Triple Integral Spherical

Post on 22-Nov-2014

128 views 1 download

Tags:

Transcript of Triple Integral Spherical

1

x

y

z

P(,, )

is the distance of P from the origin (O)

4.5 The Triple Integral in Spherical Coordinates

O

is the measure of the angle which makes with the + side of the z-axis

OP

Q

is the measure of the angle which makes with the + side of the x-axis

OQπθ 0

πφ 20 0

Example Plot the following spherical points.

243 a.

,,P

422 b.

,,Q

x

y

z

3

2

P

x

y

z

4

2

Q

4

r

θsin

z

θcos

θsinr

θcosz

cosrx θsin cos

sinry θsin sin

22 zr

222 zyx

z

r

x

y

z

P(,, )

O

Q

P(x, y, z)

4

θcosz

cosθsinx

sinθsiny

2222 zyx

Example In spherical coordinates, an equation of the paraboloid given by

22 yxz

5

is 22 sinsincossinθcos

222222 sinsincossinθcos

2222 sincossinθcos

cosθsinx sinθsiny

θcosz

22 sinθcos 02 θcossin 0or 0 2 θcossin

2

sin

θcos

6

Example In spherical coordinates, an equation of the sphere given by

9222 zyx

6

is

9222 θcossinsincossin

cosθsinx sinθsiny

θcosz

922222222 θcossinsincossin

92222 θcossin

9222 θcossin

92

3 .3

7

x

y

z

Consider a solid S.

Subdivide S into n sub-solids by first drawing planes through the z-axis.

In doing so, we are actually forming a partition of the interval for .)

i

88

x

y

z

We then draw spheres centered at the origin,

In doing so, we are actually forming a partition of the interval for .)

i

99

x

y

z

We then draw circular cones with vertex at the origin and having the z-axis as axis of each cone.

In doing so, we are actually forming a partition of the interval for .)

i

x

y

z

Let d, d and d be increments of the coordinates , and .

These increments determine an element of volume, three of whose edges are of lengths d, d and sin d.

d

d

sin d

dsindddV dddsindV 2

solution:

Example Find the volume of a spherical solid of radius r.

An equation of a sphere of radius r is

.ror z

x

y

zThe volume of the spherical solid is 8 times the volume of the solid in the first octant.

2222 rzyx

20

2

0

rzyx 222

dddsindV 2

dddsinVr

8 22

0

0

2

0

dddsinr

8 2

0

0

22

0

ddsinr

3

8 2

0 0

32

0

ddsinr

3

82

0

2

0

3

dφθcos-r / 2

02

0

3

3

8

dφr

3

82

0

3

23

8 3

runits. cubic

3

4 3r

Example Let S be the solid bounded by the graph in the first octant of .zyx 4222

Evaluate

z

x

y

z

solution:

20

2

0

2222 zyx

.22 yx

dV

S

dddsindV 2

dddsinV 22

0

2

0

2

0

cosθsinx sinθsiny

θcosz

2222 sinθsincosθsinyx

222222 sinθsincosθsin

2222 sincosθsin θsin22

θsin

dddsinV 22

0

2

0

2

0 θsinyx 22

S yx

dV22

dddsin 22

0

2

0

2

0 θsin

1

ddd 2

0

2

0

2

0

dd 2

2

0

22

0

2

0

dd 2 2

0

2

0

d 2

2 2

0 2

0

d .22

2

Example Let S be the solid inside the graphs in the first octant of .yxzzyx 22222 and 4

z

x

y

zsolution:

Set-up the iterated integral which gives the value of

42222 yxyx

422 22 yx

222 yx

222 yxz

.32 dVzyxS

2

2

4

40

2

0 2222 zyx

dddsinV 24

0

2

0

2

0

cosθsinx sinθsiny

θcosz

dddsin24

0

2

0

2

0 θcossinθsincosθsin 32

.32 dVzyxS

Exercise Evaluate the following.

3 πa.Ans

15

122

.Ans

dddsincosa 24

0

2

0

2

0 a.

dzdydxzy yx

yx

21

0

1

0

2

2 22

22 b.

2

a.Ans

222

0

0

0

22 222

c.zyx

dzdydxa xa yxa