseous molecule (3-D phase) is adsorbed on the surface of catalyst (2-D phase) Boudarts rule (2), -Sao < Sgo for all components

    a molecule cannot lose more entropy than it has Boudarts rule (3), -Sao > 41.84 J/mole.K [9.9998

    cal/mole.K] for all componentsas a conservative guideline which is based on the change in volume that occurs

    when a gaseous molecule is adsorbed Boudarts rule (4), -Sao < 51.05+0.0014(- Hao)J/mole.K

    based on empirical work of Everett

  • 38

    Conclusion

    Hougen-Watson formalism is excellent tool to model the heterogeneous catalytic reactions

    It is statistically and thermodynamically consistent

    Teknik Reaksi Kimia LanjutAdvanced in Reaction EngineeringReaksi Kompleks padaReaktor IdealKinetika Reaksi KompleksKinetika Reaksi KompleksKinetika Reaksi KompleksModel Kinetika Reaksi KompleksPerkiraan Parameter Kinetika KompleksAlgoritmaContoh 1Kinetika Reaksi KompleksData KinetikaPersamaan KinetikaMetoda Optimasi untuk Kinetika KompleksProgram MATLABProgram MATLABProgram MATLABLanjutanHasil Estimasi ParameterSimulasi KinetikaComplex Kinetics of Ethanol Oxidation on the Ag Gauzed CatalystAcetaldehydeAcetaldehyde Production RoutesProblem DefinitionResearch DestinationConsistencyConsistencyConclusion