ì 0§v c$xX@àkÊ éêÚ UmšûDÚUš5° - prpc.phys.nthu...

32
ìv˛c$xX@àkʦéêÚ UmšûUš|Coherent control of laser-induced plasma waveguides and plasma waves by spatial-temporal femtosecond waveform shaping February 19, 2002

Transcript of ì 0§v c$xX@àkÊ éêÚ UmšûDÚUš5° - prpc.phys.nthu...

ì”0§v˛c$xX@àkʦéêÚUmšûDÚUš5°|−„

Coherent control of laser-induced

plasma waveguides and plasma waves

by spatial-temporal femtosecond

waveform shaping

February 19, 2002

ñ “

1 ¬ A‹D*��Ü 1

1.1 A`�q?�òŠ0�s0§Ê¦Í$ . . . . . . . . . . . 1

1.2 ʦ��Ú䋧 . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Xmʦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 ŸÜ� j¶� Dñ™ 10

2.1 ʦ0§˛Èš$DóP−„ . . . . . . . . . . . . . . . . . 10

2.2 ÚUmšûíßÞD¿¾ . . . . . . . . . . . . . . . . . . . . 11

2.3 ʦ0§vÈš$DóP−„ . . . . . . . . . . . . . . . . . 13

2.4 ÚUší��D¿¾ . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Xmʦí��D¿¾ . . . . . . . . . . . . . . . . . . . . . . 17

2.6 û˝j¶DÏW¥� . . . . . . . . . . . . . . . . . . . . . . . 20

3 ã‚êA�TáñDA‹ 22

3.1 �ø�ã‚êA�Táñ . . . . . . . . . . . . . . . . . . . . 22

3.2 �ù�ã‚êA�Táñ . . . . . . . . . . . . . . . . . . . . 22

3.3 �ú�ã‚êA�Táñ . . . . . . . . . . . . . . . . . . . . 22

3.4 ã‚A‹ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 ¡D�TAº5o* . . . . . . . . . . . . . . . . . . . . . . . 23

i

1

¬ A‹D*��Ü

1.1 A`�q?�òŠ0�s0§Ê¦Í$

¡��Vì”ʦ�xí0§ª�, ˛UwAÑrÖû˝ä�F.ªCÿí�x, …

.cAѪ«Ý(4mçJ£vÈj&m$çí!�, ÊrÖhíû˝ä�y�I

A˚æí@à, Wà‚�ä¦m [1, 2]� Ÿ…�šmÚäç [3, 4]� �!Z`¨ [5, 6,7]� Ömäé�X��� |¡ì”ʦyu\ê�TÑ�üä0� [8, 9, 10], àV�

£|�üíŸä&d [11, 12]�

Í7ì”�xíà‰.cÊkw�svÈ��, yÊkw�òª¼Š0� ‚à 

ä�GʦÓï�”J£Ê¦nä0§[×xX, ßÞª¼Š0ò®b�q?ƒì

q?íʦ0§˛AѪ?, �ÿ5(wm#�ªJ�¬ 1020 W/cm2� Ê¥ó#í

mÒ5-, Ó”Dmí>�Tஃ¬ *„?D«Øí1ä, Ĥì”�xˆ�7

ÓÜû˝íä�1/ßÞ¬ ØJ;dí@à� Wàò�äßÞ [13]� A,�X ¦

(ʦ [14, 15, 16]� ÚUš�Ú䋧 [17, 18, 19]� Ÿì”X ¦(mÄ [20, 21]�A,ÙdçJ£‹§è™D��v˛5ÓÜû˝�

ʬ ù�³Bb�ÕF�ªàí’Ä, c¯H�íiÂqe, r‰¨êAø

P�q?��òŠ0�s0§Ê¦Í$� ÓOh˛�5éêʦMø‹p, w�|

ª¼Š06M¥T¯, â 2001 � 2 ~ÈFƒ®ƒí 6 TW, Tòƒ 8 ~Mí 8TW, 7(Ê 10 ~MJ® 10 TW� wÍ$º0ÇDÎÒ~cÇ 1.1 DÇ 1.2� ¥_

ʦÍ$x� 55 fs í0§v , 550 mJ í0§?¾, ©”ꦪJ�Ÿ� 0§ú

ª® 105, ª�ÿƒ 1.5 I÷¦”(�

Ñ7?DD¥�òŠ0ʦÍ$óñ, Bbíl½7c_õð�í=1, U

wÅ�� ì�Ì?\M0ìJTòÅ‚ ì4� Ñ7−„õð�qíÖ0¾, BbÊ

õð�|p¨_q˛−«0�� Ê˛|Í$é_ò4?í HEPA ˙æ, 1/\Mõ

ð�DÕä�£í9Ï� Í(Bb¨7ø¶ 25 fs\��_î�£ù(Ti:sapphire)ʦPÓÂ, wéêmÄu5qIä5>Ÿ|¦ (Nd:YVO4) ʦ, �|ä ® 40

1

2

10-terawatt laser system block diagram

VacuumCompressor

ExperimentalChamber

Third StageAmplifier4-pass

(2.8-J, 532-nmpump)

Pockels CellPulse Cleaner

VacuumSpatial Filter

Beam Expander

Second Stage4-pass Amplifier

(450-mJ532-nm pump)

Beam Expander Energy Tuner

Spatial Filter

RegenerativeAmplifier

(20-mJ,532-nm pump)

Pulse Stretcher

FemtosecondOscillator(CW 2.5-W,

pump)532-nm

SmallSpatial Filter

optical diagnosis

Third OrderAutocorrelator

Beam ProfilerSingle-shot

FROG

AutocorrelatorSpectrometer

1.0 nJ200 ps

805 nm1.5 mJ, 200 ps

100 mJ200 ps

95 mJ200 ps

808 nm120 mJ, 190 ps

810 nm1.1 J, 200 ps

810 nm, 550 mJ55 fs, 10 TW

797 nm1.5 nJ, 25 fs

Ç 1.1: �q?�òŠ0�s0§Ê¦Í$º0Ç�

nm� âk|(bDõðÍ$©!, BbíʦÍ$̶¨Ê−ª�ífËmçA

,,7u¨ÊòQèrkËÞímçA,, ĤFUàíʦPÓÂ.âúkË�

x�GßíJ}‰� ¿t2éýBbA`íʦPÓÂüõx�iGí ì4, ©/�Tb�üvîªJ\M ìí�|, ©U6ÉÛb.ƒøüví&ˆ\ô�

wŸBb¨7 Offner triplet Z�5ÌHóÏr¥¦�0§ô� [22], ªø

ʦ0§ív …ÅB 200 ps� ¤Z�50§ô�Â.UàNŸ�¡N�mçjK,FJ.}ÄùpçÕí‡eHà7û_0§Ì¶êr9ò�

Q-VBbøu¨7ú�íʦ[×ÂV[×PÓÂí�|� ø�yÞ[

×ÂUྠ6 mm� ë� 0.25% íî�£ùÑÓï�”, 20-mJ 0§?¾5Q ÇÉùIä>¦‘ù•ù (Nd:YAG) ʦÑéêmÄ, w�|Óï® 106� ÊÜ;ín

ä0§[×Í$52, 0§ô�ÂD0§9òÂ4uêrú˚, 6ÿuÑ7…Å0

§v 7Ê0§ô�ÂqFùpíHóÏ, }Ê0§9òÂq)ƒêrí^k, U

)0§v ?D9ò�Ÿ…�p5 �Cys� Í7ÊõÒíÍ$52, âkʦ

0§.â%¬rÖmçjK, ‹, gain narrowing� gain saturation��í^@, ·}ùpçÕíHóÏ� WàyÞ[×Â5q, ʦ0§ÿ.âÖŸ¦¬Óï�”D

Pockels cell, w‡eHàø}ý�à0§í9ò� �â�|0§9òÂqmÞ5

Èí�×Di�ÖͪJ^kçÕíù¼Dú¼Hà, Oº¢}ú;0§ô�ÂD

9òÂíú˚7ùp¬Öíû¼Hà� ÊBbÍ$ò®b�K�íä 5-, ¥š

íû¼Hà}ý�à9ò0§íš$� Ñ7j²¥_½æ, BbÊql¤yÞ[

3

Ç 1.2: �q?ʦÍ$õñÎÒ�

×Â5uP5v, ‹p7ø LaFN28 ˘Ÿú, wù� ú¼HàÌÑŠM, ?D`¾

ÁýÊuP52©øB¦¬®�”Fùpíù� ú¼Hà, U)0§ô�ÂD9

òÂ5Èí.ú˚4±ƒ|Q, ùpíû¼Hà6Áƒ|ý, 7?Ê|(0§9ò

Âê�^Ë9ò0§�

ù�û¦−ʦ[×ÂJ¾ 10 mm� ò� 15 mm� ë� 0.25% íî�£ù

ÑwÓï�”, éêmÄu 450-mJ í Q ÇÉIä>¦‘ù•ùʦ, �|ÓïÑ

100� ú�û¦−ʦ[×ÂíÓï�”4u¾ 10 mm� ò� 20 mm íî�£

ù� §ÌkÛDÅ�xXíÌ„, wë�É?®ƒ 0.15%� BbUàù¶�|?¾Ñ

1.4 J í Q ÇÉIä>¦‘ù•ùʦÑwéêmÄ, �|ʦ0§?¾® 1.1 J�

âk[׬˙2 gain narrowing ^@íTà, c [×Âå�|(í0§�|ä 

òüÑ 25 nm, óœkŸPÓ 40 nm ä �|Fú@ƒí 25 fs |s0§v ,[×Â�|Fú@ƒí�²”Ì|s0§v Ñ 40 fs� Êù�Dú�[×Â5

È, Bb‚à 1:3 í±ŸØ!, 1ÊÿõP0[0 sapphire �ñ`Aí‡}, d

Ñ˛È˙šÂ, �JZ¾˛È_G� Ñ7ü\[×Â�ñ\ÌGíéê, ø�yÞ

[×ÂDù�û¦−[×Âíéêʦ·Uà relay-imaging xXûp�ñ�

ʤú�ʦ[×Â5(, uBbA`í0§9òÂ, ø[×(5ʦ0§9ò

� 55 fs, �Ñ�²”Ìí 1.4 I� Ñ7fn¸;9òÂFàímÞ, ¤vm!˛Ø

�ƒ 4 cm íò�� ¹Uþ„�ÿ, 9ò(0§mÒ#�˛ò® 1012 W/cm2, Ê˛

−2fÈv˛−FùêíÝ(4^@˛—Jú;ʦm!í¹”, FJBbøcP

0§9ò¨kö˛5q, òQDõðàö˛5ó©Q�

|(Ñ7a−0§í¹”, Bb¢A`7rPíʦ0§¿¾Í$, ¨�Àê�

4

energy

standard deviation = 1%

even

ts

0.96

40

0.97 0.98 0.99 1.00

30

20

10

0

Ç 1.3: �q?ʦÍ$?¾ ì4 histogram�

ùIää0j&m• (Frequency resolved optical gating, FROG) [23, 24] àJ¿

¾�|0§ívÈš$DóP� 108�G¸ˇíú¼Aóßi [25] J¿¾0§úª�

CCD Ù�AdÍ$J¿¾0§˛È#�}0J£�ÿ¹”, ®�ʦí�|?¾

Ô †ÑÍ$� Ñ7Ê¢[×ÂÄ0§ô�.—7��, Bb6¨7ä aeÍ

$J£�_2¢v[×ÂA�~i_0�

¥cPʦÍ$íú�[×Âîql�TÊñ¸�|, U)�|?¾.§�p

?¾Déê?¾×�í�à, FJ|(í�|0§xe�ük ±1% í?¾ ì4

(Ç 1.3)� ÇÕÊvÈóP,, N¬ÌHóÏ50§ô�Â� ø�yÞ[×ÂuP

5q˘Ÿú5…ËHà^k� M¥[×5m!ò�ÁýÝ(4AóP|‰, Bbª

J)ƒ9ò� 55 fs í0§v D�cívÈóP (Ç 1.4)� |(‚àù� ú�[×

Â5Èíö˛˛È˙šÂ� \MéêʦiÞÌG}0í relay-imaging Í$, UB

b|(í�|0§6?Dxe�ÌGím!iÞJ£˛Èš‡ (Ç 1.5)� w�ÿm

#�ªò® 1019 W/cm2, ˛—JdÑ#ÒÓÜû˝í�‰�x�  �Bbÿ˛‚

à¥PʦÍ$, «n7ò#�ʦ0§ÊÚU2fÈí relativistic self-guidingÛï [26]� 7¥áû˝uBb-ø¥b¨ò?ʦÚUš�Ú䋧ÂJ£−ñ

äX mʦí!��

1.2 ʦ��Ú䋧Â

ñ‡‹§Âí�÷˛%ƒ®��t¼¶Å, Q¡Aé%È?‰í”Ì� Ĥ„Ví

ò?ÓÜõð, ‘.bYÔ‹§ÂxXíÕh� f$ RF �Ú䋧Âw‹§ÚÒ

,Ì×�Ê 1 MV/cm, c苧Âqe”wÎ×/ú�, ¥šíÌ„VAkw�š

5

Ç 1.4: JÀê�ùIää0j&m•Fj)5ʦ0§vÈš$DóP�

Ç 1.5: ʦ0§�ÿmõiÞ#�}0(%pÇ: �ÿmõ�d)�

uP5í‡e.?w§yòíÚÒ, Ä7̶TXy×틧G�� bs ¥Ì

„ÛbSàšÅœsíÚ~šVTX‹§�, ŸÄÊksšÅíÚ~šªJ�^í

�ÿ, wÿõTíÚ~Ò#�ªJ±òk�ÿ‡5Ú~Ò#�,7?DÊÊ.¸;¶

ˇ=1‘K-)ƒyò틧ÚÒ� J 800-nm šÅ� 10-cm ò�í¡�Õmm!

ÑW, w'ñq˪J�ÿƒük 10 µm í×ü,ÚÒœ�ÿ‡Tò7 104 I� Í7

²‡fÈíÚ~š4udš, bTÑ‹§ÂUà´.âø¤d²ÚÒ�²Ñó²5

‹§ÚÒ,7‚àò#�ʦ0§��ÚUšJ`¨ó²ÚÒu�^íj�,7/

ÚU.}�¸;í½æ� wŸÜu‚àò#�ʦ0§í�”�‰ (ponderomotiveforce) Êòò�ÚU2R��ÚÅä, 7Ê•¤��0§‡ªj²,$AÚhò�

}0íš�, Ê¥Úhò�}0íNò5È}|Û#×íó²ÚÒ7?DàV‹§

Úä [17], ÿà°§¨²G‚ཨ‹§øO� ñ‡˛„õ¥Ê¦��ÚUš�

6

line focusing

Ç 1.6: ÆVNŸ(�ÿý<Ç�

Ú䋧Âw‹§ÚÒ?Dò® 1 GV/cm [27], ×Ùòü‹§ÂFÛíqe� ñ�

D«�%‘, FJ�à‰AÑ-øH틧ÂÍ$�

Êò?ʦÚUš�Ú䋧Â52, Úä|�?¾3bu⋧��J‹§

�×V²ì� FJw�-{æ4ubßÞ×PÙíÚUšJTò‹§G�, 1/°

vb`¾ôŤÚUšÊ˛È,íÅ�VÓ‹Ú䋧í�×� béêòP�íÚ

UšÛbò#�íʦ0§, ĤBbÛbøéê0§�ÿƒ'üJ®ƒò#�, O

÷¦}U�ÿ-Vím!A§Øà7òs7Tà�×� Ñ7bÊÅ�×-&Méê

ʦò#�, JÚUmšûVûùʦ0§uø_óçªWퟶ�

BbøUàÆVNŸ (axicon) º¯(�−ñ�¼VßÞÚUmšû, ÆVNŸ

ªJøʦ•Om!‡ªj²�ÿAø‘ò((Ç 1.6), ‚à¤(�ÿ5ʦ0§

BbªJÊ(�−ñ�¼qÁ×ßÞÆ6$íÚU¦−, âkʦ0§í�”�‰

(pondero-motive force) }FUÚU2-íÚä²û¶§Ç, û_w2-Úäò�

±Q7$AÚUmšû� QOJù−éê0§ó²·p¤ÚUmšû52Véê

ÚUš, |(yJú−ʦd²~p¤ÚUš, Jw�”�‰R�¶}Úä–¥,®ƒDÚUš®º5ó§�7âÚUšM/‹§� BbÛb−„ø−(�ÿʦ

0§VßÞÌG ìíÚUmšû, 1/¢ÛbÊ�Ìí?¾-−„ù−éê0

§VßÞPÙ|×íÚUš� ÛD˛�Ü�DbM_Òéý [28, 29], Ê�ìʦ0

§,?¾‘K-, Jb_x�_çÈ�� PÙD0§v í0§å�, ªªÀø0§

��|y×PÙíÚUš� ĤàSßÞ¥š_çí0§å�, 1/�¿w��Ú

Uš5^0, u¨ÚUš�Ú䋧Âí½b=��

1.3 Xmʦ

ÓO�x5ª�%B�üí˛ÈDvÈ��V¡, úks0§ò��X¦(mÄí

Û°nï|~� Ô{�,!ZÙ� [30]� Xmä…X [31]� �œÚ!Z`T [31]� C

”(10−18”) ��}äqÚä�‰ç [21] ��, ¥lªíX mmÄ·ªJTÑ�

7

line-focusedpump pulse

solid target

hot plasma

x-raypulse

pumppulse

gas target

(a)

hot plasma

x-raypulse

(b)

Ç 1.7: (a) �ñä X mʦ, (b) −ñä X mʦý<Ç�

‰íû˝�x� f$ʦu‚àŸäC}äíÕµÚä?¼&dVßÞ, w?¼Ï

�.×, FJ�|É?ƒ®ªcmCuÙÕmš¨, Jb)ƒysšÅí X m�|,ÿ.â«à¿µÚäí?¼&d� Ĥ X mʦ.âJò�Á×íÚUÑÓï�

”, wF�íÕµÚä·\�×, Í(éêwqµÚäƒò?¼$A�¾¥�, 7ß

Þ X míéê[×� b`¨à¤ò�Á×íÚUÛb”ò#�íʦ0§, ¬ �

�V‚à�|?¾ò® 100 J ∼ 1 kJ íÅðõð��Î�ʦÍ$, ˛AŠí¨

êAšÅ® 7 nm í X mʦ [32], w�|0§��œ°¥5¦mÄò� 1010 I�

1/ÓOì”ʦ�xíª¥, A,�í�s0§Ê¦Í$˛ªJ®ƒDÎ�ʦ

Í$óçíª¼Š0, 7U)¨A,�íX mʦAѪ?� °vâkŸäq¶

?¼íÞ·‚·�}s�, FJ X mʦÛbÝ�0§íé꜄, ª–0§Å®

bìZ”íÎ�ʦÍ$, A,�ì”ʦ0§ªJy�^0Ëéê X mʦ, 6

Ĥ)ƒysí X m0§�|� ÝB�à‰éêyÑ¿µ� Þ·‚yÑs�í?¼,7ø�|šÅRªƒw X mš¨�

ñ‡íA,� X mʦÍ$ªYä‡}Ñ�ñäD−ñäù×é, �ñä‡ Xmʦ (Ç 1.7 (a)) u‚àd²(�ÿíʦ0§p¦�ñä[Þ, øä‡Á×ß

Þø−òë�íÚU, ¤ÚUÄʦ0§í‹ÏUw�ÚÅ䲤éËíÅ7¨A

y¿µíÁ×, 1/ÊqµÚä$A�¾¥�, Ä7Ê•(�ÿW²,êÞ X mé

ê5¦[×� −ñä X mʦ (Ç 1.7 (b)) ŸÜD�ñä�˛êrøš, .°5T

Êk…u‚àõ�ÿíʦ0§p¦−ñä, 7•0§‡ªj²Á×|ø−(ÕÚ

U� âk−ñò�œQ, �âíŨA¿µÁ×íœ06œü, FJ.âY˝yò#

�íʦ0§òQø−ñ}äÁ׃D¿µí?¼� Í7óœk�ñä X mʦ,

8

…x�J-iõ:

1. *�ñ[ÞFÁ×|VíÚUò�x�óç×íd²G�, U)w~¦0Ê

dj²,�óç×퉓, Ĥ X mÊfÈv}|Ûd²íR 7Ì„7�

^í[×�×� −ñä X mʦ†Ì¤Ì„, ÄÑâõ�ÿ5ʦ0§Ê•

ʦfÈj²,FßÞí(ÕÚU, wò�íd²}0uWú˚, FJ X m

Êw2fÈvj².}R~� �ÅíÚU¦−.OªJÓ‹[×í�×, yª

Jòü X m�|íêài�

2. âkqµÚä?¼íÞ·‚·”ws� (�Êb�씃Z”5È), FJ°

¥éêÑTò X mʦ�|5.âG¨� úkd²éêí�ñä X mʦ,.â−„w(�ÿéê0§5š‡bé, xX,óç˚Ø�7úkó²éêí

−ñä X mʦ, ÄÑwéê0§D\[×í X mu°¥‡ª, FJA�\

„7°¥éê휄�

3. Ê�ñä X mʦ2, ©Ÿp¦íéê0§·}ú;�ñä‡í[Þ� FJ

JÊõà,bdƒ X m0§í©/�|, wp¦äÞ.â.iyh� Çøj

Þâk�ñä‡\Á×(²ûÞÿjìà, }|ÛéN˘ˆí^‹7‹2¶

ˇímçjK, Ĥ.âì‚y²¥<mçjKCu.J_çí®"� úkJ

d4−ñÑä‡í−ñä X mʦ†Ì¤½æ, wÁ×5ÚUÊØà(ÿD

Úä+¯Ñ−ñ}ä, .}¨ALSí‹2, 7×Ù�“7Í$íµÆ��

JBbñ‡F¨í�q?�ʦÍ$, wF?Dƒ®5mÒ#�˛—JTX

¨−ñä X mʦ5à� J�|šÅÑ 46.9 nm (3p → 3s) í·− X mÊ

¦ [14, 33]D 41.8 nm (5d → 5p) íG−X mʦ [15, 16]ÑW, køù65ÚäÁ

×¥ÿå7$Aé\×äDéN×ä, FÛ5mÒ#�}�Ñ 7 × 1016 W/cm2 D

1.5 × 1016 W/cm2, 7BbíʦÍ$†?DTX�¬ 1018 W/cm2 ímÒ#��

ĤBbオJéêy¿µíÚä?¼, 7øù6�|šÅ}�Rªƒ 15.8 nm(2p → 2s) D 10 nm (4d → 4p) [34]� DÚUš�Ú䋧ÂéNíu, −ñäXmʦ°šÛb�ÿƒ'üíò#�ʦ0§?DÊÚU2fÈD±í�×, JZ

ßÞ—DÁ×G/DÅí(ÕÚU, Ĥ…b.âUàƒó°íÚUmšûxX�

BblåJø−ʦ0§N¬ÆVNŸÊ(�−ñ�¼2ßÞÚUmšû, y

Jù−ʦ0§p¦¤ÚUmšû, øw25×ädy¿µ5Á×1/$Aqµ

Úä�¾¥�, J¨A X méê5¦[×� ODÚUš�Ú䋧ÂF.°5T,ÊkBb1.ıù−ʦ0§ ��ÚUš, 7ubA§Ë‹ÏÁ×Úä� â

kqµÚä?¼Þ·‚Ý�s�, FJÛbv 9òƒ|síéê0§�

9

úkÚUš�Ú䋧ÂJ£−ñä X mʦ¥sáû˝, Bb˛²2Ûû˝

ÍC~3ælå5%‘XM� 7,!J,úù6ín�, BbFÞúí�-{æ4

uJ-sá,øubßÞÌG ìíÚUmšû,ùub�^��ÚUšCu¿

µÁ×ÚU, ¥sK9îÛbN¬úkp¦Ê¦0§š$í|7“−„V®A� ¥

áû˝låZub‚àÛD|híʦ0§vÈ˛Èš$−„xX, º¯2Ûû˝

Í3ælå5ÏWV®AJ,íñ™�

2

ŸÜ� j¶� Dñ™

2.1 ʦ0§˛Èš$DóP−„

Ê�q?�ʦÍ$52, |(�|íʦ0§wd²#�}0u´ÌG� ˛Èó

Pu´�c, ²ì7…í�ÿ¹”� Êc_ʦ0§[׬˙ê, ú;#�}0D˛

ÈóPíÄÖu�ú� øu.�címçjK[Þ, ÊBbí�q?ʦÍ$

2, âkʦm!ʃ®|(�|5‡, .⦬�¬úì_mçjK[Þ, Ĥ¹

U©_[Þ·ƒ® λ/10 ímç��c�, |(6'ñqÿÚ��¬b�_šÅí

ó˛ÈÏ� ùŸÄuVAk.ÌGíéê0§#�}0, ¥}¨AÓïí.Ì

G7û_�|0§#�}0í.ÌG� úŸÄ†VA optical Kerr effect, ¨A

\[×0§…™íAóP|‰� Bb‚àù�ú�[×Â5Èíö˛˛È˙šÂ� \

MéêʦiÞÌG}0í relay-imaging Í$� J£[Þ�c�œòíÀ˘ˆ�

mçŸÒ, `‰9„˛ÈóÏ7Uw�ÿmõª® 1.5 Ií÷¦”Ì� Í7Jbª

ø¥Z¾˛ÈóPUw?D®AÌGÄ�í(�ÿ, ÿ.âUà|hê�ímç_

@4ŸÒÍ$, V^k��í˛ÈóP…��

âÆVNŸí�ÿÔ4ªø, p¦m!.°í˛Èš$}0})ƒ.°í(�ÿ

#�}0(Ç 2.1), à‹b)ƒ?DßÞÌGÚUmšûíÌG(�ÿ, p¦m!í

d²#�}0 I(r) .⣪k 1/r (r uDm!2-í�×)� mç_@4ŸÒÍ$

ªJ°v®A¤øñ™�

mç_@4ŸÒàÇ 2.2 Fý, …uJ3,��45ˆ‘¸“¦‰�ÑŸÞ, *

(JÚ”C9Ú�ñ³�−„wòQ, 7?DZ‰¥¦m5˛ÈóP� º¯ Shack-Hartmann W¿Âúk˛ÈóPí¹vW¿?‰, BbªJ�¤−„mç_@4Ÿ

Ò5[ÞòQ, J−„¥¦0§5˛ÈóP� øjÞ^kʦÍ$2í˛ÈóP…

�, °v¢?D|cʦ0§íêàiJ®ƒÜ;íÆVNŸ(�ÿ�

Shack-Hartmann W¿ÂíŸÜ~¡cÇ 2.3, …u‚àù&í�NŸ³�øp

¦m�ÿ, p¦miÞ,.°P0š‡íbé}Uw�ÿP0�FR , �â(j

10

11

position

(a)

inte

nsity

position

inte

nsity

(c)

position

inte

nsity

(b)

Ç 2.1: .°p¦miÞ}05ÆVNŸ(�ÿ#�}0� (a) �Ý}0, (b)òg}

0, (c) 1/r }0�

íù&W¿Â³�, ¤R ø\W¿7)ƒwš‡íbé¾�

2.2 ÚUmšûíßÞD¿¾

Ú~šÊÚU2fÈí~¦0Ñ

n =

√1 − 4πe2ne

meω20

w2 e uÚäÚh, ne uÚU2Úäíò�, me uÚ䔾, ω0 †up¦Ú~š

íiä0� â,�ªøJÚäò�¯ò†w~¦0±Q, FJà‹ªJßÞø−2

Ûò�Q7û¶ò�òíÆ6ÕÚU, µóÿ}$Aø−2Û~¦0œû¶ˇòí

ÚUmšû�

ñ‡˛„õ¥šíÚUmšûªJàrÖj�ßÞ, Wà‚àóú�4Aûù

^@� „��[ÚCu(�ÿmçÍ$��� óú�4Aûù^@§„kwʦ-Ú

12

outputwavefront

adaptivemirror

inputwavefront

Ç 2.2: mç_@4ŸÒ«TŸÜý<Ç�

incomingwavefront

micro-lens array

2-dimensionaldetector array

Ç 2.3: Shack-Hartmann W¿Â«TŸÜý<Ç�

UÝ(4>�Tà5. ì4, .ñq\¾šûí¹”¸Å�� „��[ÚFßÞ

íÚUmšûÖͪJÅ®bt�, Ouwšûò�º¢¬×7._àkBb'ò

�ÿ-íʦ0§, õà,„��í?·�Ì.â%�y², 1/F$A5ÚUò

�œQ, .‚k@àÊÚUš�Ú䋧ÂJ£ X mʦ,� ĤBb²ÏUàÆ

VNŸº¯(�−ñ�¼, VßÞFÛbíÚUmšû�

BblåJÆVNŸø 200-ps� 800-nm� 300-mJ íʦ0§�ÿƒ×� 1 cmÅ, UwÊ(�−ñ�¼2Á×|ø−ÚU1øw‹Ï, ¤ÏÚU}$Aø−Ëš

²ÕØà [35], %¬×� 200 ps ∼ 1 ns ívÈôb, ZªJ$Aò�×� 10 µmíÚUmšû(Ç 2.4)�

‚à«¿ß−¿¾X [36], ÚUmšûíÅ�� ò�� ˛È}0·ªJ\Ì�h

¿� wÍ$ý<ÇàÇ 2.5� ÊÆVNŸ�ÿßÞÚUmšû5(, Jø−«¿0§

d²¦¬¤ÚUmšû, 1kw(-qøß−i� âkÚU~¦[bÓwò�òQ

7‰“, FJ¦¬.°ÚUò�í«¿0§}�.°íóP‰“, âwß−‘Ðí

R , ÿªJ¿¾ƒ¤óP‰“7R�|ÚUò�}0� ªø¥|c¤«¿0§í

13

line focus in a plasma waveguide formation

Ç 2.4: ÆVNŸ(�ÿF��5ÚUmšû$A¬˙�

prepulse

axicon gas jet

tointerferometer

probepulse

Ç 2.5: ÚUmšûßÞDh¿5õðÍ$-qý<Ç� ø−ã0§%âÆVN

Ÿ�ÿkÅ‘Õ−ñ�¼ßÞÚUmšû, ù−«¿0§d²¦¬¤ÚUmšû,ªpß−iJ¿¾ÚUò�}0�

vÈôb, ÿªJ)ƒc_ÚUmšûí�G‰“�

2.3 ʦ0§vÈš$DóP−„

Êʦnä0§[×Í$2, ʦuP5�|íì”0§ílb£p0§ô�Â, ø

wv …ÅBbìZ”, Í(y£p[×Â52� ¥uÑ7±Q0§íª¼Š0J

fn[׸�, �ƒ[×êH, yJ0§9òÂø0§9ò�ŸVí$Õ� 0§ô

�ÂíŸÜ~¡cÇ 2.6, Ç2ªJõƒsšÅím¦¬ªœÅímç˜�, 1/

.°ä0A}Ê˛È2à0ÇV� Jʤà0Ç5m˜2‹pø˛Èm|‰Â, ø

ª°v−„.°ä0mÒíPÙDóP [37], ¤¹�°k−„0§ÊvÈ,íš$�

øOí˛Èm|‰ÂªJ}Ñù×é, øé¯�¡N�|‰ÂªJ°v|cPÙ

DóP, Ouâk¯�.°dÇÖ5Èx�.NpíȽ, Ĥ¦¬(m$}|Û

U‚4íp , 7U)|‰(5š$̶)ƒGßíúª� ùé_@4ŸÒ¥¦

14

side view

roof mirror

grating pair

chirped pulse

transform-limited pulse

spatial modulator

Ç 2.6: 0§ô�Âý<Ç(mÞ5È˛‹p˛Èm|‰Â)�

�|‰Â³�.©/Ƚí½æ, OuºÉ?|‰óP7̶Z‰PÙ� Bblå

Uàh�ív�;m|‰ÂV¦HJ,H�í˛Èm|‰Â, v�;m|‰Â˛\

„õªJ©/Ë−„0§mÒíš$ [38], ª|v�¸ˇÅ® 3 ps, ä ò® 150THz�

v�;m|‰Â«à AOPDF (acousto-optic programmable dispersive filter)xX, wŸÜàÇ 2.7 Fý, ;Ú²?ÂøøÚmU�²ÑÀW�ñ25;š, ÓO¤;š²‡fÈ, wÊ˛È,½7�pÚmUívÈš$� p¦Ê¦0§RPj

²u•O�ñ0W, w2®_ä0A}D;šóP®ºv, ¤ä0A}íRPj²

}\ì�ƒ�ñMW,, ì�¾í×üâ;š5PÙ²ì� º¯mçRPÒíUà,RPj²íì�ÿ�°kmÒPÙí−„� °v�âú�pÚmUíä0|‰, B

bªJ|c.°mä0Ê�ñ2êÞóP®ºíP0, ²ìwRPj²Sv\ì�,7Z‰w•0W‡ª�×D•MW‡ª�×5ÈíªW, à¤Z−„7®_ä0¦

¬�ñíóPZ‰¾�

‚à SPIDER (Spectral Phase Interferometry for Direct Electric-Field Re-construction) xX [39, 40] Bbø¨øP¹vÀêvÈš$W¿Í$� óœkÛ

ÊBb‚àä0j&m•xXF¨íÀêvÈš$W¿Í$, SPIDER xX.Û

b]cÆ�¶, Ĥ?D�ô×¾5l�vÈ7®ƒ¹vj�vÈš$5?‰�

2.4 ÚUší��D¿¾

Jò#�ʦ0§Êòò�ÚU2��ÚäÚUš3b�sj�, øj�u

‚à0§ÊÚU2fÈví self-modulational instability, ßÞÝ(4 Raman for-

15

acoustic wave

inputpulse

fast ordinary axis(mode 1)

slow extraordinary axis(mode 2)

shapedpulse

Ç 2.7: AOPDF «TŸÜý<Ç�

plasma densityperturbation

incident pulseintensity

moldulated pulseintensity

plasma wave

Ç 2.8: Raman forward scattering F¨A5ʦ0§#�|‰J£ÚUš���

ward scattering 1�¤R�ÚUšPÓ [41] (Ç 2.8), ¥j�F��íÚUšú

kÍ$q¶í×�óçÜ>, 7.‚k¨ ìíÚ䋧Â� ùj�u‚à

ʦ0§DÚU5ÈíuPV��ÚäÚUš [18, 42, 43], àÇ 2.9 Fý, wŸÜ

uòQJò#�ʦ0§í�”�‰R�Ú䇪, �0§×Ç(Úä\”¾œ½

7TGÊŸPí×ä…�7$AÚäò�}0íËÓ, ßÞDʦ0§°j²‡ª

íÚäÚUš� ç��0§v DÚUš5šÅó°v, ù6}®ƒuP7ßÞ|

×PÙíÚäÚUš, ªTÑ ìíÚ䋧ÂUà�

Í7çÚUš5PÙÇáÓ‹v, wU‚6Ó5‰Å, ��0§v ø.yÅ—

uP‘K7û_ÚUšPÙØJ�^íÓ×� Ñ7j²¥_½æ, ˛�bM_Òé

ý [28, 29]Uàø 0§å�V¦HÀø0§, −„w_çí0§v � È�, ªJ

y�^Ë��ÚUš� .Oj²uP‘K̶®ºí½æ, ¢ÄÑ^0íT¯7ª

16

laser pulse

electron plasma wave

Ç 2.9: ò#�ʦ0§uPéêÚUš�

J±Q��0§í#�, Áý7Í$2Ý(4^@Fù–í. ì4� ĤBbl

åN¬úkʦ0§vÈš$í−„VßÞFÛbí0§å�, J�^ËuP��

|×PÙíÚäÚUš, TXÚ䋧ÂUà�

Bbø‚à collective Thomson scattering [44] D frequency domain interfer-ometry [43] sj¶V¿¾ÚäÚUšíPÙ×üD˛È}0� Collective Thom-son scattering ¿¾ŸÜàÇ 2.10 Fý, Êø−éê0§��ßÞä0 ωp 5ÚU

š(, Jù−Q#�«¿0§p¦¤ÚUš52, wv Ñb_ÚUšU‚� âk

w#�œQ, FJ.}Z‰ÚUš5ÕG, O…™º}\ÚUšà¦ (¹ collectiveThomson scattering),7Êä$2ßÞ� ωp 5 StokesmUJ£� ωp 5 anti-Stokes mU� ‚àÓ…�à¦t�[45], ÚUšPÙªâ Stokes (C anti-Stokes) mUíà¦^0J£«¿0§DÚUšíTàÅ�l�7)� Í7×PÙ5ÚUš1

Ýê1í£ýš, 7u¨Ö�ò¼í�šA} (2ωp, 3ωp...) [46], FJwà¦m$ø

|Ûù¼ÝByò¼í Stokes (Canti-Stokes)mU� ‚à�š}&¶ (harmonicanalysis)[47], *s_ Stokes (C anti-Stokes) ]U5Èíóú#�†ªJl�¤v

íÚUšPÙ� �â|céê0§D«¿0§5ÈívÈôb, ´ªJ¿¾ÚUš

PÙí�G‰“� Bblå¦à¶}éê0§í?¾, øwùIäTÑ«¿0§U

à, हªfn«¿0§íä$\œ#5éê0§ä$®Q�

Collective Thomson scattering xX.âUàv Ñb_ÚUšU‚í«¿0

§, ´†wà¦^0¬Q7ØJh¿, FJÃ�Vzw¿¾!‹c?H[Ê«¿0

§í°Q¸ˇq, b_U‚ÚUší�ÌPÙ� Jbêrj&ÚUšÊvÈ,Dó

²˛È,íWÑ, .âUà frequency domain interferometry� àÇ 2.11 Fý, J

v ±ükÚUšU‚í½«¿0§p¦ÚUš, ¤Â½«¿0§}Êä$,ß

Þß−, wß−‘Р�Ñs0§vÈÏíJb� âk¤ù0§DÚUš°¥‡ª,1/PkÚUš2í.°P0� FJÊ¥s0§5È}âkFTP0Úäò�í.

°7|ÛøçÕíóPÏ, U)ä�,íß−‘ÐêÞZ‰, 7ªJ)ƒ¤sõí

17

pump pulse

probe pulse

plasma wave

Ç 2.10: «¿0§p¦ÚUšßÞ collective Thomson scattering�

pump pulsedouble probepulse

plasma wave

Ç 2.11: Frequency domain interferometry ý<Ç

ò�‰“� �âZ‰¤Â½«¿0§5ÈívÈôb, ¹ªj)ÚUšêcíó²

˛È}0� 7N¬Z‰éê0§D½«¿0§5ÈívÈôb, ÿªJ)ƒÚU

šPÙÓvÈíƉ�

2.5 Xmʦí��D¿¾

‚à˛�£5X¦(ù”ñ, ªJ¿¾ X m5¦í"ú¾�  �BbÿUà1¼

eMerge t−Þß5 X ¦(ù”ñ 100-PIN-250N, AŠË¿¾�ò#�ʦ0§

p¦�ñ“À”äFßÞí X m5¦ [48], )ƒ 2.4 mJ í 11–17 nm ,X m0§,w?¾�²0® 3.3%�

wŸBb¨7�T¸ˇÊ 10–50 nm í�Òm$i [49, 50]V¿¾X míä

$� f$m$iíqlŸÜà°Ç 2.12 (a) Fý, ¨Ö7ø_mÞJ£ø õúõ

AdÍ$� mÞÊ˛È,}|.°íä0A}, 7AdÍ$†ø©_ä0A}*p

18

entranceslit

imageplane

grating

(a)

sphericalgrating

entranceslit

Rowlandcircle

imageplane

(b)

aperiodic sphericalgrating

entranceslit

imageplane

(c)

Ç 2.12: ®ém$iÍ$ý<Ç: (a) f$m$i, (b) pÞmÞX ¦(m$i, (c)pÞÝ�È�mÞ X ¦(�Òm$i�

¨í&ñAdƒ|¨, JTòä$íj&�� âk.°HmíAdP0rÊøò(

,, FJ[0ø mù”ñ³�Cu CCD ³�ÿªJ¿)wä$#�� Í7Ê Xm효³�Ü;íNŸ, ÇøjÞ¢§Ìkmçˆ�íxX, wŸÒ¥¦0ØJ

Tô, ¥U) X ¦(m$i̶døOm$iøš�Ü;íAdÍ$, 7.âSà

à°Ç 2.12(b) íZ$� à°Ç2Fý, pÞmÞ¦H7Ÿ…í�ÞmÞ, °v®A

HàDAd5Š?� OF.ªfníuwAdP04urÊF‚í Rowland circle,, 7.uø_�Þ, FJwW¿Â³�6.â[0ʤ�Þ,, ´†ä0j&�ÿ

}±Q� úk¬ Uà X m�ÒÑW¿Âím$i7k, bø X m�Ò��[0

1.uøK˚Øí9, OúkhøHUà�à X m CCD Ù�œím$iÍ$, w

W¿Â³�1̶ఠX m�ÒøOAâ��� ĤBbSà7|hí�Òm$i

ql� àÇ 2.12(c) Fý, ¥uUàøÞpÞÝ�È�mÞVdHàDAd, w…½

5U‚1ÝìM, 7uMÚ‰“JZ‰®Hmí÷¦i, |(U)®HmíAdP

0?DrÊ°ø�Þ,�  �Bb6˛‚à7¥P�Òm$i¿¾7�ò#�ʦ

0§p¦�ñ“î”äFßÞí X ¦(5¦m$ [51]�

úkJ, X ¦(ù”ñD�Òm$iíUà, ·.⺯_çí X m¬˙ÒV

19

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

wavelength (nm)

tran

smitt

ance

1- m Al filterµ

0.0

0.2

0.4

0.6

0.8

1.0

wavelength (nm)

tran

smitt

ance

0 5 10 15 20 25

1- m B filterµ

wavelength (nm)0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

tran

smitt

ance

1- m Be filterµ

(a) (b)

(c)

Ç 2.13: Xm˙Ò¡N0: (a) 1.0-µm ¾½˙Ò, (b) 1.0-µm ¾−˙Ò, (c) 1.0-µm¾‘˙Ò�

˙ÎÆm� úklå¨í·−DG− X mʦ, BbøUà“½”˙ÒVhô‡6

Ê 15.8 nm í5¦, “−”˙ÒVhô(6Ê 10 nm í5¦, “‘”˙ÒVhôù6Ê

46.9 nm D 41.8 nm í5¦� J,˙Ò5¡N0~cÇ 2.13�

b¿¾ X m0§5v , wFUàí!…ŸÜDÛD�s0§v ¿¾xXó

°, Ìu�⿾&¿0§5AóßmU [52, 53] CuD¡50§5>Œóßm

U [54, 55, 56, 21], VR�&¿0§ív � âk‡6Ûbœò#�í&¿0§,FJwÑÜ�œQ, 7(6ªJUàœò#�í¡50§JTò>ŒóßmU, U

)wÑÜ�œò� FJBbøSà>ŒóßxXV¿¾X m0§5v �

BbøJ�q?ʦÍ$�| 800 nm ʦ0§í¶}?¾TÑ¡50§, 1D

&¿5 X m0§ø°p¦Çø−−ñ�¼ (Ç 2.14)� ²Ï_ç5−ñU)Àø Xmmäÿ—JÁ×wÚä, 7¡50§ímä†Ä?¾œQFJ̶øwÁ×� ç

ù6°vTàʤ−ñ�¼,, \ X mmäFÁ×5Úäw?¾}\¡50§�

à, �⿾¥<Á×Úäí?$1−„&¿ X m0§D¡50§ívÈÈ�, ÿ

20

gas jet

photo-electron

time-of-flightspectrometer

x-ray pulse

referencepulse

Ç 2.14: ‚à−ñÁ×5>ŒóßmU¿¾Xm0§v 

ªJ)ƒù65>ŒóßmU, 7j) X m0§5v � ĤÎ7Ÿ…àkßÞÚ

Umšû5−ñ�¼Í$5Õ, BbÛb¨ùP−ñ�¼Í$TXTÑ>Œó

ßmU5VÄ, 1¨øPìWvÈ”$iJ¿¾Á×Úäí?¾}0�

2.6 û˝j¶DÏW¥�

ø¼¨(Ñv�ø�) Bbøc¯mç_@4ŸÒ� Shack-Hartmann W¿ÂD�

¤−„V¨Ê¦0§˛Èš‡−„DW¿Í$, 1/bc¯v�;m|‰Â (AOPDF)�SPIDER D�¤−„V¨Ê¦0§vÈš$−„DW¿Í$, wÍ$-Z~c

Ç 2.15� ø¤˛ÈDvÈš$−„W¿Í$c¯ƒBbF¨êA5�òŠ0�s

0§Ê¦Í$2, UBbxe��q?�ʦ0§êcš$í−„?‰�

ù¼¨ (�låÏWù�) Bbø¨ßÞÚUmšûFÛbíÆVNŸ�

ÿmçÍ$, 1-qW¿ÚUmšûFÛbí«¿ß−¿¾Í$� úkÚUš�Ú

䋧Â, BbøUà(�g−�¼, úk−ñä X mʦ, †Uà·−DG−�º

¯p¦0§š$í−„� −ñò�D0§?¾í|c, BbøþtßÞ|7“íÚ

Umšû�

|(ú¼¨ (�låÏWú�) í�T}ÑsjÞ, ÊÚUš�Ú䋧Â

í¶}, Bbø-qW¿ÚUšPÙí collective Thomson scatteringh¿Í$, ¿

¾ÚUmšû2\ù−éê0§F��íÚUš� Bbø−„¤éê0§š$A

Ñ_çí0§å�,|cwPÙ� v D0§È�Jéê|×PÙíÚUš� Çøj

ÞÊ X mʦí¶}, Bblå−„Jv |síéê0§p¦ÚUmšû, øw

y¿�ËÁ×J$A X mʦíÓï�”, 1/‚àBb˛¨êA5 X ¦(�

Òm$iV¿¾w5¦ä$�

21

Shack-Hartmanndetector

adaptivemirror

adaptivealgorithms

lasersystem

(a)

SPIDERAOPDF

adaptivealgorithms

lasersystem

(b)

Ç 2.15: The adaptive spatial-waveform control system and temporal-waveformcontrol system.

3

ã‚êA�TáñDA‹

3.1 �ø�ã‚êA�Táñ

1. c¯mç_@4ŸÒ� Shack-Hartmann W¿ÂD�¤−„Í$, J¨êA

ʦ0§˛Èš‡−„DW¿Í$�

2. c¯v�;m|‰Â (AOPDF)� SPIDER 0§š$W¿Í$D�¤−„Í

$, J¨êAʦ0§vÈš$−„DW¿Í$,

3.2 �ù�ã‚êA�Táñ

1. c¯ø�F¨50§˛È� vÈš$−„W¿Í$DBb˛¨êA«

T25�q?ʦÍ$, ®Aúk�q?��òŠ0�sʦ0§5v˛š

$íêr−„�

2. ¨ö˛25ÆVNŸ�ÿmçÍ$D(�−ñ�¼−„Í$, JßÞÚU

mšû�

3. ¨ß−iàJ¿¾FßÞÚUmšû5Å�� ò��˛È}0J£�GƉ

¬˙�

4. −„ʦ0§ív˛š$, 1‚àF¨5ß−¿¾Í$h¿FßÞíÚU

mšû, ©v|7ÚUm5_ç‘K�

3.3 �ú�ã‚êA�Táñ

ÊÚUš�Ú䋧¶}

22

23

1. -qÚUš��Í$, º¯ù�êA5ÚUmšû, ®AÊÚUmšû2�

�ÚUš�

2. -q collective Thomson scattering D frequency domain interferometry h¿Í$, JW¿F��ÚUš5PÙ�

3. −„ÚUš��0§5š$AÑ0§å�, J®A|�^5ÚUš��^0�

º¯ÚUšh¿Í$5¿¾, ©vÚUš��5|7‘K�

Ê−ñ X mʦ¶}

1. ÊÚUmšû2éê X mʦ�

2. ¨ X m0§v W¿Í$ (¨ÖùP−ñ�¼Í$J£ìWvÈ”$

i), 1c¯ X ¦(�Òm$i, J®Aú X mʦ�|5êcW¿?‰�

3. −„éê0§š$, º¯ X ¦(W¿Í$J®A X m0§�|5|7“�

3.4 ã‚A‹

1. �q?�ì”ʦ0§v˛š$í−„�

2. ßÞò� ∼ 10 µm, Å� ∼ 1 cm íÚUmšû� w2-ÚUò�×k 1018

cm−3, —JU 500-mJ� 55-fs 5ʦ0§&M 1018 W/cm2 í#�²‡fÈ�

3. ÊJ,ÚUmšû52, ��ßÞ×PÙ5ÚUš, àk‹§Úä� ã‚ÚU

šNò‰“® 30% �

4. `¨é\×ä5·−DéN×ä5G−Æ6Õòò�ÚU, JßÞ X mʦ�

1øwšÅâ 46.9 nm� 41.8 nm }�Rªƒ 15.8 nm D 10 nm�

3.5 ¡D�TAº5o*

1. ʦÍ$ql� ¨� ÍTD&ˆ�

2. ö˛Í$-q� ÍT� ¿ÕD&ˆ�

3. ˙�ql� bM_Ò� �dTÜ� Ú7úÇ�

4. iÂ−„� ’eR¦� ’e}&�

24

5. œH‹�� ÚäiÂ`T�

6. X mä¨ímçõð?‰�

7. ò§Úä!íÍ−D¿¾�

References

[1] L. F. Mollenauer, “Soliton transmission speeds greatly multiplied by sliding-frequency guiding filters,” Optics & Photonics News pp. 15–19 (1994).

[2] W. Forysiak, J. H. B. Nijhof, and N. J. Doran, “Dispersion managed solitons:the key to terabit per second optical fiber communication systems,” Optics& Photonics News pp. 35–39 (2000).

[3] D. A. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman,“Cherenkov radiation from femtosecond optical pulses in electro-optic me-dia,” Phys. Rev. Lett. 53, 1555–1558 (1984).

[4] X. C. Zhang, B. B. Hu, J. T. Darrow, and D. A. Auston, “Generation ofFIR electromagnetic pulse from semiconductor surfaces,” Appl. Phys. Lett.56, 1011–1013 (1990).

[5] S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrica-tion with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).

[6] K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto,“Photonic device fabrication in glass by use of nonlinear materials processingwith a femtosecond laser oscillator,” Opt. Lett. 26, 1516–1518 (2001).

[7] S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for func-tional microdevices,” Nature 412, 697–698 (2001).

[8] T. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, “Absolute OpticalFrequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,”Phys. Rev. Lett. 82, 3568–3571 (1999).

[9] T. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, “Accurate mea-surement of large optical frequency differences with a mode-locked laser,”Opt. Lett. 24, 881–883 (1999).

[10] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L.Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond

25

26

Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288,

635–639 (2000).

[11] J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. Hansch,“Phase Coherent Vacuum-Ultraviolet to Radio Frequency Comparison witha Mode-Locked Laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).

[12] S. A. Diddams et al., “An Optical Clock Based on a Single Trapped 199Hg+

Ion,” Science 293, 825–828 (2001).

[13] D. G. Lee, J.-H. Kim, K.-H. Hong, and C. H. Nam, “Coherent Controlof High-Order Harmonics with Chirped Femtosecond Laser Pulses,” Phys.Rev. Lett. 87, 243902–1–243902–4 (2001).

[14] B. E. Lemoff, C. P. J. Barty, and S. E. Harris, “Femtosecond-pulse-driven,electron-excited XUV lasers in eight-times-ionized noble gases,” Opt. Lett.19, 569–571 (1994).

[15] B. E. Lemoff, G. Y. Yin, C. L. Gordon III, C. P. J. Barty, and S. E. Harris,“Demonstration of a 10-Hz Femtosecond-Pulse-Driven XUV Laser at 41.8nm in Xe IX,” Phys. Rev. Lett. 74, 1574–1577 (1995).

[16] S. Sebban et al., “Saturated Amplification of a Collisionally PumpedOptical-Field-Ionization Soft X-Ray Laser at 41.8 nm,” Phys. Rev. Lett.86, 3004–3007 (2001).

[17] E. Esarey and M. Pilloff, “Trapping and acceleration in nonlinear plasmawaves,” Phys. Plasmas 2, 1432–1436 (1995).

[18] E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of Plasma-BasedAccelerator Concepts,” IEEE Transactions on Plasma Science 24, 252–288(1996).

[19] D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner,“Nonlinear Optics in Relativistic Plasmas and Laser Wake Field Accelera-tion of Electrons,” Science 273, 472–475 (1996).

[20] N. A. Papadogiannis, B. Witzel, C. Kalpouzos, and D. Charalambidis, “Ob-servation of Attosecond Light Localization in Higher Order Harmonic Gen-eration,” Phys. Rev. Lett. 83, 4289–4292 (1999).

27

[21] M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A.Reider, P. B. Corkum, and F. Krausz, “X-ray Pulses Approaching the At-tosecond Frontier,” Science 291, 1923–1927 (2001).

[22] D. Du, J. Squier, S. Kane, G. Korn, and G. Mourou, “Terawatt Ti:sapphirelaser with a spherical reflective-optic pulse expander,” Opt. Lett. 20, 2114–2116 (1995).

[23] D. J. Kane and R. Trebino, “Single-shot measurement of the intensity andphase of an arbitrary ultrashort pulse by using frequency-resolved opticalgating,” Opt. Lett. 18, 823–825 (1993).

[24] K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt.Soc. Am. B 11, 2206 (1994).

[25] A. Braun, J. V. Rudd, H. Cheng, G. Mourou, D. Kopf, I. D. Jung, K. J.Weingarten, and U. Keller, “Characterization of short-pulse oscillators bymeans of a high-dynamic-range autocorrelation measurement,” Opt. Lett.20, 1889–1891 (1995).

[26] T.-W. Yau, C.-J. Hsu, H.-H. Chu, Y.-H. Chen, C.-H. Lee, J. Wang, andS.-Y. Chen, “Dependence of relativistic self-guiding and Raman forwardscattering on duration and chirp of an intense laser pulse propagating in aplasma,” Phys. Plasmas 9, 391–394 (2002).

[27] A. Modena et al., “Electron acceleration from the breaking of relativisticplasma waves,” Nature 377, 606–608 (1995).

[28] D. Umstadter, E. Esarey, and J. Kim, “Nonlinear Plasma Waves ResonantlyDriven by Optimized Laser Pulse Trains,” Phys. Rev. Lett. 72, 1224–1227(1994).

[29] D. Umstadter, J. Kim, E. Esarey, E. Dodd, and T. Neubert, “Resonantlylaser-driven plasma waves for electron acceleration,” Phys. Rev. E 51, 3484–3497 (1995).

[30] J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and theirbiological applications,” Q. Rev. Biophys. 28, 33 (1995).

[31] I. C. E. Turcu and J. B. Dance, X-rays from Laser Plasmas (John Wiley &Sons, Chichester, 1999).

28

[32] J. Zhang et al., “A Saturated X-ray Laser Beam at 7 Nanometers,” Science276, 1097–1100 (1997).

[33] H. Fiedorowicz, A. Bartnik, Y. Li, P. Lu, and E. Fill, “Demonstration ofSoft X-Ray Lasing with Neonlike Argon and Nickel-like Xenon Ions Using aLaser-Irradiated Gas Puff Target,” Phys. Rev. Lett. 76, 415–418 (1996).

[34] S. M. Hooker, “Inner-shell soft X-ray lasers in Ne-like ions driven by opticalfield ionization,” Opt. Comm. 182, 209–219 (2000).

[35] C. G. Durfee III, J. Lynch, and H. M. Milchberg, “Development of a plasmawaveguide for high-intensity laser pulses,” Phys. Rev. E 51, 2368–2389(1995).

[36] S. P. Le Blanc, M. C. Downer, R. Wagner, S.-Y. Chen, A. Maksimchuk, G.Mourou, and D. Umstadter, “Temporal characterization of a self-modulatedlaser wakefield,” Phys. Rev. Lett. 77, 5381–5384 (1996).

[37] A. M. Weiner and A. M. Kan’an, “Femtosecond pulse shaping for synthesis,processing, and time-to-space conversion of ultrafast optical waveforms,”IEEE J. Selected Topics in Quantum Electronics 4, 317–331 (1998).

[38] F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Am-plitude and phase control of ultrashort pulses by use of an acousto-opticprogrammable dispersive filter: pulse compression and shaping,” Opt. Lett.25, 575–577 (2000).

[39] C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for directelectric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).

[40] C. Iaconis and I. A. Walmsley, “Self-Referencing Spectral Interferometryfor Measuring Ultrashort Optical Pulses,” IEEE J. Quantum Electron. 35,

501–509 (1999).

[41] W. B. Mori, “The physics of the nonlinear optics of plasma at relativisticintensities for short-pulse lasers,” IEEE J. Quantum Electron. 33, 1942–1953 (1997).

[42] H. Hamster, A. Sullivan, S. Gordon, W. Ehite, and R. W. Falcone, “Sub-picosecond, electromagnetic pulses from intense laser-plasma interaction,”Phys. Rev. Lett. 71, 2725–2728 (1993).

29

[43] J. R. Marques, J. P. Geindre, F. Amiranoff, P. Audebert, J. C. Gauthier,A. Antonetti, and G. Grillon, “Temporal and spatial measurements of theelectron density perturbation produced in the wake of an ultrashort laserpulse,” Phys. Rev. Lett. 76, 3566–3569 (1996).

[44] S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Experimental observationof relativistic nonlinear Thomson scattering,” Nature 396, 653–655 (1998).

[45] R. E. Slusher and C. M. Surko, “Study of density fluctuations in plasmasby small-angle CO2 laser scattering,” Phys. Fluids 23, 472–490 (1980).

[46] J. M. Dawson, “Nonlinear electron oscillations in a cold plasma,” Phys. Rev.113, 383–388 (1959).

[47] L. S. Kuz’menkov, A. A. Sokolov, and O. O. Trubachev, “Nonlinear Lang-muir waves in a relativistic plasma,” Sov. Phys. J. 26, 1076 (1983).

[48] H.-H. Chu, H.-Y. Mong, J.-Y. Lin, C.-H. Lee, J. Wang, and S.-Y. Chen, “X-ray emission from solid targets irradiated with a terawatt laser,” In Opticsand Photonics Taiwan’01 Proceeding, pp. 691–694 (2001).

[49] T. Kita, T. Harada, N. Nakano, and H. Kuroda, “Mechanically ruledaberration-corrected concave gratings for a flat-field grazing-incidence spec-trograph,” Appl. Opt. 22, 512 (1983).

[50] N. Nakano, H. Kuroda, T. Kita, and T. Harada, “Development of a flat-fieldgrazing-incidence XUV spectrometer and its application in picosecond XUVspectroscopy,” Appl. Opt. 23, 2386 (1984).

[51] M.-Y. Shen, H.-H. Chu, C.-C. Wang, S.-Y. Chen, C.-H. Lee, J. Wang, andJ.-Y. Lin, “Developement of a flat-field grazing-incidence spectrometer andits application in the characterization of XUV laser-plasma emission,” InOptics and Photonics Taiwan’01 Proceeding, pp. 726–728 (2001).

[52] Y. Kobayashi, T. Sekikawa, Y. Nabekawa, and S. Watanabe, “27-fs extremeultraviolet pulse generation by high-order harmonics,” Opt. Lett. 23, 64–66(1998).

[53] Y. Kobayashi, T. Ohno, T. Sekikawa, Y. Nabekawa, and S.Watanabe, “Pulsewidth measurement of high-order harmonics by autocorrelation,” Appl.Phys. B 70, 389–394 (2000).

30

[54] S. P. Le Blanc, Z. Qi, and R. Sauerbrey, “Femtosecond vacuum-ultravioletpulse measurement by field-ionization dynamics,” Opt. Lett. 20, 312–314(1995).

[55] A. Bouhal, R. Evans, G. Grillon, A. Mysyrowicz, P. Breger, P. Agos-tini, R. C. Constantinescu, H. G. Muller, and D. von der Linde, “Cross-correlation measurement of femtosecond noncollinear high-order harmon-ics,” J. Opt. Soc. Am. B 14, 950–956 (1997).

[56] E. Constant, V. D. Taranukhin, A. Stolow, and P. B. Corkum, “Methodsfor the measurement of the duration of high-harmonic pulses,” Phys. Rev.A 56, 3870–3878 (1997).