The Energy-Water Nexus at DOE 2016 Climate Change … · 2016-10-21 · Drinking Water Treatment...

Post on 13-Apr-2020

0 views 0 download

Transcript of The Energy-Water Nexus at DOE 2016 Climate Change … · 2016-10-21 · Drinking Water Treatment...

EWN

TheEnergy-WaterNexusatDOE2016ClimateChangeSymposium:Water-Energy-Climate

October12,2016

DianaBauerOfficeofEnergyPolicyandSystemsAnalysis

DepartmentofEnergy

1

EWN2

Energy-WaterNexus:DOE’sRole

• DOEhasstrongexpertiseintechnology,modeling,analysis,anddataandcancontributetounderstandingtheissuesandpursuingsolutionsacrosstheentirenexus.

• Ourworkhasbroadanddeepimplications– User-drivenanalytictoolsfornationaldecision-

makingsupportingenergyresiliencewithinitialfocusonthewater-energynexus

– SolutionsthroughtechnologyRDD&D,policyanalysis,andstakeholderengagement

• Wecanapproachthediffusewaterareastronglyfromtheenergyside– Focusonourtechnicalstrengthsandmission– Leveragestrategicinteragencyconnections

Downloadthefullreportatenergy.gov

StrategicPillars

3

• Optimizethefreshwaterefficiencyofenergyproduction,electricitygeneration,andendusesystems

• Optimizetheenergyefficiencyofwatermanagement,treatment,distribution,andendusesystems

• Enhancethereliabilityandresilienceofenergyandwatersystems

• Increasesafeandproductiveuseofnontraditionalwatersources

• Promoteresponsibleenergyoperationswithrespecttowaterquality,ecosystem,andseismicimpacts

• Exploitproductivesynergiesamongwaterandenergysystems

4

EnergyandWaterSystemsareInterconnected

Secretary’sEnergy-WaterRoundtableSeries(2015)

• 6Roundtables:– Opening,Fuels,WaterInfrastructure,Electricity,SystemsIntegration,Capstone

• KeyTakeaways:– ClimateChange:Designersofenergytechnologies,policies,andsystemsshouldbecognizant

ofinterconnectionamongenergy,water,andclimate.– EnergySecurity:Energysystemsmustmitigateriskrelatedtowaterresourcescarcityand

variability.– LifeCycleEnvironmentalResponsibility:Environmentallyresponsibleenergytechnologyand

policydevelopmentshouldbeinformedbylifecycleandsystemicunderstanding.– SystemsComplexityandSystemsChange:Understandingchangeinenergyandwater

systemsisrequiredforforward-lookingtechnologyinvestmentandpolicythinking.• NextSteps:

– SupportPriorityTechnologyRDD&D– BuildaData,Modeling,andAnalysisPlatformtoImproveUnderstandingandInform

Decision-MakingForaBroadRangeofUsers– EngageStatestoAdvanceInnovative,IntegratedPolicy DesignsatMultipleScales– PursueInnovativeFinanceModelstoLeverageOpportunitiesacrossMultipleSectors– PursueBilateralInternationalCollaborationtoSolveSharedChallengesattheEnergy-Water

Nexus5

EWN6

Energy-WaterNexusWorkAreas

EWN7

RespondingtoChallengesintheEnergy-WaterSystem

Water-EfficientCooling

Energy-OptimizedTreatment,

Management,andBeneficialUseofNontraditional

Waters

SustainableLow-EnergyWaterUtilities

Population/Migration

LandUse&LandCoverChange

EnergyTechnologyPathways

RegionalEconomicDevelopmentUrbanization&

InfrastructureDynamics

PolicyandInstitutionalChanges

StakeholderandConsumerPreferences

ClimateChange(Mitigationand

Adaptation)

ForcesonSystem

TechnologySolutions

TrendsinWaterWithdrawalsofThermoelectricGenerationRelativetoOtherUses

8

The water withdrawal intensity of thermoelectric generation has decreased since 1950. Total water withdrawn by thermoelectric generation increased significantly between 1950 and 1980 and has declined somewhat since then.

Data source: Maupin, M.A. et al., 2014, Estimated use of water in the United States in 2010: U.S. Geological Survey Circular 1405; and EIA. 2011. Annual Energy Review 2011.

9

U.S.PowerSectorisRespondingWithIncreasedUtilizationofDryCoolingandNontraditionalWater

DataSource:EIA(2015)

However…• Currentdrycoolingtechnologiesaremoreexpensiveandcomewithefficiency

penalties(andassociatedhigheremissions).• Usingnontraditionalwaterusuallymeansmoreelectricityforpumpingand

treatment(andassociatedhigheremissions).

73%

13%

7%

3%4%

ExistingCoolingSystems(1,595)

31%

27%14%

7%

21%

ProposedCoolingSystems(30)

SurfaceWater Groundwater

PlantDischarge

Other N/A(DryCooling)

10

• Air-coolingheatexchangers(3projects)• Sorption&othersupplementalcooling(4projects)• Radiativecoolingandcoolstorage(3projects)

‣ FluegasH2Orecovery&coolstorage(2projects)‣ CombinedACC&coolstorage(2projects)

SampleIndirectDry-CoolingSystemthatSatisfiesARIDProgramObjectives

ARPA-E’sAdvancedResearchinDryCooling(ARID)ResearchSolicitationisfunding14projectsforatotalof$30million:

DryCoolingforElectricityGeneration

11

InSomeCases,Low-EmissionsGenerationRequiresMoreWater

(DOE,2014)DataSource:Meldrumetal.(2013)

12

CarbonCaptureIncreasesWaterIntensityofPower

Source(DOE,2014).DataSource:Meldrumetal.(2013)Capturetechnology:monoethanolamine

0

200

400

600

800

1,000

1,200

1,400

CC PC SC IGCC

NaturalGas Coal

Consum

ption(gal/M

Wh)

ConsumptionwithoutCarbonCaptureAdditionalConsumptionwithCarbonCapture

13

TheEnergyIntensityofWaterTreatmentandProvisioningVaries

Manytrendsmayincreasetheenergyconsumptionbythewatersector,including:• Increaseddemandforwater;• Retrievingwaterfromfurtherawayorharder-to-reachsources;• Treatingnontraditionalwaterforbeneficialuse;and• Meetingmorestringentenvironmentalregulations.

Energy Intensity for California Low (kWh/MG)

High (kWh/MG)

Notes Reference

Treatment

Drinking Water Treatment 100 16000 High: Desalination (CEC 2005)

Wastewater Treatment and Distribution 1100 4600 (CEC 2005)

PumpingWater Supply/Conveyance 0 14000 High: Interbasin transfer

(State Water Project); Low: Gravity fed

(CEC 2005)

Primary Drinking Water Distribution 700 1200 (CEC 2005)

Recycled Water Distribution 400 1200 (CEC 2005)

Groundwater for Agriculture 500 1500 High: CO River BasinLow: North CA Coast (CPUC 2011)

(source:DOE,2014)

EWN

EnergyPositiveWaterResourceRecovery

14

• NSF/EPA/DOE/WE&RFCollaboration:waterresourcerecoverytestbednetworkthatlinkedtopolicy-making.http://www.werf.org/testbednetwork

• ComplementsEEREworkonwastewateraccelerator,wastewatertechnicalassistance,andwaste-to-energyR&D

EWN15

CleanWaterTechnologies

• Addressmanufacturingbarrierstoproducinglow-energy,cost-competitivecleanwater• Technologyprioritiesarisefromfacility-levelsystems-relevantchallenges• Leverageexistingfederalresources(e.g.DOI/BureauofReclamationtestbeds)• RequestforInformationtobeissuedsoon

WaterSources

Output• Seawater• Surface• Lake• Brackish• Processes • Produced• Extracted

• Municipal • Industrial• Agricultural

Energy FlexibilityElectricity, Fossil, Renewable, Waste Heat

ResidualSludge, Brine, Toxins, Bio solids

Water Intake

Water Purification (including

desalination)

Post treatment

and transport

SelectedRecentEventsIllustratingtheEnergySector’sVulnerabilitytoClimateChange

16Source:U.S.EnergySectorVulnerabilitiestoClimateChangeandExtremeWeather(DOE,2013)

Data,Modeling,andAnalysisPlatform

IntegratedMulti-System,Multi-ScaleModeling

FrameworkandIAVModeling

Impact,Adaptation,andVulnerabilityStrategicResearchandAnalysis

D M ANational

Regional

Sub-Regional

LayeredEnergyResilienceData-KnowledgeSystem

Regional-ScaleData,Modeling,andAnalysis

TestBeds

Electric Power

Population/Migration

Climate

Land Use/Cover

Water Systems

17

EWN

EnergyandWaterSystemsIntegration

• CapturingtheBenefitsofIntegratedResourceManagementforWater&ElectricityUtilitiesandtheirPartners(WorkshopwithUniversityofCalifornia-2015)

– Convenedutilitiesandpolicymakersinwaterandelectricity– Identifiedopportunitiesindevelopingsharedsystemsunderstanding;dataand

analytics;andlogisticsandimplementationtomakeprogressinGHGemissionsreduction,resilience,andresourceefficiency

• IntegratedDesalinationandEnergyDesignCompetitionwithIsrael(2016)– Competitionfordesignsfornovelintegratedenergyanddesalinization systems

thatcan:• Flexiblyinterfacewiththemodernelectricgrid.• Vary theiroperations dependingoncurrentconditions.• Economicallyandflexiblybalanceinputandoutputflowsofwater,

electricity,andwastes.• US-EUCollaborationonPower-WaterSystemsModeling(2016workshop)

– Focusedoninnovativepower-waterlinkagesinmodelstoinformpolicyandotherdecision-making

– Identifiednextsteps,includingexploringcouplingbetweenwaterandelectricitysectorsthatincreasesflexibilitytoincreaseresilience

18

19

U.S.-ChinaCleanEnergyResearchCenter:NewEnergyandWaterTrack

InNov2014,PresidentsObamaandXiJinping announcedextensionofCERCfrom2016to2020andexpandedscopetoincludewaterrelatedaspectsofenergyproductionanduse.

• Energy&WaterUSChinaCleanEnergyResearchCenter(CERC)topicareas:

– Waterusereductionatthermoelectricplants– Treatmentandmanagementofnon-traditionalwaters– Improvingsustainablehydropowerdesignandoperation– Climateimpactmodeling,methods,andscenariosto

supportimprovedenergyandwatersystemsunderstanding

– Dataandanalysistoinformplanning,policy,andotherdecisions

• CERCGoals:– SpurInnovationofCleanEnergyTechnologies– DiversifySourcesofEnergySupply– ImproveEnergyEfficiency– AccelerateTransitiontoLow-CarbonFuture– AvoidtheWorstConsequencesofClimateChange

• DOECERCdomesticenergy-water$2.5millionannualinvestmentalignwithandarepartofthelargerenergy-watercrosscutstrategy

Questions?

20

DianaJ.Bauer,Ph.D.OfficeofEnergyPolicyandSystemsAnalysis(EPSA)DepartmentofEnergydiana.bauer@hq.doe.gov(202)287-5773

DOEEnergy-WaterNexusCrosscutTeam:http://www.energy.gov/under-secretary-science-and-energy/water-energy-tech-team

EPSAEnergy-WaterInitiativehttp://energy.gov/epsa/energy-water-nexus