Reaction-Di usion Equations with Hysteresis in Higher...

Post on 26-Apr-2020

3 views 0 download

Transcript of Reaction-Di usion Equations with Hysteresis in Higher...

Reaction-Diffusion Equations with Hysteresis inHigher Spatial Dimensions

Mark Curran 1 2 3

Under the supervision of PD. Dr. Pavel Gurevich 1 2

1Free University Berlin

2SFB910 (Sonderforschungsbereich 910)

3Berlin Mathematical School

Patterns of Dynamics, Berlin, July 2016

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Hysteresis in Biology

Bacteria(Jager, Hoppensteadt ’80, ’83):

Non-diffusing: Bacterium

Diffusing: Nutrient, pH

Figure: Chiu, Hoppensteadt, Jager, Analysis andComputer Simulation of Accretion Patterns in BacterialCultures J. Math. Biol. 32, No.8 pp. 841-855 (1994)

Thresholds: α < β

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Hysteresis in Biology

Hydra (Marciniak-Czochra ’06):

Non-diffusing: Cells

Diffusing: Ligands

Figure: ‘Reaction-diffusion equations and biologicalpattern formation’, Anna Marciniak-Czochra, lecturenotes, University of Wroc law, 2011

Thresholds: α < β

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Hysteresis in Biology

Hydra (Marciniak-Czochra ’06):

Non-diffusing: Cells

Diffusing: Ligands

Figure: ‘Reaction-diffusion equations and biologicalpattern formation’, Anna Marciniak-Czochra, lecturenotes, University of Wroc law, 2011

Thresholds: α < β

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Hysteresis in Biology

Hydra (Marciniak-Czochra ’06):

Non-diffusing: Cells

Diffusing: Ligands

Figure: ‘Reaction-diffusion equations and biologicalpattern formation’, Anna Marciniak-Czochra, lecturenotes, University of Wroc law, 2011

Thresholds: α < β

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Model Problem

x ∈ domain ⊂ Rn, n ≥ 2, t ≥ 0,u(x , t), v(x , t) ∈ R, NeumannB.C., ξ0 ∈ {red, blue},

ut = ∆u + f (u, v),v = H(ξ0, u),

u|t=0 = ϕ.

Thresholds: α < β

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Model Problem

x ∈ domain ⊂ Rn, n ≥ 2, t ≥ 0,u(x , t), v(x , t) ∈ R, NeumannB.C., ξ0 ∈ {red, blue},

ut = ∆u + f (u, v),v = H(ξ0, u),

u|t=0 = ϕ.

Non-Ideal Relay:

Thresholds: α < β

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Model Problem

x ∈ domain ⊂ Rn, n ≥ 2, t ≥ 0,u(x , t), v(x , t) ∈ R, NeumannB.C., ξ0 ∈ {red, blue},

ut = ∆u + f (u, v),v = H(ξ0, u),

u|t=0 = ϕ.

Non-Ideal Relay:

Thresholds: α < β

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Connection to Slow-Fast Systems

ut = ∆u + f (u, v),

εvt = v − v3

3 − u.

Stable normally hyperbolic, slowmanifolds:red, blue

NOTE: Unlike, e.g., travellingwaves in Fitzhugh-Nagumo, the

fast variable is not diffusing.

Slow-Fast System

Fold Points: α < β

GOAL: Develop a theoretical framework for systems of independentnon-ideal relays coupled via diffusion.

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Connection to Slow-Fast Systems

ut = ∆u + f (u, v),

εvt = v − v3

3 − u.

Stable normally hyperbolic, slowmanifolds:red, blue

NOTE: Unlike, e.g., travellingwaves in Fitzhugh-Nagumo, the

fast variable is not diffusing.

Slow-Fast System

Fold Points: α < β

GOAL: Develop a theoretical framework for systems of independentnon-ideal relays coupled via diffusion.

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Connection to Slow-Fast Systems

ut = ∆u + f (u, v),

εvt = v − v3

3 − u.

Stable normally hyperbolic, slowmanifolds:red, blue

NOTE: Unlike, e.g., travellingwaves in Fitzhugh-Nagumo, the

fast variable is not diffusing.

Slow-Fast System

Fold Points: α < β

GOAL: Develop a theoretical framework for systems of independentnon-ideal relays coupled via diffusion.

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Context

ut = ∆u + f (u, v),v = H(ξ0, u),

u|t=0 = ϕ,

+ Neumann B.C, domain ⊂ Rn, n ≥ 2.

Context:

Numerics + modelling: Jager et. al ’80, ’83, ’94;Marciniak-Czochra ’06; Lopes et al. ’08.

Existence of solns for multi-valued hysteresis: Alt ’85; Visintin’86; Aiki, Kopfova ’08.

n = 1: Well-posedness for transverse ϕ (Gurevich,Tikhomirov, Shamin ’12 - ’14)

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Context

ut = ∆u + f (u, v),v = H(ξ0, u),

u|t=0 = ϕ,

+ Neumann B.C, domain ⊂ Rn, n ≥ 2.

Context:

Numerics + modelling: Jager et. al ’80, ’83, ’94;Marciniak-Czochra ’06; Lopes et al. ’08.

Existence of solns for multi-valued hysteresis: Alt ’85; Visintin’86; Aiki, Kopfova ’08.

n = 1: Well-posedness for transverse ϕ (Gurevich,Tikhomirov, Shamin ’12 - ’14)

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Difficulties

ut = ∆u + f (u, v), ∈ Lqv = H(ξ0, u), ∈ L∞

u|t=0 = ϕ,

+ Neumann B.C, domain ⊂ Rn, n ≥ 2.

Difficulties:

What is a sufficient condition for uniqueness?

Definition of solution? ut ,∆u ∈ Lq, q large enough.

What is the mechanism for pattern formation?

How does the free boundary evolve explicitly?

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Difficulties

ut = ∆u + f (u, v), ∈ Lqv = H(ξ0, u), ∈ L∞

u|t=0 = ϕ,

+ Neumann B.C, domain ⊂ Rn, n ≥ 2.

Difficulties:

What is a sufficient condition for uniqueness?

Definition of solution? ut ,∆u ∈ Lq, q large enough.

What is the mechanism for pattern formation?

How does the free boundary evolve explicitly?

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Result

(P)

ut = ∆u + f (u, v),v = H(ξ0, u),

u|t=0 = ϕ.

+ Neumann B.C, domain ⊂ Rn, n ≥ 2

Theorem (Local existence of solutions)

If ϕ is transverse then there is a T ∗ > 0 such that:

1 There is at least one transverse solution to (P) on (0,T ∗)

2 Any solution to (P) is transverse on (0,T ∗)

Theorem (Global uniqueness of transverse solutions)

Given any T > 0 such that u1, u2 are two transverse solutions to(P) on the time interval t ∈ (0,T ), then u1 = u2 on (0,T ).

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Result

(P)

ut = ∆u + f (u, v),v = H(ξ0, u),

u|t=0 = ϕ.

+ Neumann B.C, domain ⊂ Rn, n ≥ 2

Theorem (Local existence of solutions)

If ϕ is transverse then there is a T ∗ > 0 such that:

1 There is at least one transverse solution to (P) on (0,T ∗)

2 Any solution to (P) is transverse on (0,T ∗)

Theorem (Global uniqueness of transverse solutions)

Given any T > 0 such that u1, u2 are two transverse solutions to(P) on the time interval t ∈ (0,T ), then u1 = u2 on (0,T ).

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Transverse Initial Data

Assumption: Dxϕ 6= 0

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Transverse Initial Data

Assumption: Dxϕ 6= 0

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Transverse Initial Data

Assumption: Dxϕ 6= 0

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Free boundary evolution: Example, Regularity

t = t1

t = t2 > t1,

t = t3 > t2,

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Free boundary evolution: Example, Regularity

t = t1

t = t2 > t1,

t = t3 > t2,

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Free boundary evolution: Example, Regularity

t = t1

t = t2 > t1,

t = t3 > t2,

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Conclusions

ut = ∆u + f (u, v),v = H(ξ0, u),

u|t=0 = ϕ.

Theorem: If ϕ is transverse then there is a time interval such thatthe solution exists and is unique on this interval.

Preliminary Applications:

Hydra: Stability ofstationary solutions

Bacteria: Stability ofnumerics

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Outlook

ut = ∆u + f (u, v),v = H(ξ0, u),

u|t=0 = ϕ

Outlook:

Continuous dependence on ξ0 ∈ {red , blue}.How does hysteresis approximate a slow-fast system in thePDE setting.

Role of transversality in pattern formation (SergeyTikhomirov, Pavel Gurevich).

Thank you for your attention.

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

Outlook

ut = ∆u + f (u, v),v = H(ξ0, u),

u|t=0 = ϕ

Outlook:

Continuous dependence on ξ0 ∈ {red , blue}.How does hysteresis approximate a slow-fast system in thePDE setting.

Role of transversality in pattern formation (SergeyTikhomirov, Pavel Gurevich).

Thank you for your attention.

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

References I

[1] Toyohiko Aiki and Jana Kopfova.A mathematical model for bacterial growth described by ahysteresis operator.In Recent Advances in Nonlinear Analysis, pages 1–10, 2008.

[2] Hans Wilhelm Alt.On the thermostat problem.Control Cybern., 14(1-3):171–193, 1985.

[3] Pavel Gurevich and Sergey Tikhomirov.Uniqueness of transverse solutions for reaction-diffusionequations with spatially distributed hysteresis.Nonlinear Anal., 75(18):6610–6619, December 2012.

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

References II

[4] Pavel Gurevich, Sergey Tikhomirov, and Roman Shamin.Reaction diffusion equations with spatially distributedhysteresis.Siam J. of Math. Anal., 45(3):1328–1355, 2013.

[5] F.C. Hoppensteadt and W. Jager.Pattern Formation by Bacteria.In Willi Jager, Hermann Rost, and Petre Tautu, editors,Biological Growth and Spread, volume 38 of Lecture Notes inBiomathematics, pages 68–81. Springer Berlin Heidelberg,1980.

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

References III

[6] F.C. Hoppensteadt, W. Jager, and C. Poppe.A hysteresis model for bacterial growth patterns.In Willi Jager and James D. Murray, editors, Modelling ofPatterns in Space and Time, volume 55 of Lecture Notes inBiomathematics, pages 123–134. Springer Berlin Heidelberg,1984.

[7] Alexandra Kothe.Hysteresis-Driven Pattern Formation inReaction-Diffusion-ODE Models.PhD thesis, University of Heidelberg, 2013.

[8] Francisco JP Lopes, Fernando Vieira, David M Holloway,Paulo M Bisch, and Alexander V Spirov.Spatial bistability generates hunchback expression sharpnessin the drosophila embryo.PLoS Computational Biology, 4(9), 2008.

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis

References IV

[9] Anna Marciniak-Czochra.Receptor-based models with hysteresis for pattern formationin hydra.Mathematical Biosciences, 199(1):97 – 119, 2006.

[10] Augusto Visintin.Differential Models of Hysteresis.Applied Mathematical Sciences. Springer-Verglag, BerlinHeidelberg, 1994.

Mark Curran (curran@zedat.fu-berlin.de) Reaction-Diffusion Equations with Hysteresis