Triple Integral Spherical
date post
22-Nov-2014Category
Documents
view
112download
1
Embed Size (px)
Transcript of Triple Integral Spherical
4.5 The Triple Integral in Spherical Coordinatesz
P(V,U, J) y U V Ox y
V is the distance of P from the origin (O) U is the measure of the angle which OP makes with the + side of the z-axis J is the measure of the angle which O makes with the + side of the x-axis1
J
V
y Q
0e e0e e2 0eV
Example Plot the following spherical points. T T a. P 3, , 4 2z
T T b. Q 2 , , 2 4z
U!
T 4
yP3 y x
T U! 2y
yy yQ
x
T J! 2
T J! 4
z
P(x, y, z) P(V,U, J) y U V
r sin ! Vr
Ox
y
J
V
y Q
r ! V sin z cos ! V z ! V cos
z U V
V ! r z2
2
x ! r cosJ ! V sin cosJ y ! r sinJ ! V sin sinJ
V ! x y z
2
2
2
x ! V si y ! V siz ! V cos
cosJ si J
x y z !V2 2 2
2
4
Example In spherical coordinates, an equation of the paraboloid given by 2 2 z!x y is 2 V cos ! V si U cos J V si U si2 2 2 2 2
x ! V sin cos J y ! V sin sinJ z ! V cosJ2 2
V cos ! V si U cos J V si U si J V cos ! V 2 sin2 U cos2 J sin2 J V cos ! V 2 sin2 U V V si 2 U cos ! 0
2
V ! 0 or V si U cos ! 0cos V ! sin2 U5
Example In spherical coordinates, an equation of the sphere given by 2 2 2 x y z !9 is
x ! V si cos J y ! V si si J z ! V cos2
V si
U cos J V si U si J V cos2
2
!9
V 2 si 2 U cos2 J V 2 si 2 U si 2 J V 2 cos2 ! 9 V 2 sin2 U V 2 cos2 ! 9 V sin U cos V2 ! 9 V ! s3 V ! 3.6
2
2
2
! 9
Consider a solid S.z
Subdivide S into n sub-solids by first drawing planes through the z-axis.y x
( iJ
In doing so, we are actually forming a partition of the interval for J.)7
z
(i Vy x
We then draw spheres centered at the origin,
In doing so, we are actually forming a partition of the interval for V.)8
z
( iU
y x
We then draw circular cones with vertex at the origin and having the zaxis as axis of each cone.
In doing so, we are actually forming a partition of the interval for U.)9
z
These increments determine an element of volume, three of whose edges are of lengths dV, VdU and V sinU dJ. dVy
x
VdU V sinU dJ
Let dV, dU and dJ be increments of the coordinates V, U and J .
dV ! dV VdU V sin UdJ 2 dV ! V sin U dV dU dJ
Example Find the volume of a spherical solid of radius r. solution: An equation of a sphere of radius r is
x y z !r z2 2 2
2
or V ! r .
z
The volume of the spherical solid is 8 times the volume of the solid in the first octant.y
x
T 0 eJ e 22 2
T 0 eU e 22
V ! x y z !r
dV ! V sin U dV dU dJV ! 8T 2 0 T 2 0 T 2 0 3
2
T 2 0 T 2 0
T 2 0
r 0
V 2 sin U dV dU dJ
! 8
r V 2 sin U dV dU dJ 0 V sin U dU dJ 3 0T 2 0 3 r
! 8
8r ! 3 T 3 8r 2 ! 0 d 3
T 2 0
8r T/2 sin UdU dJ ! - cos 0 d 3 3 8r 3 T 4Tr ! ! cubic units. 3 2 3
3
T 2 0
Example Let S be the solid bounded by the graph in the first octant of x 2 y 2 z 2 ! 4. Evaluate
S
dV x2 y 2
.
solution:z z
T 0eJ e 2y x
T 0 eU e 2
V ! x2 y2 z2 ! 2
dV ! V sin U dV dU dJ
2
x ! V sin cosJ y ! V sin sinJ z ! V cos
V !2
T 2 02
T 2 0
2 0
V sin U dV dU dJcos J V sin sinJ 2 2 2
2
x y !
V sin2
! V sin ! V sin ! V sin2
cos J V sin2 2
2
2
2
sin J
2
2
cos J sin J !
V sin
2
2
V !
T 2 0
T 2 0
2 0
V 2 sin U dV dU dJT 2 0 T 2 0 T 2 0
x 2 y 2 ! V sin
S
dV x2 y2
! ! !
T 2 0
T 2 0
2 0
1 V sin
V 2 sin U dV dU dJ
T 2 0 T 2 0
2 0 2
V dV dU dJ2
V 2
dU dJ0
! 2 ! 2
T 2 0 T 2 0
dU dJ
T T T T2 d J ! T 2 dJ ! T ! . 0 2 2 2
Example Let S be the solid inside the graphs in the first octant of x 2 y 2 z 2 ! 4 and z ! x 2 y 2 . Set-up the iterated integral which gives the value of
2 x 3 y z dV .S z solution:z
x2 y2 x2 y2 ! 4 2x 2 y ! 4 x y !22 2 2 2
y x
z!
x y ! 2
2
2
2 2 T J! 4T 0 eU e 22 0
x ! V sin cosJ y ! V sin sinJ z ! V cosV ! x y z !22 2 2
T 0 eJ e 4 V !T 4 0
T 2 0
V 2 sin U dV dU dJ
2 x 3 y z dV .S
!
T 4 0
2V sin0
T 2 0
2
cos J 3V sin sinJ V cos V sin UdVdUdJ2
Exercise Evaluate the following.
a.
0 1
T 4 0
2 a cos J 0
2T 0
V sin JdUdVdJAns . a3
2
b.
1 y 2 0
2 x 2 y 2 x y2 2
z dzdydx dzdydx 2 2 2 x y zT 2 2 1 ns . 15
2
c.
0
a
a2 x2 0
a2 x2 y2 0
Ta Ans . 2
Recommended