Input for fundamental physics Model independent way to extract information Known tests (very)...

19
Input for fundamental physics Model independent way to extract information Known tests (very) sensitive to theoretical priors challenges to experiment & ןןןןןן- ןןןןןןןןןן ןןRam Brustein Determining the nature of DARK ENERGY Irit Maor Paul Steinhardt

Transcript of Input for fundamental physics Model independent way to extract information Known tests (very)...

Input for fundamental physics Model independent way to extract information Known tests (very) sensitive to theoretical

priors challenges to experiment & theory

אוניברסיטת בן-גוריון

Ram Brustein

Determining the nature ofDARK ENERGY

Irit MaorPaul Steinhardt

0)(3

)(4

83 2

pH

pGH

GH

N

N

Focus on: Equation Of State

standard GR form

Space curvature w = -1/3Higher tensor invariants Scalar fieldsExtra dimensionsScale dependent GN

Modified Friedman eq.• and more, …“never underestimate the creativity of a theorist!”

22 3

2

3

1

3

21

a

aa

H

Hpw

T

TT

FP model EOS additional possibilities: Tegmark

state finder: Sahni et al. 0|0| , tt aa

Classic tests measure integrals of EOSbackground

• luminosity distance

• volume

• angular distance

• shearfluctuations• ISW• linear/non-linear growth factors• speed of sound

z

xH

dxr

1

1 )(

rzdL )1(

)1/( zrdA

)()()( zrzHz

zAP

Hrdz

dV/2

situation unclear: Please help!

situation clear

For example:Luminosity distance dL vs. redshift z

20

2

0)(

ln)1(3ln

0)1(3

H

H

zdwd

wH

T

T

TT

TTT

Textbook form is not sufficient

g= m /(1- m)

z

Q

Q

Qm

QQ

Qm

Q

T

TT

xdxwg

wpppw

1

1

ln)(3exp11/

/

Splitting components off, for example, NR matter (dark and visible)

Degeneracy!

a) DLb) DL/DLc) wQ (z)For 9 different EOS

Assuming 1. perfect knowledge of M

2. flat U.

Maor et al. (2001)

P. Antilogus

J. Frieman et al

Weller & Albrecht

Similar conclusions P. Astier, Kujat et al, E. Linder, ...

I. Maor et al

NOT

MEASURE

w'

V

Vpw

2

21

221

Fast roll – w ~ +1Slow roll – w ~ -1Oscillations – w~ 0

w < -1, w > +1 possible, easy !!!

KVVK

VK9

1110

High sensitivity to choice of theoretical framework and priors

» need to keep an open mind about priors: for example restricting wQ>-1

» present experimental results in a way that will allow modifying priors

? use some input from theory to parametrize evolution

Practical implications:

Breaking the Degeneracy ?

I. Combine different types of high precision (~ percent) measurements

about 20% in current value of wQ & not very helpful for time-dependence, but …

• sensitivity estimates depend on actual value of EOS: away from -1 / large positive w' are best

• Hard to distinguish between different forms of DE.

* partial analysis

*

• DE expected to “disappear” for z > 2• CMB photons travel most of the way through MD U.

No gain compared to “low z” probes

• Best accuracy for dA from CMB ~ 1% (e.g. 1st peak)

CMB comparable to future SNIa experiments

(M known+ flat U.+…)

For example: CMB + SNIaMaor et al (2002)Maor & Brustein (2003)Frieman et al, Caldwell & Doran, ...

╬ Confusion about possible attainable sensitivity of other experiments (shear, volume, growth factor, …)

Breaking the Degeneracy ?

II. Invent new “local” tests:

“move the detector to a different z”

III. Accept theoretical input:

e.g.: that dark energy is a CC,

a specific quintessence model, …

Measure z(t)

)()(1 0

ta

atz

Hztz )1()(

HzHztz )1()(

223 )1( HwH T

1)1()1(

)( 23

2

Twz

ztz

35

232 )(

)1( z

tzzwT

Practical ??

Jimenez & Loeb, Jimenez et al

ConclusionsKnown tests (very) sensitive to theoretical priors

Challenges to Experiment & Theory

• Need: public access to data independent combined analysis explore different priors

• Need:– either a new “local” test - ???– or new theoretical input - ??? – or LUCK

• CMB vs. SN Ia

x=z+1

Maor & Brustein (2003)

Maor et al astro-ph/0112...

Linder, astro-ph/0212...