Quantifying Greenhouse Gas Fluxes in Agriculture and...

Post on 11-Aug-2020

1 views 0 download

Transcript of Quantifying Greenhouse Gas Fluxes in Agriculture and...

Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory

Office of the Chief Economist Climate Change Program Office Technical Bulletin 1939 July 2014

United States Department of Agriculture

schuett2
Text Box
Ogle, S. M., P. R. Adler, F. J. Breidt, S. Del Grosso, A. Franzluebbers, M. Liebig, B. Linquist, G. P. Robertson, M. Schoeneberger, J. Six, C. van Kessel, R. Venterea, and T. West. 2014. Chapter 3: Quantifying greenhouse sources and sinks in cropland and grazing land systems. Pages 3.1-3.141 in M. Eve, D. Pape, M. Flugge, R. Steele, D. Man, M. Riley-Gilbert, and S. Biggar, editors. Quantifying greenhouse gas fluxes in agriculture and forestry: Methods for entity-scale inventory. Technical Bulletin Number 1939. Office of the Chief Economist, U.S. Department of Agriculture, Washington, DC.

Authors:StephenM.Ogle,ColoradoStateUniversity(LeadAuthor)PaulR.Adler,USDAAgriculturalResearchServiceJayBreidt,ColoradoStateUniversityStephenDelGrosso,USDAAgriculturalResearchServiceJustinDerner,USDAAgriculturalResearchServiceAlanFranzluebbers,USDAAgriculturalResearchServiceMarkLiebig,USDAAgriculturalResearchServiceBruceLinquist,UniversityofCalifornia,DavisPhilRobertson,MichiganStateUniversityMicheleSchoeneberger,USDAForestServiceJohanSix,UniversityofCalifornia,Davis;SwissFederalInstituteofTechnology,ETH‐ZurichChrisvanKessel,UniversityofCalifornia,DavisRodVenterea,USDAAgriculturalResearchServiceTristramWest,PacificNorthwestNationalLaboratory

Contents:

3 QuantifyingGreenhouseGasSourcesandSinksinCroplandandGrazingLandSystems..... .........................................................................................................................................................................3‐4

3.1 Overview...........................................................................................................................................................3‐53.1.1 OverviewofManagementPracticesandResultingGHGEmissions...........3‐63.1.2 SystemBoundariesandTemporalScale..............................................................3‐103.1.3 SummaryofSelectedMethods/ModelsSourcesofData...............................3‐103.1.4 OrganizationofChapter/Roadmap........................................................................3‐11

3.2 CroplandManagement..............................................................................................................................3‐123.2.1 ManagementInfluencingGHGEmissionsinUplandSystems.....................3‐123.2.2 ManagementInfluencingGHGEmissionsinFloodedCroppingSystems........

...............................................................................................................................................3‐253.2.3 Land‐UseChangetoCropland..................................................................................3‐28

3.3 GrazingLandManagement......................................................................................................................3‐293.3.1 ManagementActivityInfluencingGHGEmissions...........................................3‐303.3.2 Land‐UseChangetoGrazingLands........................................................................3‐36

3.4 Agroforestry..................................................................................................................................................3‐373.4.1 CarbonStocks..................................................................................................................3‐393.4.2 NitrousOxide...................................................................................................................3‐413.4.3 Methane.............................................................................................................................3‐413.4.4 ManagementInteractions...........................................................................................3‐42

Chapter 3

Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-2

3.5 EstimationMethods...................................................................................................................................3‐423.5.1 BiomassCarbonStockChanges...............................................................................3‐433.5.2 LitterCarbonStockChanges.....................................................................................3‐493.5.3 SoilCarbonStockChanges.........................................................................................3‐493.5.4 SoilNitrousOxide..........................................................................................................3‐583.5.5 MethaneUptakebySoils.............................................................................................3‐743.5.6 MethaneandNitrousOxidefromFloodedRiceCultivation.........................3‐773.5.7 CO2fromLiming.............................................................................................................3‐833.5.8 Non‐CO2EmissionsfromBiomassBurning........................................................3‐863.5.9 CO2fromUreaFertilizerApplications...................................................................3‐90

3.6 SummaryofResearchGapsforCropandGrazingLandManagement..................................3‐92Appendix3‐A:SoilN2OModelingFrameworkSpecifications...............................................................3‐97

3‐A.1DescriptionofProcess‐BasedModels.....................................................................3‐993‐A.2EmpiricalScalarsforBaseEmissionRates.........................................................3‐1063‐A.3Practice‐BasedScalingFactors................................................................................3‐108

Appendix3‐B:GuidanceforCropsNotIncludedintheDAYCENTModel....................................3‐113Chapter3References..........................................................................................................................................3‐116

Ogle,S.M.,P.R.Adler,F.J.Breidt,S.DelGrosso,J.Derner,A.Franzluebbers,M.Liebig,B.Linquist,G.P.Robertson,M.Schoeneberger,J.Six,C.vanKessel,R.Venterea,T.West,2014.Chapter3:QuantifyingGreenhouseGasSourcesandSinksinCroplandandGrazingLandSystems.InQuantifyingGreenhouseGasFluxesinAgricultureandForestry:MethodsforEntity‐ScaleInventory.TechnicalBulletinNumber1939.OfficeoftheChiefEconomist,U.S.DepartmentofAgriculture,Washington,DC.606pages.July2014.Eve,M.,D.Pape,M.Flugge,R.Steele,D.Man,M.Riley‐Gilbert,andS.Biggar,Eds.

USDAisanequalopportunityproviderandemployer.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-3

Acronyms,ChemicalFormulae,andUnits

C CarbonCH4 MethaneCO2 CarbondioxideCO2‐eq CarbondioxideequivalentsCRP ConservationReserveProgramEPA U.S.EnvironmentalProtectionAgencyGHG GreenhousegasH2CO3 Carbonicacidha HectareIPCC IntergovernmentalPanelonClimateChangeK PotassiumLRR LandResourceRegionm MeterMg MegagramsN NitrogenN2 NitrogengasN2O NitrousOxideNH4+ AmmoniumNO NitricoxideNO3‐ NitrateNOx Mono‐nitrousoxidesNRCS NaturalResourcesConservationServiceNUE NitrogenuseefficiencyO2 OxygenPg PetagramPRISM Parameter‐ElevationRegressionsonIndependentSlopesModelSOC SoilorganiccarbonSOM SoilorganicmatterSSURGO SoilSurveyGeographicDatabaseTg TeragramsUSDA U.S.DepartmentofAgriculture

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-4

Thispageisintentionallyleftblank.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-5

3 QuantifyingGreenhouseGasSourcesandSinksinCroplandandGrazingLandSystems

Thischapterprovidesmethodologiesandguidanceforreportinggreenhousegas(GHG)emissionsandsinksattheentityscaleforcroplandandgrazinglandsystems.Morespecifically,itfocusesonmethodsforlandusedfortheproductionofcropsandlivestock(i.e.,grazinglands).Section3.1providesanoverviewofcroplandandgrazinglandsystemsmanagementpracticesandresultingGHGemissions,systemboundariesandtemporalscale,asummaryoftheselectedmethods/models,sourcesofdata,andaroadmapforthechapter.Section3.2presentsthevariousmanagementpracticesthatinfluenceGHGemissionsinuplandandwetlandcroppingsystemsandland‐usechangetocropland.Section3.3providesasimilardiscussionforgrazinglandsystemsandland‐usechangetograzingsystems.Section3.4discussesagroforestry,andSection3.5providestheestimationmethods.Finally,Section3.6includesasummaryofresearchgapswithadditionalinformationonthenitrousoxide(N2O)methodologyandsupplementalmethodologyguidanceintheAppendices.

3.1 Overview

Croplandandgrazinglandsystemsaremanagedinavarietyofways,whichresultsinvaryingdegreesofGHGemissionsorsinks.Table3‐1providesadescriptionofthesourcesofemissionsorsinksandthesectioninwhichmethodologiesareprovidedalongwiththecorrespondingGHGs.

Table3‐1:OverviewofCroplandandGrazingLandSystemsSourcesandAssociatedGreenhouseGases

SourceMethodforGHGEstimation Description

CO2 N2O CH4

Biomassandlittercarbonstockchanges

Estimating herbaceousbiomasscarbon stockduringchangesinlanduseisnecessarytoaccountfortheinfluenceofherbaceousplantsoncarbondioxide(CO2)uptakefromtheatmosphereandstorageintheterrestrialbiosphereforatleastaportionoftheyearrelativetothebiomasscarbonandassociatedCO2uptakeinthepreviouslandusesystem.Agroforestrysystemsalsohavealongertermgainorlossofcarbonbasedonthemanagementoftreesinthesesystems.

Soilorganiccarbonstocksformineralsoils

Soilorganiccarbon stocksareinfluencedbylanduseandmanagementincroplandandgrazinglandsystems,aswellasconversionfromotherlandusesintothesesystems(Aaldeetal.,2006).Soilorganiccarbonpoolscanbemodifiedduetochangesincarboninputsandoutputs(Paustianetal.,1997).

Soilorganiccarbonstocksfororganicsoils

Emissionsoccurinorganicsoilsfollowingdrainageduetotheconversionofananaerobicenvironmentwithahighwatertabletoaerobicconditions(ArmentanoandMenges,1986),resultinginasignificantlossofcarbontotheatmosphere(Ogleetal.,2003).

DirectandindirectN2Oemissionsfrommineralsoils

N2Oisemittedfromcroplandbothdirectlyandindirectly.Directemissionsarefluxesfromcroplandorgrazinglandswheretherearenitrogenadditionsornitrogenmineralizedfromsoilorganicmatter.Indirectemissionsoccurwhenreactivenitrogenisvolatilizedasammonia(NH3)ornitrogenoxide(NOx),ortransportedviasurfacerunofforleachinginsolubleformsfromcroplandorgrazinglands,leadingtoN2Oemissionsinanotherlocation.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-6

SourceMethodforGHGEstimation Description

CO2 N2O CH4

DirectN2Oemissionsfromdrainageoforganicsoils

Organicsoils (i.e.,histosols) areaspecialcaseinwhichdrainageleadstohighratesofnitrogenmineralizationandincreasedN2Oemissions.Themethodassumesthatorganicsoilshaveasignificantorganichorizoninthesoil,andtherefore,themaininputsofnitrogenarefromoxidationoforganicmatter.

Methaneuptakebysoils

Agronomicactivityuniversallyreducesmethanotrophyinarablesoilsby70%ormore(Mosieretal.,1991;Robertsonetal.,2000;Smithetal.,2000).Recoveryofmethane(CH4)oxidationuponabandonmentfromagricultureisslow,taking50to100yearsforthedevelopmentofeven50%offormer(original)rates(Levineetal.,2011).

MethaneandN2Oemissionsfromricecultivation

ThereareanumberofmanagementpracticesthataffectCH4 andN2Oemissionsfromricesystems.Themethodaddresseskeypracticesincludingtheinfluenceofwatermanagement,residuemanagementandorganicamendmentsonCH4emissionsfromrice(Lascoetal.,2006;Yanetal.,2005)andassociatedimpactsonN2Oemissions.

CO2fromliming

AdditionoflimetosoilsistypicallythoughttogenerateCO2emissionstotheatmosphere(deKleinetal.,2006).However,prevailingconditionsinU.S.agriculturallandsleadtoCO2uptakebecausethemajorityoflimeisdissolvedinthepresenceofcarbonicacid(H2CO3).Therefore,theadditionoflimewillleadtoacarbonsinkinthemajorityofU.S.croplandandgrazinglandsystems.

Non‐CO2emissionsfrombiomassburning

BiomassburningleadstoemissionsofCO2aswellasotherGHGsorprecursorstoGHGsthatareformedlaterthroughadditionalchemicalreactions.Note:CO2emissionsarenotaddressedforcropresiduesorgrasslandburning,becausethecarbonisre‐absorbedfromtheatmosphereinnewgrowthofcropsorgrasseswithinanannualcycle.

CO2fromureafertilizerapplication

UreafertilizerapplicationtosoilscontributesCO2emissions totheatmosphere.TheCO2emittedisincorporatedintotheureaduringthemanufacturingprocess.IntheUnitedStates,thesourceoftheCO2isfossilfuelusedforNH3production.TheCO2capturedduringNH3productionisincludedinthemanufacturer’sreportingsoitsreleaseviaureafertilizationisanadditionalCO2emissiontotheatmosphereandisincludedinthefarm‐scaleentityreporting.

3.1.1 OverviewofManagementPracticesandResultingGHGEmissions

GuidanceisprovidedinthissectionforreportingofGHGemissionsassociatedwithentity‐levelfluxesfromfarmand/orlivestockoperations.TheguidancefocusesonmethodsforestimatingtheinfluenceoflanduseandmanagementpracticesonGHGemissions(andsinks)incropandgrazinglandsystems.Methodsaredescribedforestimatingbiomassandsoilcarbonstockchanges,soilN2Oemissions,CH4emissionsfromfloodedrice,CH4sinksfrommethanotrophicactivity,CO2emissionsorsinksfromliming,biomassburningnon‐CO2GHGemissions,andCO2emissionsfromureafertilizerapplication(seeTable3‐2).

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-7

Table3‐2:OverviewofCroplandandGrazingLandSystemsSources,MethodandSection

Section Source Method

3.5.1‐3.5.2

Biomasscarbonstockchanges

HerbaceousbiomassisestimatedwithanIPCCTier2methodusingentityspecificdataasinputintotheIPCCequationsdevelopedbyLascoetal.(2006)andVerchotetal.(2006).WoodyplantgrowthandlossesinagroforestryorperennialtreecropsareestimatedwithanIPCCTier3method,usingasimulationmodelapproachwithentityinput.

3.5.3Soilorganiccarbonstocksformineralsoils

AnIPCCTier3methodisusedtoestimatetheSOCatthebeginningandendoftheyearformineralsoilswiththeDAYCENTprocess‐basedmodel.ThestocksareenteredintotheIPCCequationsdevelopedbyLascoetal.(2006),Verchotetal.(2006)toestimatecarbonstockchanges.

3.5.3Soilorganiccarbonstocksfororganicsoils

CO2emissionsfromdrainageoforganicsoils(i.e.,Histosols)areestimatedwithanIPCCTier2methodusingtheIPCCequationdevelopedbyAaldeetal.(2006)andregionspecificemissionfactorsfromOgleetal.(2003).

3.5.4

DirectN2Oemissionsfrommineralsoils

ThedirectN2OmethodsareestimatedwithanIPCCTier3method.Formajorcommoditycrops,acombinationofexperimentaldataandprocess‐basedmodelingusingtheDAYCENT1modelandDNDC2(denitrification‐decomposition)areusedtoderiveexpectedbaseemissionratesfordifferentsoiltextureclassesineachU.S.DepartmentofAgricultureLandResourceRegion.Forminorcommoditycropsandincaseswherethereareinsufficientempiricaldatatoderiveabaseemissionrate,thebaseemissionrateisbasedontheIPCCdefaultfactormultipliedbythenitrogeninput(deKleinetal.,2006).Theseemissionratesarescaledwithpractice‐basedscalingfactorstoestimatetheinfluenceofmanagementchangessuchasapplicationofnitrificationinhibitorsorslow‐releasefertilizers.

DirectN2Oemissionsfromdrainageoforganicsoils

DirectN2Oemissionsfromdrainageoforganicsoils,i.e.,Histosols,areestimatedwiththeIPCCTier1method(deKleinetal.,2006).

IndirectN2Oemissions

IndirectsoilN2OemissionsareestimatedwiththeIPCCTier1method(deKleinetal.,2006).

3.5.5Methaneuptakebysoils

Methaneuptakebysoilisestimatedwithanequationthatusesaveragevaluesformethaneoxidationinnaturalvegetation—whethergrassland,coniferousforest,ordeciduousforest—attenuatedbycurrentlandusepractices.ThisapproachisanIPCCTier3method.

3.5.6

MethaneandN2Oemissionsfromfloodedricecultivation

IPCCTier1methodsareusedtoestimateCH4andN2Oemissionsfromfloodedriceproduction(deKleinetal.,2006;Lascoetal.,2006).

1TheversionofDAYCENTcodedandparameterizedforthemostrecentU.S.nationalGHGinventory(U.S.EPA,2013)wasusedtoderiveexpectedbaseemissionrates.2DNDC9.5compiledonFeb25,2013wasusedtoderiveexpectedbaseemissionrates.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-8

Section Source Method

3.5.7 CO2fromlimingAnIPCCTier2methodisusedtoestimateCO2emissionsfromapplicationofcarbonatelimes(deKleinetal.,2006)withU.S.‐specificemissionsfactors(adaptedfromWestandMcBride,2005).

3.5.8Non‐CO2emissionsfrombiomassburning

Non‐CO2GHGemissionsfrombiomassburningofgrazinglandvegetationorcropresiduesareestimatedwiththeIPCCTier2method(Aaldeetal.,2006).

3.5.9CO2fromureafertilizerapplication

CO2emissionsfromapplicationofureaorurea‐basedfertilizerstosoilsareestimatedwiththeIPCCTier1method(deKleinetal.,2006).

3.1.1.1 DescriptionofSector

Croplandsincludeallsystemsusedtoproducefood,feed,andfibercommodities,inadditiontofeedstocksforbioenergyproduction.Croplandsareusedfortheproductionofadaptedcropsforharvestandincludebothcultivatedandnon‐cultivatedcrops(U.S.EPA,2013).Cultivatedcropsaretypicallycategorizedasroworclose‐growncrops,suchascorn,soybeans,andwheat.Non‐cultivatedcrops(orthoseoccasionallycultivatedtoreplenishthecrop)includehay,perennialcrops(e.g.,orchardsandvineyards),andhorticulturalcrops.ThemajorityofU.S.croplandisinuplandsystemsoutsideofwetlandsasdefinedinSection4.1.1,Wetlands,anduplandcroppingsystems(i.e.,dryland)mayormaynotbeirrigated.Ricecanbegrownonnaturalorconstructedwetlands,butwewillrefertothesesystemsasfloodedricetoavoidconfusionwithChapter4.Inaddition,wetlandscanalsobedrainedforcropproduction,whichagainisconsideredacroplandbecausetheprincipaluseiscropproduction.Somecroplandsaresetasideinreserve,suchaslandsenrolledintheConservationReserveProgram(CRP).Croplandsalsoincludeagroforestrysystemsthatareamixtureofcropsandtrees,suchasalleycropping,shelterbelts,andriparianbuffers.

Grazinglandsaresystemsthatareusedforlivestockproduction,andoccurprimarilyongrasslands.Grasslandsarecomposedprincipallyofgrasses,grass‐likeplants,forbs,orshrubssuitableforgrazingandbrowsing,andincludebothpasturesandnativerangelands(U.S.EPA,2013).Furthermore,savannas,somewetlandsanddeserts,andtundracanbeconsideredgrazinglandsintheUnitedStatesifusedforlivestockproduction.Grazinglandsystemsinclude:(1)managedpasturesthatmayrequireperiodicclearing,burning,chaining,and/orchemicalstomaintainthegrassvegetation;and(2)nativerangelandsthattypicallyrequirelimitedmanagementtomaintainbutmaybedegradedifoverstockedorotherwiseoverused.

CropandgrazinglandmanagementinfluencesGHGemissions(Smithetal.,2008b),whichcanbereducedbyadoptingconservationpractices(CAST,2004;2011).Operatorsofcroplandsystemsuseavarietyofpracticesthathaveimplicationsforemissions,suchasnutrientadditions,irrigation,limingapplications,tillagepractices,residuemanagement,fallowingfields,forageandcropselection,set‐asidesoflandsinreserveprograms,erosioncontrolpractices,watertablemanagementinwetlands,anddrainageofwetlands.OperatorsofgrazingsystemsalsohaveavarietyofmanagementoptionsthatinfluenceGHGemissions,suchasstockingrate,forageselection,useofprescribedfires,nutrientapplications,wetlanddrainage,irrigation,limingapplications,andsilvopastoralpractices.

3.1.1.2 ResultingGHGEmissions

CroplandandgrazinglandsaresourcesofN2OandCH4emissionsandhavealargepotentialtosequestercarbonwithchangesinmanagement(Smithetal.,2008b).Infact,N2Oemissionsfrom

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-9

managementofagriculturalsoilsareakeysourceofGHGemissionsintheUnitedStates(U.S.EPA,2013).N2Oemissionsresultfromtheprocessesofnitrificationanddenitrification,whichareinfluencedbylanduseandmanagementactivity.Landuseandmanagementcanalsoinfluencecarbonstocksinbiomass,deadbiomass,andsoilpools.Carbonstockscanbeenhancedorreduceddependingonlanduseandmanagementpractices(CAST,2004;IPCC,2000;Smithetal.,2008b).Consequently,cropandgrazinglandsystemscanbeeitherasourceorsinkforCO2,dependingonthenetchangesinbiomass,deadbiomass,andsoilcarbon.Burningbiomassisapracticethatcaninitiallyreducebiomasscarbonstockbutcanprovidesufficientstimulustoenhanceensuingecosystemcarbonstorage.Ingeneralthough,burningcausesadeclineinsoilorganiccarbonstocksduetolossofcarboninputfromplantlitterandroots.Burningwillalsoleadtonon‐CO2GHGemissions—CH4,N2O,andotheraerosolgases(CO,NOx)—thatcanbelaterconvertedtoGHGsintheatmosphereoroncedepositedontosoil.

SoilsincropandgrazinglandsystemscanalsobeasourceorsinkforCH4dependingontheconditionsandmanagementofsoil.CH4canberemovedfromtheatmospherethroughtheprocessofmethanotrophyinsoils.Methanotrophyoccursunderaerobicconditionsandiscommoninmostsoilsthatdonothavestandingwater.Incontrast,CH4isproducedinsoilsthroughtheprocessofmethanogenesis,whichoccursunderanaerobicconditions(e.g.,soilswithstandingwatersuchassoilsusedforfloodedriceproduction).Bothoftheseprocessesaredrivenbytheactivityofmicroorganismsinsoils,andtheirrateofactivityisinfluencedbylanduseandmanagement.

3.1.1.3 Managementinteractions

TheinfluenceofcropandgrazinglandmanagementonGHGemissionsisnottypicallythesimplesumofeachpractice’seffect.Theinfluenceofonepracticecandependonanotherpractice.Forexample,theinfluenceoftillageonsoilcarbonwilldependonresiduemanagement.Theinfluenceofnitrogenfertilizationratescandependontheapplicationofnitrificationinhibitors.AvarietyofexamplesisgiveninSection3.2andSection3.3.Becauseofthesesynergies,estimatingGHGemissionsfromcropandgrazinglandsystemswilldependonacompletedescriptionofthepracticesusedintheoperation,includingpastmanagementtocapturelegacyeffectsonGHGemissions,aswellasancillaryvariablessuchassoilcharacteristicsandweatherorclimateconditions.

3.1.1.4 RiskofReversals

AnytrendinGHGemissionsassociatedwithachangeincropandgrazinglandmanagementcanbereversediftheoperatorrevertstotheoriginalpractice.ReversalswillnotnegatetheGHGmitigationforCH4orN2Othatoccurredpriortothereversion.IfemissionsarereducedforCH4orN2O,theemissionreductionispermanentandcannotbechangedbysubsequentmanagementdecisions.

Reversalscanoccurwithcarbonsequestrationinbiomassandsoils.CO2canberemovedfromtheatmospherethroughcropandforageproductionandsequesteredinbiomassorsoilsfollowingtheadoptionofaconservationpractice,suchasno‐till(CAST,2004;USDA,2011).Ifcarbonisincreasinginthebiomassorsoils,thenthepracticeeffectivelyreducestheamountofCO2intheatmosphere.However,netCO2canbereturnedtotheatmosphereifthereisareversioninmanagementtothepreviouspracticethatcausesadeclineinthebiomassorsoilcarbonstocks.Forexample,enrollmentoflandintheCRPhasincreasedtheamountofcarboninsoils(i.e.,increaseinsoilcarbonstock),andthusmitigatesCO2emissionstotheatmosphereassociatedwithotheremissionssources,suchasfossilfuelcombustion(USDA,2011).However,tillingformerCRPlandswillleadtoadeclineinsoilcarbonstocks,therebyreversingthetrendforCO2uptakefromtheatmosphereandleadingtoCO2emissiontotheatmosphere.Ingeneral,GHGemissionsinvolving

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-10

carbonstocksinbiomass,deadbiomass,orsoilscanbeconsideredreversible,dependingonfuturemanagementdecisions.Consequently,reversalsinvolvingcarbonstocksnotonlyaffectfutureemissiontrends,butalsohaveconsequencesonpastmitigationeffortsbyreturningpreviouslysequesteredCO2totheatmosphere.

3.1.2 SystemBoundariesandTemporalScale

Systemboundariesaredefinedbythecoverage,extent,andresolutionoftheestimationmethods.ThecoverageofmethodsinthisguidancecanbeusedtoestimateGHGemissionsourcesthatoccuronfarmandranchoperations,includingemissionsassociatedwithbiomasscarbon,littercarbon,andsoilscarbonstockchanges;CH4andN2Ofluxesfromsoils;emissionsfromburningofbiomass;andCO2fluxesassociatedwithureafertilizationandadditionofcarbonatelimes.GHGemissionsalsooccurwithproductionofmanagementinputs,suchassyntheticfertilizersandpesticides,andtheprocessingoffood,feed,fiber,andbioenergyfeedstockproductsfollowingharvest;butmethodsarenotprovidedtoestimatetheseemissions.Moreover,emissionsfromenergyuse,includingthoseoccurringontheentity’soperation,arenotaddressedinthemethods.

Themethodsprovidedforcropandgrazinglandsystemshavearesolutionofanindividualparceloflandorfieldandincludethespatialextentofallfieldsintheentity’soperation.Fieldsareareasusedtoproduceasinglecroporrotationofcrops,ortoraiselivestock(i.e.,pasture,rangeland).Fieldsareoften,butnotalways,dividedbyfences.Emissionsareestimatedforeachindividualfieldthatisusedforcroplandandgrazinglandontheoperation,andthentheemissionsareaddedtogethertoestimatethetotalemissionsfromthecropandgrazinglandsystemsintheentity’soperation.Thetotalsarethencombinedwithemissionsfromforestandlivestocktodeterminetheoverallemissionsfromtheoperationbasedonthemethodsprovidedinthisguidance.EmissionsareestimatedonanannualbasisforasmanyyearsasneededforGHGemissionsreporting.

3.1.3 SummaryofSelectedMethods/ModelsSourcesofData

TheIntergovernmentalPanelonClimateChange(IPCC)(IPCC,2006)hasdevelopedasystemofmethodologicaltiersrelatedtothecomplexityofdifferentapproachesforestimatingGHGemissions.Tier1representsthesimplestmethods,usingdefaultequationsandemissionfactorsprovidedintheIPCCguidance.Tier2usesdefaultmethods,butemissionfactorsthatarespecifictodifferentregions.Tier3usescountry‐specificestimationmethods,suchasaprocess‐basedmodel.ThemethodsprovidedinthisreportrangefromthesimpleTier1approachestothemostcomplexTier3approaches.Higher‐tiermethodsareexpectedtoreduceuncertaintiesintheemissionestimates,ifsufficientactivitydataandtestingareavailable.

Tier1methodsareusedforestimatingCO2emissionsfromureafertilization,CH4emissionsfromfloodedrice,indirectsoilN2Oemissions,anddirectsoilN2Oemissionsfromdrainedorganicsoils.Thesemethodsarethemostgeneralizedglobally,andlackabilitytocapturespecificconditionsatlocalsites,andconsequentlyhavemoreuncertaintyforestimatingemissionsfromanentity’soperation.SoilN2Oemissions,CO2emissionsorsinksfromliming,biomasscarbonstockchanges,soilcarbonstockchangesfordrainedorganicsoils,andbiomassburningnon‐CO2GHGemissionsallhaveelementsofTier2methods,butmayrelypartlyonemissionfactorsprovidedbytheIPCC(2006).ThesemethodsincorporatesomeinformationaboutconditionsspecifictoU.S.agriculturalsystemsandtheinfluenceonemissionrates,butagainlackspecificityforlocalsiteconditionsinmanycases.SoilcarbonstockchangesformineralsoilsareestimatedusingaTier3methodwithaprocess‐basedsimulationmodel(i.e.,DAYCENT).CH4sinksfrommethanotrophicactivityarealsoestimatedwithaTier3method,duetotheabsenceofIPCCguidanceforestimatinglanduseandmanagementeffectsonCH4uptakeinsoils.TheTier3methodassociatedwithsoilcarbonstockchangesinmineralsoilshasthegreatestpotentialforestimatingtheinfluenceoflocalconditionson

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-11

GHGemissions.Theapplicationhasageneralsetofparametersthathavebeencalibratedacrossanationalsetofexperiments.However,themodeldoesincorporatedriversassociatedwithlocalconditions,includingspecificmanagementpractices,soilcharacteristics,andweatherpatterns,providingestimatesofGHGemissionsthataremorespecifictotheentity’soperation.FutureresearchandrefinementsofthecroplandandgrazinglandmethodswilllikelyincorporatemoreTier3methodsinthefuture,andthusprovideamoreaccurateestimationofGHGemissionsforentityreporting.

Allmethodsincludearangeofdatasourcesfromvaryinglevelsofspecificityonoperation‐specificdatatonationaldatasets.Operation‐specificdatawillneedtobecollectedbytheentity,andgenerallyareactivitydatarelatedtothefarmandlivestockmanagementpractices(e.g.,tillagepractices,grazingpractices,fertilizerusage).Nationaldatasetsarerecommendedforancillarydatarequirementsthatareusedinmethods,suchasclimatedataandsoilcharacteristics.However,theentitydoeshavetheoptiontouseoperation‐specificdataforclimate(i.e.,weatherdata)andsoils.

3.1.4 OrganizationofChapter/Roadmap

Thecroplands/grazinglandsportionofthisreportisorganizedintofourprimarysections.Sections3.2and3.3provideadescriptionofmanagementimpactsonGHGemissionsincropandgrazinglandsystems.Section3.2isfurthersubdividedintosectionsfocusedonuplandagriculture,floodedmanagementforcropproduction,andtheinfluenceofland‐usechange.Section3.3issubdividedintoageneraldescriptionofmanagementpracticesandtheinfluenceofland‐usechange.ThefirsttwosectionsprovidethescientificbasisforhowmanagementpracticesinfluenceGHGemissions.Thesetwosectionsalsodiscussmanagementoptionsthatrequirefurtherstudy.Section3.4providesanoverviewofagroforestrysystems.AgeneraldescriptionofthevariousGHGemissionsandsinksthatresultfrommanagementpracticesandpotentialmanagementinteractionsisprovidedinthissection.

Section3.5describesthemethods.Eachmethodincludesageneraldescription(includingequationsandfactorsifappropriate),activitydatarequirements,ancillarydatarequirements,limitationsofthemethod,anduncertaintiesassociatedwiththeestimation.AsinglemethodisprovidedforeachoftheGHGemissionsources(andsinks),basedonthebestavailablemethodforapplicationinanoperationalsystemforentity‐scalereporting.Asinglemethodwasselectedtoensureconsistencyinemissionestimationbyallreportingentities.Moreadvancedapproachesmaybeadoptedinthefutureasthemethodsmature.

Section3.6providesasummaryofresearchgaps.Thegapshighlightkeyresearchareasthatrequirefurtherstudyforoneoftworeasons.ThefirstreasonisthatapracticelackssufficientevidenceoraclearimpactonGHGemissionsbasedonexistingresearch.Thisgapismostoftenrelatedtoalackofmechanisticunderstandingoftheprocessesinfluencedbythepractice.Thesepracticesmaybeincludedinfuturerevisionstothemethodsiffurtherstudyleadstoaconsensusthatthepracticehasanimpactonemissions.Thesecondreasonforidentifyingtheneedforfurtherstudyisthatthepracticeisincludedinestimationmethods,butthereisneedforfurtherresearchtoreduceuncertainty.Thissecondgapmayinvolvefurthermechanisticstudy,butcouldalsorequirefurthermethodsofdevelopmentorrefinement.

Finally,Appendix3‐AprovidesamorecomprehensivedescriptionofthesoilN2Omodelingframeworkspecifications.Thisappendixincludesadiscussionoftheprocess‐basedmodelsusedinthemethodology;theempiricalscalarsforthebaseemissionrates;andthepractice‐basedscalingfactors.Appendix3‐BprovidesalternativemethodologiesincaseswhereanentityismanagingcropsnotincludedintheDAYCENTmodel.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-12

3.2 CroplandManagement

HowcroplandismanagedcanhaveasignificanteffectonGHGemissionsandremovals.ThissectionprovidesasummaryofthecurrentstateofthescienceanddescribeshowmanagementpracticesdriveGHGemissionsorsinksinuplandcroplandsystems.

3.2.1 ManagementInfluencingGHGEmissionsinUplandSystems

ThecroplandmanagementpracticespresentedbelowfocusprimarilyonmitigationpotentialforsoilN2O,CH4emissions,andcarbonsequestration.EachsubsectiondescribesthepracticeandtheunderlyingGHGphenomenonthatinfluencemitigationpotential.

3.2.1.1 NutrientManagement(ManufacturedandOrganic)

Nutrientmanagementreferstotheadditionandmanagementofsyntheticandorganicfertilizerstocroplandsoils,primarilytoaugmentthesupplyofnutrientstothecrop.Nitrogenisgenerallythemostimportantnutrientfromanagronomicstandpoint,becauseitisusuallytheprimarynutrientlimitingcropyieldsandoftenmustbeaddedmorefrequentlyandingreateramountsthanothernutrientssuchasphosphorusandpotassium(ERS,2011;RobertsonandVitousek,2009).NitrogenisalsotheprimarynutrientofconcernwithregardtoGHGemissions,becauseoncefertilizernitrogenentersthesoilitcanbedirectlyconvertedtoN2Obysoilbiologicalprocessesand,insomecases,chemicalreactions(FirestoneandDavidson,1989;Kooletal.,2011;Venterea,2007).WhilerelativelylittleofthefertilizernitrogenappliedisconvertedtoN2O,theseemissionsaregenerallyalargecomponentofthetotalGHGbudgetofcroplands(e.g.,Mosieretal.,2005;Robertsonetal.,2000)becauseN2Ohas310timestheglobalwarmingpotentialofCO2(IPCC,2007).Otherformsofnitrogenoriginatingfromfertilizersmayalsobelosttotheenvironment,includingNH3,nitricoxide(NO),andnitrate(NO3‐).Oncetransportedtodownwindordownstreamecosystems,theseothernitrogenspeciescanbeconvertedtoN2O;suchemissionsarereferredtoas“indirect”N2Oemissions(Beaulieuetal.,2011;deKleinetal.,2006).

NutrientmanagementcanalsoaffectGHGemissionsotherthanN2O,mostnotablythesequestrationofcarbonuponmanureadditionandcropresidueretentionoraddition.Theadditionoforganiccarbonamendments,suchasmanureorresidues,canincreasesoilcarbonwithintheboundariesofthelandparcelreceivingtheamendment(Ogleetal.,2005).However,soilcarbonlossesmayoccurfromthesourcefield(Schlesinger,2000)dependingonthemanagement(Izaurraldeetal.,2001).Manufacturednitrogenadditionscanalsoleadtocarbonsequestration(Ladhaetal.,2011)whereadditionsleadtoincreasedresiduereturntosoil.

Fertilizerrate,timing,placement,andformulationstronglyaffectN2Ofluxes.Ingeneral,anypracticethatincreasescropnitrogenuseefficiency(NUE)wouldbeexpectedtoreduceN2Oemissions,becauseappliednitrogenthatistakenupbycropsorcovercropsisnotavailabletothesoilprocessesthatgenerateN2O,atleastintheshortterm;thisalsomaypreventnitrogenleaching.Thus,strategiestoreduceN2OemissionscanalsoreducethelossofNO3‐andotherformsofreactivenitrogenfromcroppingsystems.

However,practicesthatimproveNUEwillnotalwaysreduceN2Oemissions.Differentfertilizerformulations,forexample,canresultindifferentN2OemissionsirrespectiveofNUEeffects(e.g.,GagnonandZiadi,2010;Gagnonetal.,2011).Likewise,bandedfertilizerplacementcanincreaseNUE(e.g.,Yadvinder‐Singhetal.,1994)butalsocanincreaseratherthandecreaseN2Oemissions(e.g.,Engeletal.,2010),andtillagemanagementcanalsoincreaseNUEwithoutreducingN2Oemissions(Grandyetal.,2006).Thus,NUEisgenerallyimportantbutnotbyitselfsufficienttopredictormanageN2Oemissions.Fertilizerrate,timing,placement,andformulationcanaffectNUEandN2Oemissionsindependently.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-13

FertilizerRate:Morethananyotherfactor,theamountofnitrogenfertilizerappliedtosoilaffectstheamountofN2Oemitted;inmanycasesothernitrogen‐usestrategies(timing,placement,andformulation)providetheirbenefitbyeffectivelyreducingfertilizernitrogenavailableinthesoil.Inthissense,fertilizerrateintegratestheeffectsofmultiplepracticesandisthebasisfortheIPCCTier1N2Oaccountingmethod(deKleinetal.,2006),wherebyN2Oemissionsareassumedtobeasimplefractionofnitrogeninputs.

Irrespectiveofotherpractices,however,fertilizerrateitselfcanberefinedtoreduceN2Oemissionssolongasratesarenotreducedtothepointthatyieldsdecline.Otherwisemarketleakage—theneedtomakeupyieldselsewherewithmoreintensivefertilizeruseandconcomitantN2Oloss—maylimitthebenefitofreducinglocalfertilizerrates.Thequestionthenbecomeswhethernitrogenfertilizerratescanbereducedwithoutreducingyieldsinaparticularfield.Atleastforcorn,recentchangesinrecommendedfertilizerratesformanyMidwestStatessuggestthatthereislatitudeforreducingfertilizernitrogenratesforsomefarmers.Sincethe1970s,mostfertilizernitrogenrecommendationshavebeenbasedonyieldgoals,whichuseexpectedmaximumyieldmultipliedbynitrogenyieldfactorstocalculatefertilizerrecommendations(Stanford,1973).Precedinglegumecrops,manureinputs,andsoilnitrogentestsarethenusedtofurtherrefineorreducerecommendednitrogenapplicationrates(AndraskiandBundy,2002).

Analternativetotheyield‐goalapproachistheMaximumReturntoNitrogenapproach(Sawyeretal.,2006),wherebytherateofnitrogenfertilizerappliedisbasedonthemaximumfertilizerratethatgeneratessufficientadditionalyieldtojustifythefertilizercost.Theratesaredeterminedfromcropnitrogenresponsecurves.Typically(butnotalways)thisrateissignificantlylessthanthatrecommendedbytheyieldgoalapproach.MaximumReturntoNitrogencalculatorsforcornhavebeenadoptedinatleastsevenStatesintheMidwest.Thiscalculatorandsimilardecisionsupporttoolshavethepotentialforreducingtheamountoffertilizernitrogenappliedtocropsandmorepreciselymatchcropnitrogenrequirements,withoutaffectingthenetreturns(Archeretal.,2008),andwithconcomitantdecreasesinN2Oemissions(Millaretal.,2010).

Hundredsoffertilizeradditionexperimentsworldwidehaveshownthattypically0.5to3percentofnitrogenaddedtosoilisemittedasN2O(Bouwmanetal.,2002;Linquistetal.,2011;StehfestandBouwman,2006).Site‐to‐sitevariationiswellrecognizedandistobeexpectedbasedonsoils,climate,andfertilizerpractices—includingrate.Recentevidencesuggeststhatemissionratesmaybeevenhigheratnitrogeninputlevelsthatexceedcropdemand(Hobenetal.,2011;Maetal.,2010;McSwineyandRobertson,2005;VanGroenigenetal.,2010).

FertilizerTiming:Amajorchallengeinmanagingnitrogenfertilizerforcropproductionissynchronizingnitrogenavailabilityinthesoilwiththecrop’sdemandfornitrogen.Ingeneral,cropdemandfornitrogenisminimalearlyinthegrowingseasonandincreasesseveralweeksafterplanting.

Inmanycases,itmaybemostconvenientand/orcost‐effectivefortheproducertoapplynitrogenfertilizerpriortoplantingorsoonafterplantemergence.InmanypartsoftheU.S.CornBelt,however,applicationofnitrogenfertilizercommonlyoccursinthefallpriortothegrowingseason(Biermanetal.,2011;Ribaudoetal.,2011).Intheabsenceofanactiveandwell‐developedrootsystemtoutilizethefertilizernitrogen,thesepracticesincreasethepotentialforsoilmicrobialandchemicalprocessestotransformtheappliednitrogenintoN2OandothermobileformssuchasNO3,whichcancontributetoindirectN2Oemissions.

Improvingthesynchronybetweensoilnitrogenavailabilityandcropnitrogendemandcanbeachievedbyswitchingfromfalltospringnitrogenapplication;applyingnitrogenseveralweeksafterplantingwith“sidedress”fertilizerapplicationsthataretimedtocoincidewithplantgrowthstages;andusingmultiple“split”applicationsdistributedintimeoverthegrowingseason.Eachof

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-14

thesestrategieshasthepotentialtoreduceN2Oemissions,butthisisnotalwaysthecase.Switchingfromfalltospringnitrogenfertilizer,forexample,hasbeenshowntoreduceN2Oemissionsinsomecases(Burtonetal.,2008a;Haoetal.,2001)butnotalways(Burtonetal.,2008a).Similarly,switchingfrompre‐planttopost‐plantapplicationshasbeenshowntoreduceN2Oemissionsinsomestudies(Matsonetal.,1998),butonlypartofthetimeornotatallinotherstudies(Burtonetal.,2008b;Phillipsetal.,2009;Zebarthetal.,2008b).Somestudieshavefoundreducednitrateleaching,whichimpliesreducedindirectN2Oemissions,withfertilizerapplicationlaterintheseason(e.g.,Errebhietal.,1998).

FertilizerPlacement:ThemannerinwhichnitrogenfertilizerisappliedtosoilcanaffectitsavailabilityforcropuptakeandthereforeitssusceptibilitytosoiltransformationandN2Oproduction.ThreeaspectsoffertilizerplacementaresignificanttoN2Oemissions:(1)broadcastapplicationversusbandingwithinthecroprow;(2)thesoildepthtowhichnitrogenisapplied;and(3)addingfertilizeruniformlyacrossafieldversusapplyingataspatiallyvariablerate.

ThereissomeevidencethatapplyingnitrogenfertilizerinnarrowbandscanimprovecropNUE(MalhiandNyborg,1985).However,bandingalsocreateszonesofhighlyconcentratedsoilnitrogen,whichcanincreaseN2Oproductioncomparedwithbroadcastapplications(Engeletal.,2010).OtherstudieshavefoundnodifferencesinN2Oemissionsinbroadcastversusbandedapplications(Burtonetal.,2008a;Sehyetal.,2003).DirectcomparisonsofapplicationdeptheffectsonN2Oemissionshavealsoshowninconsistentresults(e.g.,BreitenbeckandBremner,1986b;Druryetal.,2006;Fujinumaetal.,2011;Hosenetal.,2002;Liuetal.,2006).However,variablerateapplicationusesdifferentnitrogenratesfordifferentareasoffield,basedonexpectedvariationsincropnitrogendemand.Thisisanewtechniquethatappearspromisingbasedonitsabilitytosubstantiallyimprovefertilizeruseefficiencyatthefieldscale(Mamoetal.,2003;Scharfetal.,2005),andatleastoneearlystudyhasshownreducedN2Oemissionswhennitrogenratewasvariedtomatchcropyieldpotential(Sehyetal.,2003).

FertilizerFormulationandAdditives:ThemostcommonlyusedformsofsyntheticnitrogenfertilizerintheUnitedStatesincludeanhydrousammonia(35percentoftotaluse),urea(24percent),andliquidsolutions,includingureaammoniumnitrate(29percent)(ERS,2011).AvailableevidencesuggeststhatN2Oemissionsfollowingapplicationsofanhydrousammoniaaregreaterthanemissionsfollowingbroadcasturea,althoughinsomestudiesthismaybepartlyduetofertilizerplacement.Infivestudies,anhydrousammoniaresultedin40to200percentgreaterN2Oemissionscomparedwithbroadcasturea(BreitenbeckandBremner,1986a;Fujinumaetal.,2011;Thorntonetal.,1996;Ventereaetal.,2005).Onestudy(Burtonetal.,2008a)foundnodifferenceinN2Oemissionsbetweenanhydrousammoniaandbroadcastureawhenbothwereappliedatalowerrate(80kgNha‐1year‐1)comparedwiththeotherstudies(≥120kgNha‐1).Consequently,theremaybeathresholdintheapplicationratebeforethereisasignificanteffectonemissions.

Thechemicalformofnitrogenfertilizerinfluenceslossesofnitrogenfromthreemajorpathways:surfacevolatilization,soilmicrobialprocesses,andNO3‐leaching.Allfertilizersaresusceptibletodenitrificationoncenitrifiedto(orappliedas)NO3‐.Ammonium‐basedfertilizers,includinganhydrousammonia,urea,andorganicsourcessuchasmanure,arealsosusceptibletoN2Olossduringnitrification.Urea,anhydrousammonia,andmanureareadditionallysusceptibletosurfacevolatilizationasNH3undersomeconditions.VolatilizedNH3andleachedNO3‐contributetoindirectN2Oloss.

Chemicaladditiveshavebeendevelopedtoreleasefertilizernitrogenintothesoilmoregraduallyandtodelaythenitrificationofnitrogenfromammonium(NH4+)toNO3‐inordertoimprovethesynchronybetweencropnitrogendemandandsoilnitrogenavailability.Polymer‐coatedureaslowlyreleasesnitrogenwithincreasingsoiltemperatureandwater,andisintendedtomake

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-15

nitrogensupplymoresynchronouswithplantnitrogendemandandreducenitrogenlosses.EffectsonN2Oproduction,however,appearmixed,withsomestudiesshowingreducedN2Oforpolymer‐coatedurea(e.g.,Hyattetal.,2010)andothersshowingnoimpactorevenhigheremissions(Ventereaetal.,2011a).Arecentmeta‐analysisof13studiesofmostlyvolcanicandwetland‐derivedsoilsfoundthatpolymer‐coatedureareducedN2Oemissionsby35percentonaveragecomparedwithconventionalfertilizers,butresultsaredifficulttogeneralizebecausemostofthesoilsincludedintheanalysiswerenottypicalforU.S.croppingsystems(Akiyamaetal.,2010).

Fertilizersformulatedwithnitrificationinhibitorscanpotentiallyreduceemissionsfromnitrificationanddenitrification,aswellasNO3‐leaching.SomeU.S.fieldstudiesshowsubstantialreductionsinN2Oemissionswhenfertilizerswithnitrificationinhibitorsareaddedcomparedwithconventionalfertilizers(e.g.,Halvorsonetal.,2010a),whileothersshowlittleornoimpact(e.g.,ParkinandHatfield,2010a).Ameta‐analysisofsome28studiesworldwidereportedanaveragereductionof38percent(Akiyamaetal.,2010),butagainresultsaredifficulttogeneralizeduetothesmallsamplesizeandsoilsthatarenottypicalofU.S.croppingsystems.

Onereasontheimpactsoffertilizersdesignedtoreduceemissionsareinconsistentisthattheformofnitrogenappliedinteractswithotherfactorstocontrolnitrogenlosses.Amongthesefactorsisweather,whichdirectlyaffectstheprocessesthatleadtogaseousnitrogenlossesandNO3‐leaching,andindirectlyaffectstheseprocessesbycontrollingplantnitrogenuptake.Soilpropertiessuchastextureandhydraulicstatusarealsoimportant.Ingeneral,nitrificationisimportantinwell‐aeratedsoils,whiledenitrificationismoreimportantinpoorlydrainedsoils.Thenitrogensourcealsointeractswithothermanagementpractices.Forexample,polymer‐coatedureasubstantiallyreducedN2Oemissionsunderno‐tillbutnotfulltillcultivationforirrigatedcorninColorado(Halvorsonetal.,2010a).

OrganicFertilizerEffectsonN2OEmissions:LandapplicationofanimalmanurehasbeenrelatedtoN2Oemissions.Mosieretal.(1998)andPetersen(1999)measuredincreasesinN2Oemissionswithmanureapplication.KaiserandRuser(2000)measuredannualemissionsoftheaddednitrogeninslurryrangingfrom0.74to2.86percent,andDeKleinetal.(2001)foundthatannualN2O‐Nlossesrangedfromzerotofivepercentoftheorganicnitrogenappliedtosoils.Others(e.g.,BartonandSchipper,2001)foundN2OemissionsfollowingtheadditionofmanureslurriesexceededemissionsfromanequivalentamountofmanufacturedN,likelyduetotheslurry’screatingenhancedconditionsfordenitrification.However,GHGemissionsalsooccurifmanureismanagedinpits,lagoons,orsolidstorage.

Injectionofmanureisacommonpracticetoavoidsurfacerunoffandreduceobjectionableodorsfrommanureapplication.BothFlessaandBesse(2000)andWulfetal.(2002)suggestedthatinjectionofswinemanurewouldcreatemorefavorableconditionsforN2OandCH4formationbecauseofthereducedaerationwithinthesoil.However,Dendoovenetal.(1998)didnotfinddifferencesineitherN2OorCH4emissionsfrominjectedorsurface‐appliedswineslurryontoaloamysoil.Thesefindingssuggestthattherate,timing,placement,andformulationofmanureisimportanttoN2Oproduction,similartomanufacturednitrogenfertilizer,butthereisaneedforadditionalresearch.

CO2EmissionsGeneratedfromUreaFertilizerApplications:Unlikeothernitrogenfertilizers,urearesultsinthedirectproductionofCO2inadditiontowhateverN2Omightbesubsequentlyproducedbymicrobes(deKleinetal.,2006).Sinceureais20percentC,everymetrictonofureaappliedtosoilresultsinthedirectemissionof20kgCO2‐C;alternatively,everykilogramofnitrogenappliedasurearesultsinthedirectemissionsof0.43kgCO2‐C.UreaismanufacturedbyreactingNH3andCO2toformammoniumcarbamate,whichisthendehydratedtoformureaprills.IntheUnited

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-16

StatestheCO2inureaiscapturedfromthefossilfuelusedtomanufactureNH3,sothesoilCO2producedrepresentsafossilfuelemission.

ManagementSystemInteractions:NitrogenmanagementpracticescaninteractwithothercroplandmanagementcomponentsinregulatingGHGemissions.Asemphasizedabove,anyfactorthataffectscropNUEhasthepotentialtoaffectN2Oemissions.Therefore,optimizingotherpractices—includingtillageandthemanagementofsoilpH,pests,irrigation,drainage,andotherfactors—willtendtoincreasenitrogenfertilizeruptakebythecropandthereforereduceN2Oemissions.Forthisreason,nutrientmanagementeffectsonGHGemissionsshouldbeconsideredinthecontextoftheentiresetofcroplandmanagementpractices.Forexample,thereisevidencethatfertilizerplacementcaninteractwithtillagemanagementincontrollingN2Oemissions(Ventereaetal.,2005),andthatinadequatemanagementofothernutrients(e.g.,phosphorusandpotassium)canreduceNUE(Snyderetal.,2009).EffortstominimizeorremediatewaterqualityimpactsofnitratetransportfromfarmtoaquaticsystemsmayalsoreduceindirectN2Oemissions.Forexample,theuseofsubsurfacebioreactorstoremovenitratefromdrainagewaterhasbeneficialimpactsonindirectN2O.However,todatethesebioreactorshavenotbeenimplementedatlarge(field)scalesandtherearealsoquestionsaboutreleaseofN2OandCH4duringthetreatmentprocessthatneedtobeansweredbeforetheirneteffectonGHGscanbeassessed(Elgoodetal.,2010).Also,environmentalandclimatefactors,whicharegenerallynotundermanagementcontrol,mayaffectN2Oemissions;forexample,nitrogenfertilizerappliedjustbeforelargerainfalleventscanstimulateincreasedemissions(Lietal.,1992).

3.2.1.2 TillagePractices

Differenttillagepracticesaregenerallyclassifiedintooneofthreecategories:fulltillage,reducedtillage,ornotillage.Tillageintensityisbasedonimplements,numberofpasses,andthepercentageofsurfaceanddepthoftillagedisturbance.Toolsareavailabletodeterminetillageintensity(e.g.,theSTIRModel;seeUSDANRCS,2008).No‐tillagepracticesarecharacterizedbytheuseofseeddrillsandfertilizerorpesticideapplicatorswithnoadditionaltillageeventsorimplements.Surfaceresiduesarenotincorporatedintothesoilwhenfollowingno‐tillagepractices,andthereislimiteddisturbancetothesoilprofile;consequentlyno‐tillagemanagementincreasessoilcoverandimprovesaggregatestability(Sixetal.,2000).Incontrast,examplesoffulltillage(oftenreferredtoasconventionaltillage)includeoneormorepasseswiththefollowingtillageimplements:moldboardplow,diskplow,diskchisel,twistedpointchiselplow,heavydutyoffsetdisk,subsoilchiselplow,andbedderordiskripper.Systemsarealsoclassifiedasfulltillageiftherearetwoormorepasseswithoneofthefollowingimplements:chiselplow,singledisk,tandemdisk,offsetdisk‐lightduty,one‐waydisk,heavy‐dutycultivator,ridgetill,orrototiller.Systemswithothertillagepractices,suchasasinglepasswitharidgetillimplement,mulchtill,orchiselplow,leadtointermediatedisturbanceofthesoilandareclassifiedasreducedtillage.

Changesintillagepracticescaninfluenceverticaldistributionofcarboninthesoilprofileandtotalsoilcarbonstocks(Paustianetal.,1997).Historically,fulltillagehasresultedinthereductionofsoilcarbonstocks(Laletal.,2004).Asynthesisofpreviousanalysesestimatedthatlong‐termfulltillagecandecreasesoilcarbonstocksby30percent(Ogleetal.,2005;Westetal.,2004).ChangingfromfulltillagetonotillagecanreversehistoriclossesofsoilC.No‐tillagepracticescanleadtoaccumulationofsoilcarbonintheuppersoilprofile(0to30cm),withlittletonochangeinthelowersoilprofile(30to60cm)(Syswerdaetal.,2011).Theopposite,adecreaseintheuppersoilhorizonwithanincreaseinthelowersoilhorizon,cansometimesoccurwithachangefromnotillagetofulltillage(Bakeretal.,2007).However,changesinthelowersoilprofiletendtobemorevariable,therebyrequiringalargersamplesizetodetectsignificantdifferences(KravchenkoandRobertson,2011).Areductionincarboninputassociatedwiththeinfluenceofno‐tillmanagementoncropproductionmayalsoleadtolossesofsoilcarbon,particularlyincoolerandwetterclimates

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-17

(Ogleetal.,2012).However,whiledifferencesintheresponseofsoilcarbonstockstotillageoccuramongfieldexperiments,comprehensiveanalysesofavailablefielddataindicatethat,onaverage,soilcarbonstocksincreasewithachangefromfulltillagetoreducedtillageornotillage,especiallywithlong‐termadoptionofnotillage(Ogleetal.,2005;Sixetal.,2004;WestandMarland,2002).

Decreasedtillageintensityincreasessoilcarbonbecauseofreduceddisturbancetosoilaggregates,reducedexposureofsoilorganicmattertoweatheringprocesses,anddecreaseddecompositionrates(Paustianetal.,2000).Theextenttowhichsoilcarbonaccumulationoccursafterareductionintillageintensityisdeterminedbythehistoryoflandmanagement,soilattributes,regionalclimate,andcurrentcarbonstocks(WestandSix,2007).Ingeneral,greatersoilcarbonaccumulationwillbeobservedinC‐poorsoils(i.e.,duetolong‐termcultivation)withaclayeytextureunderhighbiomasscroppingsystemsintemperatehumidandwarmclimates(FranzluebbersandSteiner,2002;Planteetal.,2006;Sixetal.,2004).Insomecases,intermittenttillage,duringlong‐termreducedornotillage,isneededtoreducesoilcompaction,forweedcontrol,ortoreducepestsorpathogens.Whileintermittenttillagecancauseadecreaseinsoilstocks,upto80percentofsoilgainsfromno‐tillagepracticescanbemaintainedwhenimplementingnotillagewithintermittenttillage(Conantetal.,2007;Ventereaetal.,2006).

TheeffectoftillagemanagementchangesonsoilN2Oemissionsisvariableandnotfullyunderstood.Increases(Rochette,2008),decreases(Mosieretal.,2006),andnochanges(Grandyetal.,2006;Lemkeetal.,1998)insoilN2Oemissionshavebeenobserved.However,thosedifferencesarenottotallyrandomandpastmeta‐analyseshaveconcludedthatclimateregime,durationofpractice,andnitrogenfertilizerplacementhaveinfluencedtillageeffectsonN2Oemissions(Sixetal.,2004;vanKesseletal.,2012).Othervariablessuchassoiltexturemayalsobeimportant.

RegionalclimatehasalsobeenidentifiedasamajordriverforthechangeinN2Oemissionswithadoptionofno‐tillagepractices,withemissionsincreasinginhumidclimatesanddecreasingindryclimates(Sixetal.,2004).However,timesinceadoptionofnotillagemightalsoplayarolewithhigheremissionsinitiallyafteradoptionofnotillageinbothhumidanddryclimates,butovertimeemissionsfromno‐tillagesystemsmaydeclineinhumidclimatesrelativetopreviousemissionsfromfulltillagesystems.Nevertheless,variousfieldstudieshaveshownmixedresults,bothsupportingandcontradictingthefinding.StudiesindrierclimatesoftheGreatPlainshaveshownadecreaseinemissionsevenwhenno‐tillagepracticeshadbeenadoptedforlessthan10years(Kessavalouetal.,1998;Mosieretal.,2006).Long‐termnotillageinmoistclimatesofMinnesotaandCanadaledtobothhigherandloweremissionsofN2O(Druryetal.,2006;Ventereaetal.,2005).

AnotherimportantfactorinfluencingN2Oemissionsundernotillage,andonethatfarmerscanactivelymanage,isfertilizerplacement(vanKesseletal.,2012).Ventereaetal.(2005)foundthatwhennitrogenfertilizerwasplacedonthesurface,N2Oemissionsweregreaterundernotillagethanfulltillage,butthereversewasfoundwhennitrogenfertilizerwasplacedbelow10centimeters.FertilizerplacementingeneralhasbeenfoundtohavedifferingresultsonN2Oemissions,asdiscussedinSection3.2.1.1.However,thefindingsofVentereaetal.(2005)aswellasotherstudies(e.g.,Groffman,1985;VentereaandStanenas,2008)indicatethatdeepernitrogenplacementtendstodecreaseN2Oemissionswhenaccompanyingno‐tillorreduced‐tillagepractices,atleastrelativetofulltillagecroppingsystemsatthesamelocation.TheconflictingresultsassociatedwithN2Oemissionsfromfertilizerapplicationsmaybepartlyexplainedbythetillagepractice.

Inaddition,Lemkeetal.(1998)determinedthatsoilclaycontentexplained92percentofthevariationinN2OemissionsbetweenfulltillageandnotillageacrossmultiplesitesinAlberta.Similarly,Burfordetal.(1981)foundthatemissionsfromno‐tillagepracticesweregreaterthan

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-18

fromfulltillageonsoilswithhigherclaycontentsatastudysiteintheUnitedKingdom.ItisarguedthatsoilswithhigherclaycontentshavehighermoisturecontentandthereforehaveagreaterpotentialforincreasedN2Oemissionsundernotillage.Indeed,Rochette(2008)attributedhigherratesofN2Ofluxfromminimumversusstandardtillagetogreatersoilcompaction,poorsoildrainage,reducedgasdiffusivity,andair‐filledporosityinhighclaysoils.

3.2.1.3 CropRotations,CoverCrops,andCroppingIntensity

Croprotationreferstothesequenceofcropsplantedinafield,withinoracrossyears.Croprotationsvarybylocationandgrowingregion,andmaybepracticedforavarietyofreasonssuchasimprovedeconomicreturns,pestmanagement,diseasecontrol,nutrientmanagementandwateravailability.Asimplerotationmaybeasequenceofcornandsoybeansthatisrepeatedovertime,whilemorecomplexrotationsmightincludeperennialcropssuchasalfalfawithcornandsunflowerrotationoverfiveyears,withthreeyearsofalfalfaandoneyeareachofcornandsunflower.Theactualrotationscanalsovaryfromastrictordertothesequence,particularlyinresponsetomarketdemand,i.e.,opportunisticrotations.Rotationswithhighbiomass‐yieldingcropsorperennialhaycropsorgrasscovercanincreasesoilcarbonstocks(Ogleetal.,2005).

Croppingintensitycanvaryacrossyears,duetovariationsinfallowfrequencyanduseofmultiplegrowingseasonswithmorethanonecropplantedandharvestedinasingleyear.Forexample,insemi‐aridenvironments,croprotationsoftenincludeayear‐longfallowperiodinordertoincreasetheamountofwaterstoredinthesoilprofileforthesubsequentcrop.Thislimitstheamountoforganicmatterinputtothesoil,andwiththeseverewaterlimitation,thesecroppingsystemsproducesmallamountsofbiomass,leadingtoareductioninsoilcarbonstocks(Doranetal.,1998).Consequently,intensifyingcropproductionbyreducingfallowfrequency,whichwillgenerallyinvolveadoptionofno‐tillagepractices,willincreasecarboninputacrossthewholerotationandpossiblytheamountofsoilorganiccarbon(Sherrodetal.,2003;2005).

Wintercovercropscanalsobeusedtoprovideplantcoveroutsideofthenormalgrowingseason.Priortoplantingthefollowingsummercrop,thecovercropiseitherlefttodecomposeasagreencoverorharvestedforforage.Ingeneral,theinclusionofacovercropinacroprotationwillleadtoanincreaseinsoilcarbonduetotheincreasedcarboninputderivedfromthecovercrop(Kongetal.,2005),especiallycovercroproots(KongandSix,2010).Covercropscanalsobeusedeffectivelyfornitrogenmanagement.InthefallandspringtheycancapturesoilnitrogenthatwouldotherwisebetransformeddirectlytoN2ObysoilmicrobesorleachtogroundwaterandcontributetoindirectN2Oemissions(i.e.,offsiteemissionsduetonitrogenlossesfromthesite).Additionally,whenkilledpriortoplantingthemaincrop,theirdecompositioncanprovidenitrogenthatwilldisplacesomeportionofcropfertilizationrequirements(whethermanufacturedororganic).Therefore,covercropscanreduceindirectN2Oemissionsandpossiblyoffsetfertilizationrates.However,therearenostudiesdemonstratingthataddingnitrogentosoilsincovercropsratherthanthroughfertilizationwillreducedirectN2Oemissions.Inthefuture,covercropbiomassmayalsobeharvestedforcellulosicethanolfeedstock,leavingrootstoenhancesoilcarbonstockssimilartoperennialplantsgrowninrotation(Ogleetal.,2005).

Theeffectsofcroprotationandintensityonsoilorganiccarboncanalsointeractwithothermanagementpractices,suchasresiduemanagement,tillage,andirrigation(Eghballetal.,1994).Consequently,managementinteractionsamongpracticesincludingtillageandirrigationwillbeimportantindeterminingtheinfluenceofcroprotationsonGHGemissions.Additionally,cropselectionasacomponentofcroprotationcanhaveamajoreffectonN2Oemissions(CavigelliandParkin,2012)insofarascropscanvaryintheirnitrogenuseefficienciesandnitrogenfertilizerneeds.Thisisparticularlythecasewhenlong‐livedperennialcropsaresubstitutedforannualcropsinforageorcellulosicbiofuelcroppingsystems(Robertsonetal.,2011).

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-19

3.2.1.4 Irrigation

Typesofirrigationsystemsincludesurfaceorfloodirrigation,(micro‐)sprinklerirrigation,subsurfacedripirrigation,andsubirrigation.Ingeneral,irrigationincreasessoilwatercontent,evapotranspirationrates,andrelativehumidity;decreasessoilandairtemperatures;andcanleadtoincreasedregionalprecipitation(LobellandBonfils,2008;Pielkeetal.,2007).ThesechangesaffectimportantprocessessuchasplantgrowthratesandsoilmicrobialactivitythatcontrolnetGHGfluxes.

Assoilwatercontentapproachessaturation,oxygen(O2)diffusionisinhibited,resultinginanaerobicconditionsthatcanenhanceCH4emissions(ChanandParkin,2001;Delgadoetal.,1996),oratleastreducetheCH4sinkstrengthofotherwiseaerobicsoils(Livesleyetal.,2010).SaturatedconditionsalsoenhancedenitrificationratesandpotentiallyN2Oemissions(Delgadoetal.,1996;Jambertetal.,1997;Livesleyetal.,2010),butnotethatpeakN2OemissionsfromdenitrificationoftenoccuratwatercontentslowerthansaturationbecausewhenO2isextremelylimiting,N2OislikelytobefurtherreducedtoN2beforediffusingfromthesoilsurfacetotheatmosphere(Davidson,1991;Dunfieldetal.,1995).Furthermore,nitrificationratespeakatapproximately50percentofsaturation,andwatercontentsclosetofieldcapacity(60to70percentofsaturation)areexpectedtosupportmaximumtotalN2Oemissionrates(Davidson,1991).Inaddition,irrigationcanincreaseindirectN2OemissionsbyenhancingNO3‐leachingandrunoffifmorewaterisaddedthanisevaporated(Gehletal.,2005;Spaldingetal.,2001).

WettingofdrysoilstypicallyincreasesCO2emissions(FiererandSchimel,2002).However,irrigationalsoincreasesplantgrowthratesand,therefore,soilorganiccarbonlevelstypicallyincreaseafteruplandcroppingisconvertedtoirrigatedcropping,althoughlossofsoilcarbonfromerosioncanalsoincreaseunderirrigation(Follett,2001;Laletal.,1998).Furthermore,irrigationcanaffectinorganiccarbonlevels,butcurrentavailabledatashowcontrastingresults(Blanco‐Canquietal.,2010;Denefetal.,2008;Entryetal.,2004).

FloodandSurfaceIrrigation:Floodirrigationinvolvesfloodingtheentirefieldwithwater.Undercontinuouslyfloodedconditions,soilsarehighlyanoxic,thusfacilitatinghighmethanogenesisanddenitrificationrates(Mosieretal.,2004).However,highdenitrificationratesdonotnecessarilyimplyhighN2OemissionsbecausetheextremelyanoxicconditionsfacilitatefurtherreductionofN2OtoN2beforeitisemittedfromthesoil(Mahmoodetal.,2008).ThisissupportedbyobservationsshowinghigherN2Oemissionsfromintermittentcomparedtocontinuouslyfloodedricesystems(Katayanagietal.,2012;Xuetal.,2012),althoughitremainsdifficulttopredicttherelativeportionofdenitrifiednitrogenthatisemittedasN2OrelativetoN2.

Surfaceirrigationalsoinvolvessupplyinglargeamountsofwatertothesurfaceofsoils,butinthiscasethewaterisaddedthroughfurrowsadjacenttocropbeds.Thesesystemsareoftennotveryefficient,becausewaterlossesfromevaporationandseepagecanbelarge.TheimpactoffurrowirrigationonGHGemissionsdependsonhowoftenandtheextenttowhichfurrowsarefilledwithwater.WettinganddryingcyclesarelikelytoemitlargepulsesofNOandN2O(Davidson,1992),aswellasCO2(FiererandSchimel,2002).Spatialvariabilitycanalsobehigh,suchasthehigherN2Oemissionsfromfurrowscomparedwithbedsthathavebeenobservedforirrigatedcottoncropping(Graceetal.,2010).Inaddition,microtolandscapescaleheterogeneityinenvironmentalconditions,duetotopographyandotherfactors,contributetomultiscalevariabilityinN2Oemissions(Hénaultetal.,2012;Yatesetal.,2006).ThisspatialandtemporalheterogeneityinenvironmentalconditionsandfluxratesmakesitverydifficulttoquantifyGHGfluxesfromthesetypesofsystemswithhighlevelsofaccuracyandprecision.

SprinklerSystems:Sprinklersystemsdeliverwatertovegetationandthesoilfromabovethesurfaceusingoverheadsprinklersorguns.Thisisusuallymoreefficientthansurfaceirrigation,but

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-20

evaporativelossesfromwaterinterceptedbyvegetation,litter,andthesoilsurfacecanstillbesubstantial.Duringandshortlyafterirrigationevents,soilmaybecomesaturatedandemitpulsesofN2O,butbecausethesoilisnotcontinuouslysaturated,N2Oemissionsareexpectedtobelowercomparedwithsurfaceirrigation(NelsonandTerry,1996).BothN2Oemissionsandsoilcarbonlevelsareexpectedtoincreasewithsprinklerirrigationcomparedwithuplandcropping.

SurfaceandSubsurfaceDripIrrigation:Surfacedripirrigationsupplieswaterfromdriplinesplacedadjacenttocroprows.Evaporativelossesshouldbelesscomparedwithabove‐surfacesprinklersystems,becauselesswaterisinterceptedbygrowingvegetation.However,evaporativelossescanstilloccurtotheextentthatsurfacelitterandsoillayersabsorbwaterfromthedripsprinkler.TheimpactsofsurfacedripirrigationonGHGfluxesareexpectedtobesimilartothoseofsprinklersystems,althoughthereisearlyevidencethatbothsurfaceandsubsurfacedripirrigationleadstolessemissionsofCH4andN2O(Kallenbachetal.,2010;Kennedyetal.,2013).

Subsurfacedripirrigationtargetswaterdeliverytotherootzoneusingburiedpipesandtubing.Thesesystemscanbeveryefficient,becausewaterisconcentratedintherootzoneataslow,steadyrate,henceminimizingoreliminatingevaporationlossesandavoidingsaturationofthewholesoilprofile.Consequently,thesesystemsarenotexpectedtobelargeCH4sources(DelGrossoetal.,2000a).Soilwatercontenthaslesstemporalvariationwithsubsurfacedripirrigationcomparedwithsprinklerandsurfacesystems,sopulsesofN2OandCO2emissionsarealsoexpectedtobeofsmallermagnitude(Kallenbachetal.,2010).Similarly,subsurfacedripirrigation/fertigationofhighvaluescrops,suchastomatoes,hasbeenshowntoreduceN2Oemissionscomparedwithfurrowirrigation(Kennedyetal.,2013).

Subirrigation:Subirrigationisusedinareaswithrelativelyhighwatertablesandinvolvesartificiallyraisingthewatertabletoallowthesoiltobemoistenedfrombelowtherootzone.Becausewaterissuppliedtorootsfrombelow,evaporationlossesarenotenhancedastheywouldbewithsurfaceirrigationsystems.ThissystemcandecreaseNO3‐leaching(Elmietal.,2003)butmayincreaseN2Olossesfromdenitrification(Munozetal.,2005).

ManagementInteractions:Irrigationsystemsinteractwithothercropmanagementstrategiessuchaschangesincroprotation,croppingintensity,tillage,andfertilizeramounttocontrolnetGHGfluxes.IrrigationtendstoamplifytheeffectsofthesefactorsonN2OandCH4emissionsatthesametimeasthepracticesincreasecropyieldsandsoilcarbonstocks.However,theresponseofsoilcarbontoirrigationiscomplexanddrivenbyinteractingfactors.Whenwaterandnutrientstressarereducedthroughirrigationandfertilization,theportionoftotalplantproductionallocatedbelowgroundcandecrease,butabsolutebelowgroundproductionandsoilorganiccarboncanincrease(Bhatetal.,2007).Howevernotallexperimentsshowincreasedsoilcarbonwithirrigation(Denefetal.,2008).Consequently,theirrigationbenefitsofincreasedyieldsandpotentialcarbonstoragemaybecounter‐balancedwiththeincreasedN2OandCH4fluxes.

However,therearealsooptionsforlimitingemissions,particularlywithfertilization.Fertigationaddsnutrientstotheirrigationsystemtodeliverwateralongwithsolublenutrientstotherootzone.Thesesystemshavethepotentialtobeveryefficientfrombothnutrientandwateruseperspectives(Spaldingetal.,2001),becausetheslowandtimedsupplyofnutrientsandwaterismoresynchronouswithplantdemandandtheyareconcentratedintherootzone.Consequently,N2Oandothernitrogenlossesareminimizedwhileplantgrowth,carboninputs,andcarbonsequestrationcanbemaximized.Similarly,CH4emissionsareminimizedbecausesoilsaturationisavoided.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-21

3.2.1.5 ErosionControl

Soilerosionprocessesincludesoildetachment,transport,anddeposition.Soilerosioncanpotentiallyreducesoilcarbonstocksandincreasenetcarbonfluxtotheatmospherethroughdecreasedplantproductivityandsubsequentdecreasedorganicmatterinputtosoilandincreaseddecompositionoftheerodedsoilfraction(Lal,2003).However,soilerosioncanalsopotentiallyincreasenetsoilcarbonstocksanddecreasenetcarbonfluxtotheatmospherethroughdynamicreplacementofsoilcarbononerodedlandscapesanddecreaseddecompositionratesinzonesofsoildeposition(Hardenetal.,1999;Stallard,1998).

Lal(2003)estimatedthat20percentofcarboninerodedsoilisemittedtotheatmosphere,duetooxidationofsoilorganiccarbonfollowingthedisruptionofsoilaggregatescausedbydetachmentandtransport.However,inananalysisof1,400soilprofiles,VanOostetal.(2007)foundnegligiblecarbonlossasadirectresultofsoildetachmentandtransport.Atsiteswherethetransportedsoilwasdeposited,therewasaslight(~onepercent)decreaseinsoilcarbondecompositionrates,resultinginslightlyhighersoilcarbonaccumulation.Moreimportantly,itwasfoundthatonaverage,25percentoferodedcarbonwasreplacedontheerodedsitesovera50‐yearperiod(Hardenetal.,2008).Thecombinationofthesefindingssupportsanapproximate26percentsinkcapacityoferodedsoil(VanOostetal.,2007).

Theaccumulationofsoilcarbononerodedlocationswithinlandscapesisreferredtoasdynamicreplacement(Hardenetal.,1999).Dynamicreplacementoccursasaresultofsoilcarbonbuildingtowardasteadystateofsoilcarboncontent,constrainedbysoiltypeandclimate(WestandSix,2007).Steadystateoccurswhensoilcarbonaccumulationequalssoilcarbonlosses.BothVanOostetal.(2007)andLalandPimentel(2008)notethatthedynamicreplacementratemaybelowinareaswithlowercroplandproductioninputs.Forexample,dynamicreplacementmaybelowincropsystemswithlowresidueproduction,suchascottonandtobaccointheUnitedStates,whichhavelowercarbonaccumulationratesthanhighresidueinputscrops(Ogleetal.,2005).

Notethatwhilewatererosioncangenerateasmallcarbonsink,thebenefitofacarbonsinkisoffsetbyothernegativeimpactsfromsoilerosion.Forexample,soilerosioncanresultinwaterpollutionduetosedimentloading,airpollutionfromairborneparticulatematter(PM10),anddecreasedsoilfertilityresultinginsubsequentyielddeclines.

3.2.1.6 ManagementofDrainedWetlands

Drainageofwetlandseffectivelycreatesanuplandcroppingsystembyloweringwatertableswithtilesorditchestoproduceannualcrops.Themostobviouseffectofwetlanddrainageisincreasedoxidationandtillageofsoils.Forexample,conversionofnativewetlandsandgrasslandsintocroplandhasbeenshowntodepletenativesoilcarbonstocksby20tomorethan50percent(BlankandFosberg,1989;Eulissetal.,2006;Mann,1986).Inturn,CO2emissionsincreasewithhigherdecompositionrates,particularlyinorganicsoils,i.e.,Histosols(Allen,2012;ArmentanoandMenges,1986).LossoftheorganiclayerhascausedtremendoussubsidenceinU.S.croplands(Stephensetal.,1984)suchastheFloridaEverglades(Shihetal.1998)andtheCaliforniaDeltaregion(Broadbent,1960;Weir,1950),whereratesvaryfrom0.46to2.3cmyear‐1(DeverelandRojstaczer,1996;Devereletal.,1998;RojstaczerandDeverel,1995).SimilarsubsidencerateshavealsooccurredinotherregionssuchastheFloridaEverglades.

Manipulationofwaterlevelscanhavemultipleeffectsonnutrientcyclinginwetlands.Drainagealsomayresultinmoreoptimalsoilmoistureconditions(e.g.,40to60%water‐filledporespace)thatenhanceformationofN2Oasabyproductofnitrificationanddenitrificationreactions(Davidsonetal.,2000).DrainageincreasesnitrogenmineralizationrateswithconversionfromanaerobictoaerobicconditionsandenhancesN2Oemissions(Duxburyetal.,1982;Kasimir‐

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-22

Klemedtssonetal.,1997).Incontrast,drainagedecreasesCH4emissionsbyreducingthefrequencyanddurationofsoilsaturationrequiredforCH4productionaswellasenhancingfrequencyofmethanotrophicactivity(Dorretal.,1993;Gleasonetal.,2009;PhillipsandBeeri,2008).However,insituationswherewetlandsareinacropproduction,butnotdirectlydrained,CH4productioncanactuallybeenhancedduetoincreasedrunofffromadjacentcroplandsorconsolidationdrainage,whichincreaseswaterdepthandhydroperiods(Gleasonetal.,2009).

ManagingthewatertablebyraisingthedepthofdrainagetotheextentpossiblehasbeenaneffectivemeasuretoreducelossofCO2andotherGHGsfromdrainedorganicsoils(Jongedyketal.,1950;Shihetal.,1998).RecentresearchsuggeststhatevenperiodicfloodingoforganicsoilsthataredrainedforcropproductionmaybeeffectiveinreducingCO2emissions(Morrisetal.,2004).Thereislimitedinformationontheeffectofdrainageinmineralsoilswithahighwatertable(i.e.,hydricsoils),buttheinfluenceonGHGemissionsislikelylesssignificantthanindrainedorganicsoils.Itisimportanttonotethatwetlandsareaffordedsomeprotectionbylaws(e.g.,CleanWaterAct)andconservationprogramsthatrecognizetheimportanceofwetlands,suchasforwildlifehabitat,andprovideagriculturalproducersincentivestoavoiddrainingwetlands(e.g.,the“Swampbuster”provisionoftheFoodSecurityAct).

3.2.1.7 LimeAmendments

Agriculturallimeconsistsprimarilyofcrushedlimestone(CaCO3)anddolomite(CaMg(CO3)2)invaryingproportions.Agriculturallime,hereinafterreferredtoaslime,isappliedtosoilstodecreasesoilacidity.Limeiscommonlyappliedtoagriculturallandswherenitrogenousfertilizersarecontinuouslyusedandwhereprecipitationexceedsevapotranspiration.

TheapplicationoflimetosoilscancreateasinkorsourceofCO2totheatmosphere(Hamiltonetal.,2007),dependingonthestrengthoftheweatheringagent.Weatheringoflimebycarbonicacid(H2CO3),formedwhenCO2isdissolvedinwater,resultsintheuptakeofonemoleofCO2foreverymoleoflime‐derivedcarbondissolved(Eq.1).Carbonicacidweatheringproducesbicarbonate(HCO3‐)thatcontributestoalkalinityingroundwater,streams,andrivers(OhandRaymond,2006;Raymondetal.,2008).Alternatively,whenlimereactswiththestrongernitricacid(HNO3),whichisproducedwhennitrifyingbacteriaconvertNH4+basedfertilizerandothersourcesofNH4+tonitrate(NO3‐),carboninlimeisdissolvedandreleaseddirectlytotheatmosphere(Eq.2).

CaCO3+H2O+CO2=Ca2++2HCO3‐ Eq.1

CaCO3+2HNO3=Ca2++2NO3‐+H2O+CO2 Eq.2

Fieldmeasurementsandmodelinganalysesindicatethatmorelimeisdissolvedbycarbonicacidthanbynitricacid.Forexample,WestandMcBride(2005)estimatedthat62percentoflimewasdissolvedbycarbonicacidweathering,Hamiltonetal.(2007)estimated75to88percent,andOhandRaymond(2006)estimated66percent.Biasietal.(2008)usedchamberfluxmeasurementstoestimate15percentlossoflime‐derivedcarbonbydissolutionwithstrongacidsandinferredthat85percentisdissolvedbycarbonicacid.

WestandMcBride(2005)alsoestimatedtheprecipitationofHCO3‐backtoCaCO3onceHCO3‐reachestheocean,therebyreleasingCO2totheatmosphere.However,thelongtimeperiod(manydecadestocenturies)overwhichprecipitationwouldoccurintheocean(Hamiltonetal.,2007)effectivelyresultsincarbonsequestrationforannualaccountingpurposes.

Currentconsensusofleacheddrainagesamples,streamgaugedata,andmassbalancemodelingindicatesthatabout66percentofcarboninappliedlimeisessentiallytransferredfromonelong‐livedpool(CaCO3ingeologicformations)toanother(HCO3‐inoceans),andisthereforenotcountedasnewsequestration.However,theatmosphericCO2newlycapturedbythisprocessdoes

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-23

representsequestrationwhencorrectedforthe33percentreleasedtotheatmosphereasCO2;thisresultsinanet33percentsinkstrengthpercarboninlime.ThisestimateissimilartothatofOhandRaymond(2006)andWestandMcBride(2005),andiswithintherangeofHamiltonetal.(2007).Whilelimecanincreasesoilcarbonviaeffectsonsoilmicrobialactivity(Fornaraetal.,2011),inmostsoilsliminghasnodirectcarboneffect(Pageetal.,2009).

3.2.1.8 ResidueManagement

Cropresiduesaretheresidualremainingafterharvestoftheeconomicpartofthecrop.Theamountofcropresiduevarieswiththecropandtheharvestoperationmethod.Forexample,cottonharvestcontributesverylittleabovegroundresiduetothesoilduetotheplant’slowleafareaindexandsmallamountofplantmaterialafterleafdrop.SoybeanandotherlegumecropsalsohavesmallamountsofabovegroundresiduethatrapidlydecomposebecauseoflowC:Nratios.Incontrast,cropslikecorncanleavesubstantialamountsofresidueonthesoilsurfaceunlessthewholeplantisharvestedforsilageortheresidueiscollectedforbeddingorotherpurposes.

Abovegroundresiduemanagemententailsfivepotentialstrategies:(1)leavetheresidueonthesoilsurfacetodecayandbeincorporatedintothesoil(requiresno‐tillmanagement);(2)incorporatetheresidueintothesoilviatillage;(3)removetheresiduethroughaharvestingoperation(i.e.,silageorcellulosicbiomassharvest);(4)allowlivestocktograzeontheresidue;or(5)burntheresidue.EachofthesemanagementpracticeshasthepotentialtoaffectGHGemissions.LeavingcropresidueonthesurfaceandincorporatingitintothesoilafterdecaybymicroorganismsaffectsCO2releasefromthesoilduetotheenhancedbiologicalactivity,andpotentiallyincreasesN2Oemissionsthroughanalterationofthenitrogenbalanceinthesoil.Asimilarprocessoccurswhenresidueisincorporatedintothesoilviatillage.Notethattillagealsocausesreductionsinsoilcarbonstocks,andadditionalCO2isreleasedthroughburningfueltoruntillageequipment.HarvestingtheresiduereleasesCO2fromburningfuelintheengineslinkedwiththeharvestingprocess,althoughresidueharvestedforbiofuelproductionmaycreatenetfossilfueloffsetcredits.BurningcropresiduesinthefieldreleasesCO2,CH4,andN2O(aswellasCOandNOx)emissionstotheatmosphere.Ingeneral,butnotalways,residueremovalreducessoilcarbonstocks(GreggandIzaurralde,2010;Wilhelmetal.,2007).

ManagementinteractionsarealsoimportantwhenconsideringtheinfluenceofresiduemanagementonGHGemissions.Forexample,theinfluenceofresiduemanagementonsoilorganiccarbonwillbeaffectedbythetillagepractices(Malhietal.,2006).

3.2.1.9 Set‐Aside/ReserveCropland

The1985FarmBillestablishedtheConservationReserveProgram(CRP)topayproducerstoconverthighlyerodiblecroplandorotherenvironmentallysensitiveagriculturalareasintovegetativecover.Theseareascouldbeconvertedintograssland,nativebunchgrasses,pollinatorhabitat,shelterbelts,filterorbufferstrips,orriparianbuffers.Areasareremovedfromproductionandseededwithannualandperennialspeciestoformacoverthatwouldbeundisturbedforaminimumof10years.Inreturn,producersorlandownersreceivedapaymentforenrollingtheselandareasintotheCRP.ThroughouttheagriculturalhistoryoftheUnitedStates,therehavebeentimesinwhichagriculturallandsweresetasidetoreduceagriculturalsurpluses;however,thetimeperiodofremovalwastypicallyshort‐term(onetotwoyears)andmaintainedinaweed‐freestate.

TheprimaryaimsofCRParetodecreaseerosion,restorewildlifehabitat,andsafeguardgroundandsurfacewaterquality.Animportantancillaryaimiscarboncapture:CRPlandssequestercarboninsoilandlong‐livedplants,andthusrepresentavaluablemitigationopportunity.Inameta‐analysisofpairedsoils,Ogleetal.(2005)foundthat20yearsofset‐asideresultedintemperateregionsoils’accumulating82to93percentofthecarbonlevelsunderoriginalnative

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-24

vegetation,onaverage.PostandKwon(2000)concludedfromaglobalmeta‐analysisthat,onaverage,soilcarbonsequestrationratesonlandconvertedfromagriculturalproductiontograsslandis33gCm‐2year‐1.At39pairedCRP‐cropsitesinWisconsin,Kucharik(2007)foundsequestrationratesof50gCm‐2year‐1onMollisolsand44gCm‐2y‐1onAlfisols.Follettetal.(2009)estimatethatCRPsoilssequester~50gCm‐2year‐1onaverage.TheCouncilforAgriculturalScienceandTechnology(2011)estimatesthatCRPlandsarecurrentlyresponsiblefor6.3Tgofsoilcarbonsequestrationperyear.Gebhartetal.(1994)reportedamean18.8percentincreaseonfiveCRPsitesduringasix‐yearperiod.However,therearestudiesshowinglittleornoincreaseinC,leadingtouncertaintyintheeffectofset‐asidelandinareserveprogram(JelinskiandKucharik,2009;Karlenetal.,1999;Reederetal.,1998).Forexample,Karlenetal.(1999)comparedCRPlandwithperennialgrassestocroplandacrossfiveStatesandfoundthatonlyonesiteofthefiveshowedasignificantdifferenceintotalorganiccarboncontentinthesoilafterbeinginCRP.

IncreasesinsoilcarbonresultingfromsettingasidecroplandinCRPcanbereversedbyconvertingtheselandsbackintoproduction.Gilleyetal.(1997)foundthatthepositivechangesinCRPlanddisappearedimmediatelywhenthesoilsweretilleduponconversionbackintocropproduction.However,manystudiesindicatethatiflandunderCRPisreturnedtocultivation,someorallofthesoilcarboncanpotentiallyberetainedifthelandiscultivatedwithno‐tillpractices(BowmanandAnderson,2002;Daoetal.,2002;Olsonetal.,2005).Inadditiontochangesinsoilcarbonstocks,changeswillalsooccurinN2Oemissionsdependingonthenutrientmanagementpractices.Gelfandetal.(2011)measuredanetcarboncostof10.6MgCO2‐eqha‐1(289gC‐eqm‐2)forthefirstyearofno‐tillsoybeansfollowing20yearsofCRPgrassland,andasignificantportionofthenetemissionwasduetoN2Oproducedintheconversionyear.

3.2.1.10 Biochar

Biocharisasoilamendmentthatispromotedforitsabilitytoimprovecropproductionandsequestercarboninsoils(Atkinsonetal.,2010;Lehmann,2007a;2007b).Biocharischarcoalproducedwhenwoodorotherplantbiomassisburnedunderlow‐oxygenconditions,knownaspyrolysis.Whenappliedtosoils,biocharcanpersistforlongperiodsoftime;itschemicalstructuremakesitresistanttomicrobialattackundermostsoilconditions.However,itspersistencecanvarygreatlyforreasonsnotyetcompletelyunderstood.BiocharisacommoncomponentofmostU.S.agriculturalsoils(Skjemstadetal.,2002),leftfromfiresthatoccurredpriortoconversionoftheoriginalforestorprairie.Addingbiochartosoilshasbeenproposedasawaytosequestercarbon(Lehmann,2007a)becauseofthispotentialtopersistforcenturies(KimetuandLehmann,2010;Nguyenetal.,2008).Butbiochar’slongevityinsoildependsonanumberoffactorsincludingpyrolysisconditions(e.g.,pyrolysistemperature)andthechemicalcompositionofthebiocharfeedstock(Spokas,2010).Climateandsoilfactorssuchasmineralogyandpre‐existingorganicmattercontentalsoaffectbiochar’spersistenceinsoil.

Anadditionalbenefitofbiocharisitspositiveeffectsonagriculturalsoilfertility(Atkinsonetal.,2010;Lairdetal.,2010),largelybyprovidingadvantagessimilartootherformsofsoilorganicmatter:improvedsoilstructure,waterholdingcapacity,andcation‐exchangecapacity.BiocharhasalsobeenshowntoreducesoilN2Oemissionsinsomelaboratorystudies,butthesmallnumberoffieldtrialssofarreportedhavedocumentednosignificanteffectsunderfieldconditions(e.g.,Scheeretal.,2011).

Itistooearlytoknowifpromisingresultsfromlaboratoryandshort‐termfieldexperimentscanbegeneralizedtolong‐termfieldconditions.Biocharsoiladditionsmaybeafuturesourceofcarboncreditsforpyrolysiswasteiflong‐termfieldexperimentsconfirmresultsfromshortertermstudies.Theclimateadvantageofaddingbiochartosoilislessclear,however,relativetootherpotentialusesofplantbiomass.Lifecycleanalyses(e.g.,Robertsetal.,2010)suggestthatbiocharmay

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-25

increaseordecreasenetemissionsdependingonalternativeusesoftheoriginalbiomassandlifecyclesystemboundaries.Furthermore,ifthebiomass(orbiochar)wasburneddirectlyforenergythenthesourceofdisplacedenergymustalsobeconsidered(Robertsetal.,2010).Nevertheless,boththesequestrationandN2Osuppressionpotentialofbiocharmeritfurtherstudy.

3.2.2 ManagementInfluencingGHGEmissionsinFloodedCroppingSystems

ThereareavarietyoffloodedcroppingsystemsintheUnitedStates,includingsystemsforrice,wildrice,cranberries,andtaro.Apartfromrice,thesesystemsarerelativelyminor(specialtycrops)andthereislittletonoresearchorinformationontheirGHGemissions.RicesystemsemitbothCH4andN2O;however,manyreportsshowaninverserelationshipbetweenCH4andN2Oduringthericecroppingseason,withCH4occurringunderanaerobicconditionsandN2Oemissionsoccurringunderaerobicconditions(Zouetal.,2005).Therefore,toaccuratelydetermineamitigationstrategyoneneedstoconsiderthenetcumulativeeffectofGHGemissionsbyevaluatingbothCH4andN2O.WaterandresiduemanagementhavereceivedthemostattentionintermsofofferingpossibilitiesformitigatingCH4emissions.Othermitigationoptionshavealsobeenexaminedandshowpromise(e.g.,Fengetal.,2013;Linquistetal.,2012;Majumdar,2003;WassmannandPathak,2007;Yagietal.,1997)andfurtherresearchisrequiredinmanyareasbeforetheseoptionscanbescaledup.TheintenthereisnottoprovideareviewoftheliteraturebuttoprovideabriefoverviewofsomefactorsaffectingGHGemissionsfromfloodedricesystems.

3.2.2.1 WaterManagementinFloodedRice

IntheUnitedStates,riceisplantedinoneoftwoways:(1)waterseeded,whereseedsaresownbyairplaneinfloodedfields;or(2)dry‐seeded,whereseedsaredrilledorbroadcast(thenincorporated)intodryfields.WaterseedingisthepredominantpracticeinCaliforniaandpartsofLouisiana,whiledryseedingispredominantinmuchofthesouthernUnitedStates(e.g.,Arkansas,Mississippi,Missouri,andTexas).Watermanagementvariesbetweenthesetwoestablishedpractices.Inwater‐seededrice,thefieldsaretypicallyfloodedfortheentireseason.However,inLouisiana,thefieldmaybedrainedwithapinpointfloodsystem(threetofivedays)orwithadelayedflood(upto20days)afterseeding.Indry‐seededrice,rainfallorflushirrigationeventsarerelieduponduringthefirstthreetofiveweeksofestablishmentandthenfloodedfortherestoftheseason.Inallcases,fieldsaretypicallydrainedafewweeksbeforeharvesttoallowthesoiltodryoutenoughtosupportharvestequipment.FurtherdetailsofU.S.riceproductionsystemscanbefoundinSnyderandSlaton(2001)andStreetandBollich(2003).

MidseasondrainorintermittentirrigationisastrategytomitigateCH4emissions.Thispracticeresultsinaerobicconditionsthatareunfavorableformethanogens.However,suchconditionsarefavorableforN2Oemissions(e.g.,Zouetal.,2005).MoststudiesreportthatmidseasondrainssignificantlydecreaseCH4emissionsbutincreaseN2Oemissionsrelativetocontinuousflooding.Regardless,netGHGemissionsinricesystemsareusuallydecreasedwithmidseasondraindespitetheincreaseinN2O.Wassmanetal.(2000)reportedthatCH4emissionreductionsrangedfromsevenpercentto80percent.ThereductioninCH4emissionsdependsonthenumberofdrainageeventsduringthecroppingseasonandonothermanagementfactorsandsoilproperties.Yanetal.(2005)reportedthatCH4fluxesfromricefieldswithsingleandmultipledrainageeventswerereducedby60percentand52percentcomparedtocontinuouslyfloodedricefields.ThispracticehasnotbeenwidelyevaluatedintheUnitedStates,anditmaybedifficulttodrainandre‐floodthelargerelativelyflatparcelsoflandthatarecommonlyusedforriceproductionintheUnitedStates.Furthermore,suchpracticescanleadtoincreasedweedanddiseasepressurealongwithloweryieldsandgrainquality.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-26

Soilcarbonstocksarealsoinfluencedbywatermanagement.Forexample,carbonstocksinChinesericesystemsarehigherthaninuplandcrops,presumablyduetotheaccumulationofcarbonunderthefloodedconditions(Panetal.,2010;Wu,2011).ItremainsunknownifeffortstomitigateCH4emissionsintheUnitedStatesusingintermittentfloodingwillleadtoareductioninsoilcarbonstocks.

TheuseofmidseasondrainagehasbeenshowntodelayharvestinCalifornia.Therefore,inclimateswithashortgrowingseason,theuseofamidseasondrainwillincreaseriskofcropfailure,andthereforewillbealessappealingalternativetogrowers.

3.2.2.2 ResidueManagement

StrawmanagementhasalargeimpactonCH4production.Strawadditions,particularlythosewithahighcarbontonitrogenratio,increaseCH4emissionsbuthavethepotentialtoreduceN2Oemissions(e.g.,Zouetal.,2005).ThisreductioninN2OmaybeduetoincreasednitrogenimmobilizationormoreeffectiveconversiontoN2.LowcarbontonitrogenorganicmaterialstendtoincreaseN2Oemissions(Kaewpraditetal.,2008).Yanetal.(2005)reportedthatthetimingofstrawapplicationisalsoanimportantfactor.Forexample,applyingricestrawbeforetransplantingincreasedCH4emissionsby2.1times,whileapplyingricestrawinthepreviousseasonincreasedCH4emissionsby0.8times.SeveralstudieshavedemonstratedthatcompostingricestrawpriortoincorporationreducesCH4emissions(Wassmannetal.,2000);however,thisrequiresadditionalenergytocollectthestrawandthenspreaditbackonthefieldaftercomposting.

IncontrasttothepotentialforreducingCH4emissionswithremovalofricestraw,thereisalsothepotentialtoreducesoilcarbonstocksduetolesscarboninputtosoils.Othernutrients(particularlyK)areremovedinlargeamountswithresidues,andtheseneedtobereplacedtomaintaintheproductivityofthesystem.

3.2.2.3 OrganicAmendments

Variousorganicamendmentscanbeappliedtoricefields,includingfarmyardmanurespecialtymixesoforganicfertilizers,andgreenmanures(e.g.,covercrops).Basedonameta‐analysisbyLinquistetal.(2012),livestockmanureincreasesCH4emissionsby26percentandgreenmanuresincreasedCH4by192percent.NeithermanuresourcehadasignificanteffectonN2Oemissions.FewstudieshaveevaluatedtheinfluenceofdifferentmanurestorageandprocessingtechniquesonCH4emissions.OneexampleisastudybyWassmanetal.(2000),whofoundthatfermentationoffarmyardmanurepriortoapplicationcanreduceCH4emissions.FarmyardmanurewillalsoinfluencesoilcarbonstockandsoilN2Oemissions.

3.2.2.4 Varieties,RatoonCropping,andFallowManagement

SeasonalCH4(Lindauetal.,1995)andN2O(Chen‐Ching,1996)emissionsareaffectedbyricevariety.Thecauseofvarietaldifferencesvarybutmaybeduetogastransportthrougharenchymacells,differentrootingstructures,ordifferencesamongvarietiesintermsofrootexudates(WassmannandAulakh,2000).IdentifyingthemechanismsforvarietaldifferencesmayenablebreedingprogramstoselectvarietiesthathavelowerCH4emissions.

InsomeStates,theclimateallowsre‐sproutingofasecond,orratooncrop,thatgrowsfromthestubbleofthefirstcropafterharvesting.Ratooncropyieldsaresmallerthanthefirstcrop,butcanaddsubstantiallytotheoverallannualyield,therebyreducingcostsofproductionperunit.Inaddition,ittakesfewerresourcesandlesstimetogrowaratooncropthantogrowthefirstcrop.However,ratooninghashigherCH4emissionrates(abouttwotothreetimeshigher)thanthefirstcrop,becausethestrawfromthefirstcropremainsinthefieldunderanaerobicconditionsduringtheratoonperiodratherthanthefieldbeingdrainedsothatthestubblecandecayaerobically

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-27

(Lindauetal.,1995).Therefore,theamountofCH4producingorganicmaterial(i.e.,materialavailableforanaerobicdecomposition)isconsiderablyhigherthanwiththeprimarycrop.

ManagementofricefieldsduringthewinterhasasignificanteffectonannualGHGemissions.Forexample,inCalifornia,legislationinthe1990shaslimitedtheburningofricestrawtoamaximumof25percentofanarea,althoughinrealityonlyabout10percentofriceproductionfieldsareburned.Currently,ricestrawisincorporatedafterharvestonabout85percentofthericeproductionfieldsinCalifornia,andinthesefieldsabouthalfareintentionallyfloodedtofacilitatestrawdecomposition,althoughthisvaluecanvarywidelyfromyeartoyear.WinterfloodinghasincreasedannualCH4emissions(Devitoetal.,2000),butithasalsoincreasedthequalityofhabitatforoverwinteringwaterfowlinthePacificFlyway.Ricestrawisbaledandremovedonaboutfivepercentofthearea.

3.2.2.5 NitrificationandUreaseInhibitorsinFloodedRice

NitrificationinhibitorspreventorslowtheconversionofNH4+toNO3‐andthusreduceN2Oemissionsfromnitrificationandsubsequentdenitrification.Inameta‐analysisoftheseproducts,Akiyamaetal.(2010)foundthatinricesystemstheuseofnitrificationinhibitorsonaveragereducedN2Oemissionsby30percent,althoughsomeproductsweremoreeffectivethanothers.Certainnitrificationinhibitors(i.e.,dicyandiamide,thiosulfate,andencapsulatedcalciumcarbide)canmitigatebothCH4andN2Oemissions.ReducedCH4emissionsusingdicyandiamidewasattributedtoahigherredoxpotential,lowerpH,lowerFe2+,andlowerreadilymineralizablecarboncontent(Bharatietal.,2000).

Ureaseinhibitors,suchashydroquinone,slowthemicrobialconversionofureatoNH4+,thusreducingtheamountofnitrogenavailablefornitrificationanddentrification.BothCH4andN2Oemissionswerereducedwiththeuseofhydroquinone(Boeckxetal.,2005).ItissuggestedthatureaseinhibitorsmitigateCH4emissionbyinhibitingthemethanogenicfermentationofacetate(Wangetal.,1991).Furthermore,acombinationofaureaseinhibitor(hydroquinone)andanitrificationinhibitor(dicyandiamide)wasshowntoresultinlowerGHGemissionscomparedwithusingonlyoneoftheproducts(Boeckxetal.,2005).SeeSection3.2.1.1formoreinformationonnitrificationandureaseinhibitors.

3.2.2.6 FertilizerPlacementinFloodedRice

Incorporating/injectingorplacingfertilizerdeepintothesoilhasbeenshowninsomestudiestoreducebothCH4(Wassmannetal.,2000)andN2O(Keerthisingheetal.,1995)emissions.Whilemuchofafloodedricefield’ssoilisanaerobic,thefloodwaterandtopfewcentimetersofsoiltypicallyremainaerobicwhilesoilbelowfivecentimetersexistsinananaerobic,reducedstate(KeeneyandSahrawat,1986).Thusmineralnitrogeninthetopfewcentimetersofsoilmayundergonitrificationanddenitrification,whichcanleadtoN2Oemissions;butmineralnitrogeninlowersoildepthswillremainasammonium.Incontrast,nitrogenfertilizerthatisappliedtothesoilsurface(eitherpreseasonormidseason)tendsbemoresusceptibletolosseseitherfromammoniavolatilizationormorerapidnitrification‐denitrificationprocesses(Griggsetal.,2007).Byplacingnitrogenintoanaerobicsoillayers,itisbetterprotectedfromlossesandremainsavailableforcropnitrogenuptake(Linquistetal.,2009).TheeffectofdeepfertilizerplacementonCH4reductionremainsuncertain.SeeSection3.2.1.1formoreinformationonfertilizerplacement.

3.2.2.7 SulfurProducts

Sulfur‐containingfertilizers(i.e.,ammoniumsulfate,calciumsulfate,phosphogypsum,andsinglesuperphosphate)reduceCH4emissions(Lindauetal.,1998).ThemagnitudeofCH4reductionisdependentonfertilizationratewithaveragesbetween208and992kgSha‐1,reducingCH4

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-28

emissionsby28percentand53percent,respectively(Linquistetal.,2012).Atlowlevelsofsulfurfertilization,whicharecommoninrecommendedrates,theeffectonCH4emissionswillbelimited(Linquistetal.,2012).SulfurmitigatesCH4emissionsintwoways.First,SO4additionstosoiladdelectronacceptors,thusslowingsoilreduction(Majumdar,2003).Second,theproductofSO4reduction(H2S)mayinhibitmethanogenicbacteriaandthusdepressCH4production.Unfortunately,moststudieshavenotexaminedtheeffectonN2Oemissions.

3.2.3 Land‐UseChangetoCropland

Conversionfromoneland‐usecategory(e.g.,forestland,wetlands)tocroplandcanhavesignificanteffectsontheGHGemissionsandremovalsassociatedwiththelandunderconversion.Whenlandisconvertedtocropland,thereisoftenalossofcarbon,anincreaseinN2OandCH4emissions,areductioninCH4oxidation,andifbiomassisburned,anincreaseinnon‐CO2GHGemissions.Anumberofvariablesinfluencethedirectionandmagnitudeoftheemissionsandsinksincludingpriorlanduse,climate,andmanagement.Theinfluenceofland‐usechangeoncarbon,nitrogen,methane,andnon‐CO2GHGsarediscussedbelow.

3.2.3.1 InfluenceonCarbonStocks

Land‐useconversiontocroplandcanhavesignificanteffectsonbiomass,litter,andsoilcarbon(IPCC,2000).Houghtonetal.(1999)estimatedthatlandclearanceintheUnitedStateshasledtoalossof27PgCtotheatmospheresincethe1700s,althoughrecentlysomecarbonhasbeenrestoredwithconversionofcroplandbacktootherusesandalsoimprovedsoilmanagement(U.S.EPA,2010).ClearingforestleadstoalargelossofabovegroundandbelowgroundbiomassandlitterC;grasslandconversioncanalsoreducetheamountofcarboninthesepools,buttoalesserextentthanforestconversionbecausegrasslandshavelessbiomass.Soilcarbonlossescanbesignificantwithconversiontocultivatedcropmanagement(DavidsonandAckerman,1993),withrelativelossesintemperateregionsfrom20to30percentonaverage(Ogleetal.,2005).

Ultimately,thenetinfluenceoflandconversionwilldependonthepreviouslanduse,vegetationcomposition,andmanagement,andtheresultingcroplandsystemanditsassociatedvegetationcompositionandmanagement.Forexample,conversionofgrasslandtotreecrops,suchasorchards,mayleadtogainsincarbonrelativetothegrasslandduetoaccumulationofcarboninwoodybiomass.

3.2.3.2 InfluenceonSoilNitrousOxide

Theconversionoflandtocroplandgenerallyacceleratesnitrogencycling,withsubsequenteffectsonN2OandCH4fluxes.SoilnitrogenavailabilityisthefactorthatmostoftenlimitssoilN2Oemissions(seeSection3.2.1.1),soanypracticethatincreasestheconcentrationofinorganicnitrogeninsoilislikelytoalsoaccelerateN2Oemissions.Asnotedabove,land‐usechangetypicallyresultsinfastersoilorganicmatterturnoverandassociatednitrogenmineralization,whichmeansthatevenintheabsenceofnitrogenfertilizer,soilN2Ofluxeswillbehigheronconvertedland.Additionalnitrogenfromfertilizers,whethersyntheticororganic,orfromplantedlegumeswillfurtherenhanceN2Ofluxes,aswilltillage—insofarastillagestimulatesnitrogenmineralization.

TheconversionofunmanagedlandtocellulosicbiofuelproductionmayavoidadditionalGHGloadingifcareistakentoavoidsoilcarbonoxidationandexcesssoilnitrogenavailability(Robertsonetal.,2011).Thismightoccur,forexample,ifexistingperennialvegetationwereharvestedforfeedstockorwhennewperennialgrassesweredirect‐seededintoanotherwiseundisturbedsoilprofile,andwhennoorminimalnitrogeninputsareused.Althoughthecurrentmarketforcellulosicbiomassisnascentatbest,asitdevelopsinresponsetolegislativemandatesandenergydemandtherewillbepressuretoconvertlandsnowunmanagedintobiofuelcropping

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-29

systems.MinimizingtheGHGimpactoftheseconversionswillbecrucialforavoidinglong‐termcarbondebtthatwillotherwiseleadtocarbonsourcesratherthancarbonsinks,irrespectiveoftheircapacitytogeneratefossilfueloffsetcredits(Fargioneetal.,2008;Gelfandetal.,2011;Pineiroetal.,2009).

3.2.3.3 InfluenceonMethanotrophicActivity

Methanotrophicbacteriacapableofconsuming(oxidizing)atmosphericCH4arefoundinmostaerobicsoils.CH4uptakeinsoilsisgloballyimportant;thesizeofthesoilsinkisthesamemagnitudeastheatmosphericincreaseinCH4(IPCC,2001),suggestingthatsignificantchangesinthestrengthofthesoilsinkcouldsignificantlyaffectatmosphericCH4concentrationsifuptakedeclinesduetolanduseandmanagement.Inunmanageduplandecosystems,CH4uptakeiscontrolledlargelybytherateatwhichitdiffusestothesoilmicrositesinhabitedbyactivemethanotrophs.Diffusionisregulatedbyphysicalfactors—principallymoisturebutalsotemperature,soilstructure,andtheconcentrationofCH4inthesoil.

AgriculturalmanagementtypicallydiminishessoilCH4oxidationby70percentormore(Mosieretal.,1991;Robertsonetal.,2000;Smithetal.,2000)foratleastaslongasthesoilisfarmed.Themechanismforthissuppressionisnotwellunderstood;likelyitisrelatedtonitrogenavailabilityasaffectedbyenhancednitrogenmineralization,fertilizer,andothernitrogeninputs(Steudleretal.,1989;SuwanwareeandRobertson,2005).NH4+isknowntocompetitivelyinhibitmethanemonooxygenase,theprincipalenzymeresponsibleforoxidationatatmosphericconcentrations.Microbialdiversityalsoseemstoplayanimportantrole(Levineetal.,2011).

TherearenoknownagronomicpracticesthatpromotesoilCH4oxidation;althoughabetterunderstandingofthemechanismsresponsibleforitssuppressionmayeventuallysuggestmitigationopportunities.Todate,recoveryofsignificantCH4oxidationcapacityfollowingagriculturalmanagementhasonlybeendocumenteddecadesafterconversiontoforestorgrassland;completerecoveryappearstotakeacenturyorlonger(Robertsonetal.,2000;Smithetal.,2000).

3.2.3.4 Non‐CO2GHGEmissionsfromBurning

Burningcanbeconductedonlandsinpreparationforcultivationtofacilitateaccessforequipment,removestandingaccumulatedbiomass,andprovideorganicmaterial(ash)forincorporationintosoils.Burningofthebiomasscanbeanimportantsourceofnon‐CO2GHGs(N2O,CH4)aswellasprecursorstoGHGformation(CO,NOx)followingadditionalchemicalreactionsintheatmosphereorsoils.MoreinformationonburningofgrazinglandsvegetationcanbefoundinSection3.3.1.5,andburningoftheremainingbiomasswithclearingofforestcanbefoundinSection6.4.1.9.

3.3 GrazingLandManagement

Rangelandsaredefinedaslandonwhichtheclimaxorpotentialplantcoveriscomposedprincipallyofnativegrasses,grass‐likeplants,forbsorshrubssuitableforgrazingandbrowsing,andintroducedforagespeciesmanagedforgrazingandbrowsing.Conversely,pasturelandsrepresentlandmanagedprimarilyfortheproductionofintroducedforageplantsforlivestockgrazing,withmanagementconsistingoffertilization,weedcontrol,irrigation,reseedingorrenovation,andcontrolofgrazing(USDA,2009).HowgrazinglandsaremanagedinfluencesthepotentialforcarbonsequestrationorGHGemissions.TheparagraphsbelowhighlightsomeofthekeymanagementpracticesandtheirassociatedGHGemissionsandremovalssummarizingthecurrentstateofthescience.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-30

3.3.1 ManagementActivityInfluencingGHGEmissions

Soilorganiccarbondominatestheterrestrialcarbonpoolingrazinglands.Abovegroundcarbonis<fivepercentofthetotalecosystemcarbonpoolinmostnon‐woodyplantdominatedecosystems,butupto25percentingrassland‐shrublandecosystems.Grazinglandscanbecarbonsinks,withratesofsoilorganiccarbonsequestrationupto0.5MgCha‐1year‐1forrangelands(DernerandSchuman,2007;Liebigetal.,2010)and1.4MgCha‐1year‐1forpastures(Franzluebbers,2005;2010a).Actualratesareoftenlessthantheseapparentmaximalratesofsoilorganiccarbonsequestrationduetomanagement,climate,weather,andotherenvironmentalconstraints.Potentiallyhighratesofsoilorganiccarbonaccumulationarepredictedinnewlyestablishedpasturesandrestorationofdegradedrangelands,whileimpropermanagementanddroughtcanresultinsignificantcarbonreleases.Duetothelargelandarea,themovementofcarbonintoandoutofthesoilreservoiringrazinglandcanbeanimportantcomponentoftheglobalcarboncycle.InadditiontosoilorganicC,alargepoolofsoilinorganiccarbonoccursascarbonatesinsemi‐aridandaridrangelandsoilsthatcanleadtoeithersequestrationorreleaseofCO2(Emmerich,2003).However,thedirectionandmagnitudeofsoilinorganiccarbonstocksarecurrentlypoorlyunderstood(Follettetal.,2001;Liebigetal.,2006;Svejcaretal.,2008).

Twoimportantmanagementfactorsthatcontrolthefateofsoilorganiccarboningrazinglandsarelong‐termchangesinproductionandqualityofabovegroundandbelowgroundbiomassthatcanalterthequantityofnitrogenavailableandtheC‐to‐Nratioofsoilorganicmatter(Pineiroetal.,2010),andgrazing‐inducedeffectsonvegetationcomposition,whichcanbeasimportantasthedirectimpactofgrazing(e.g.,grazingintensity)onsoilorganiccarbonsequestration(DernerandSchuman,2007).Therateofsoilorganiccarbonsequestrationcanbelinearfordecades(Franzluebbersetal.,2012),buteventuallydiminishestoasteady‐statelevelwithnofurtherchangeinthestockfollowingseveraldecadesofamanagementpractice(DernerandSchuman,2007).Additionalpositivechangesinmanagementorinputsareoftenneededtosequesteradditionalsoilorganiccarbon(Conantetal.,2001),butnegativechangesinmanagementcausinglossofsoilstructureandsurfacelittercovercanleadtoerosionandlossofproductivityresultinginadeclineinsoilorganiccarbon(Pineiroetal.,2010).

MethanefluxfromgrazinglandsiscontrolledbythebalanceofentericandmanureemissionsfromruminantanimalsanduptakeofCH4bysoil.(EmissionsandmethodsforestimatingCH4emissionsfromruminantsarediscussedfurtherinSection5.3).InthewesternUnitedStates,grasslandshavegreaterCH4uptakebysoilthandoneighboringcroplands(Liebigetal.,2005),probablyduetogreatersurfacesoilorganicmatterthatpromotesthegrowthofmethanotrophicbacteria.InanassessmentofGHGemissionsfromthreegrazinglandsystemsinNorthDakota,entericemissionsofCH4fromgrazingcattlewerethreetoninetimesgreater(onaCO2equivalentbasis)thanCH4uptakebysoil(Liebigetal.,2010).WithCH4emissionsdirectlytiedtonumberofcattle,fertilizedgrasslandsareoftenanetcarbonsourceduetoenhancedCH4emissionfromcattleandpotentiallygreaterN2Oemissions,whileunfertilizedgrasslandsareoftenanetcarbonsink(Luoetal.,2010;Tunneyetal.,2010).

3.3.1.1 LivestockGrazingPractices

Livestockgrazingpractices(i.e.,stockingrateandgrazingmethod)aresummarizedbelowalongwithdataontheinfluencethesepracticeshaveonGHGemissionsandremovals.

StockingRate:Stockingrateisthenumberofanimalspermanagementunitutilizedoveraspecifiedtimeperiod,e.g.,numberofsteersperacrepermonth.Basedonpublishedstudies,responsesofsoilorganiccarbontostockingrateandgrazingintensityhavebeenvariable,despitegrazingeithercausinganincreaseorhavinglittleeffectonthemorecommonlymeasuredpropertyofsoilbulkdensity(GreenwoodandMcKenzie,2001;Schumanetal.,1999).Innorthernmixed‐grassprairie,

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-31

soilorganiccarbonhasincreasedingrazedcomparedwithungrazedareas,partlyresultingfromincreasingdominanceofshallow‐rooted,grazing‐resistantspecies,suchasbluegrama(Boutelouagracilis),whichincorporatesalargeramountofrootmassintheuppersoilprofilethanthemid‐grassspeciesthatitreplacesduringgrazing(Derneretal.,2006).Furtherresearchisneededtodeterminetheextentofdifferentrootdistributionsontotalcarbonstorageinanentiresoilprofile.Increasingstockingratebeyondanoptimumforachievingmaximumlivestockproductionperunitlandarea(Bement,1969;Dunnetal.,2010)wouldbeexpectedtoresultinalossofsoilorganiccarbonduetoreducedplantvigorandrootdistributioninthesoilprofile.Withsuboptimalstockingrate,vigorofpastureforagesmaydeclineasplantresiduesdevelopathicklitterlayeratthesoilsurface.However,insemi‐aridregions,thehighUVlightintensitymaysignificantlyreducelitteronthesoilsurfacethroughphotochemicaldecompositionprocesses,regardlessofgrazingintensity(Brandtetal.,2010).Vegetationcompositionshiftsthatchangethequantityandqualityofplantmaterialproducedcaninfluencetheamountofcarboninputstosoils.Inmanagedpastures,ithasbeenshownthatsoilorganiccarboncanbeoptimizedwithamoderatestockingratecomparedwithnograzingorheavy,continuousgrazing(Franzluebbers,2010b).Anoptimizedstockingrateforaparticularregion(climaticconditions),vegetationcomposition,andsoiltypeisthoughttomaximizetheamountofsoilorganiccarbonsequestered.

Limitedevidenceshowsthatgrazingatmoderatelevelscanfurtherincreaseenvironmentalbenefitsoverthoseofgrasslandestablishmentalone,inadditiontoprovidinganimportanteconomicreturntoproducers.Ifsoilorganiccarbonweretodeclinewithovergrazing,therewouldalsobeadeclineinanimalproductivityduetolackofforage.Therefore,anegativerelationshipbetweensoilorganiccarbonstorageandanimalproductivityislikelywhengrazingintensityexceedsamoderatelevel.ThisresponseislikelymodifiedundermoderategrazingpressureduetothefactthatgreateranimalproductperheadcanbeachievedwithlowerGHGemissions.Limitingtheeffectofhighstockingrateonsoilorganiccarbonlevelsmaybeachievablewithhighnitrogenfertilizerinputs,anoutcomewithanuncertaincarbonfootprintrelativetoGHGintensity.StockingrateandfertilizernitrogeninputinteractionsneedtobequantifiedtoaccuratelyassesstotalGHGintensity.SomeevidenceinthehumidUnitedStatessuggeststhatovergrazingcanleadtoincreasedsoilerosionandareductioninsoilquality.Literaturefromotherregionshasalsoshownincreasingsoilerosionanddecliningsoilqualitywithexcessivestockingrates.Whileevidenceislacking,anassumptionisthatsoilorganiccarbonfollowsthissamepositiveresponsetomoderategrazingandnegativeresponsetoovergrazing.

EmissionsofN2Ofromgrazinglandsareaffectedbygrazing,butnetfluxcanbeincreasedordecreased,dependingonstockingrate,grazingsystem,andseason(Allardetal.,2007).StockingratehadlittleinfluenceonN2Oemissionsfrommixed‐grassprairieinNorthDakota(Liebigetal.,2010).WhileelevatedN2Oemissionsmaybeexpectedunderincreasedstockingrate,Wolfetal.(2010)suggestedthatgrazingcancounteractpotentialN‐inducedemissionsonrangelandsbyreducingsurfacebiomass,resultinginmoreextremesoiltemperatures,lowersoilmoisture,andcorrespondinginhibitionofmicrobialactivityresponsibleforN2Oemissions.Ifgrazingintensityonpastureswereviewedasafertilizereffectwithincreasinganimalmanuredeposition,thenN2Ofluxfromagrazingeffectdoesnotbehaveinthesamemannerasmanufacturednitrogenfertilizerinputs.Interactionsbetweenstockingrateandnitrogenfertilizerinputshavenotbeenquantified,despitesuchdiversityinmanagementlikelyoccursamongproducers.StockingrateandmanureandfertilizernitrogeninputsareareasrequiringfurtherresearchtobetterunderstandthecomplexsetofcontrollingfactorsinadditiontosoiltextureandenvironmentalconditionsonN2Oemissionsingrazinglands.Onrangelands,theabundanceofN‐fixinglegumesintheplantcommunitybecomesmorecriticalforincreasingSOC,particularlysincefertilizeradditionsandmanurearenotassignificantforreturningnitrogentothesoilcomparedtopasturesystems.ThisisanarearequiringfurtherresearchtobetterunderstandthecontrollingfactorsonN2Oemissions.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-32

GrazingMethod:Grazingmethodsvarybasedonproducergoalsandthetypeofforageavailable(Scheafferetal.,2009).Twodistinctgrazingmethods,continuousandrotationalgrazing,representtheprevalentmethodsemployedongrazinglandsintheUnitedStatestomanagethelivestock.Continuousgrazingallowsanimalstofreelymoveandhavefullaccesstoagrazingarea,whereasrotationalgrazingismorecontrolled,involvingmovementofanimalsbasedonmonitoringforagecondition,suchasplantheight,betweentwoormorepaddockssubdividedfromalargergrazingarea.Rotationalgrazingterminologyhasbeenconfusedwithtermssuchasholisticgrazing,plannedgrazing,prescribedgrazing,andmanagement‐intensivegrazing,whichcontinuetobeusedwithmultipleandambiguousmeaningsdespiteattemptstostandardizedefinitions(SRM,1998).Termstodefineintentionsofrotationalgrazingsystemsincluderest‐rotation,deferred‐rotation,high‐intensity‐short‐duration,andseason‐longgrazing(Briskeetal.,2008;Briskeetal.,2011).Herewedefinerotationalgrazingasthemovementoflivestockbetweentwoormoresubunitsofgrazinglandsuchthatalternatingperiodsofgrazingandnograzing(‘rest’)occurwithinasinglegrowingseason(HeitschmidtandTaylor,1991).

Rotationalgrazinglimitsplantsfromreachingreproductivestagesinwhichforagequalityrapidlydeclines.Thiscontrastswithcontinuousgrazinginwhichthereismoreselectivegrazingofthehighestqualityforages.Assuch,foragequalitymaybemaintainedatahighlevellongerintothegrowingseason.Therefore,rotationalstockinginthehumidUnitedStatescouldprovidemoreuniformforageconsumptionacrosspasturesandallowsufficientresttoforagespeciesbetweengrazingeventstopromotegreaterproduction.Pastureswithgreaterplantproductionviaanimprovedstockingmethodwouldbeexpectedtohavelowersoilerosionandgreatersoilorganiccarbonstorage.Althoughtheseexpectationsseemintuitive,therearelimiteddatainthescientificliteraturetosupportthem.Twostudieshavesuggestedanincreaseinsoilorganiccarbonwithrotationalgrazingcomparedwithcontinualseason‐longgrazing(Conantetal.,2003;Teagueetal.,2010),andanotherstudyfoundnodifferencebetweensystems(Manleyetal.,1995).Sincerotationalgrazingdataaremostlyavailableforrangelandandfewstudiesconductedonpastures,thereisnotenoughevidencetoevaluatehowrotationalgrazingmightaffectsoilorganiccarboninpastures.Giventhatthepreponderanceofevidencesuggeststhatrotationalgrazingdoesnotinfluencevegetationproductioninrangelands(Briskeetal.,2008),changesinsoilorganiccarbonwithrotationalgrazingwouldbeexpectedonlyifsubstantialvegetationchangeoccurredindependentlyfromstockingrate.Rangelandstypicallyhaveamuchhigherdiversityandmultiplegrowthpatternsofforbs,cool‐seasonandwarm‐seasongrasses,whichwouldresultinasmallerinfluenceofstockingmethodonvegetationphenology(i.e.,keepingforageinavegetativeratherthanareproductivestate)thanwouldoccurinmonocultureorsimplemixturesofforagesinpastures.Muchmoreresearchongrazingmethodisneeded,duetothehighadoptionrateandpromotionofthebenefitsofimprovedgrazingmethodsforsoilorganiccarbonsequestrationbyproducersandagriculturaladvisors(BeetzandRhinehart,2010).

3.3.1.2 ForageOptions

Cool‐andwarm‐seasonforageshavegrowthactivityatdifferenttimesoftheyear,therebyaffectingwhenrootandlittercarboninputsaresuppliedtosoil.Dependingonenvironmentalgrowingconditions(i.e.,relativelyshort,cool,andwetsummerwithlong,coldwinterversuslong,hot,anddrysummerwithmild,wetwinter),theperformanceofcool‐versuswarm‐seasonforageswillvaryacrossregions.InthesoutheasternUnitedStates,perennialcool‐seasonforages(e.g.,tallfescue)haveproducedgreatersoilorganiccarbonthanwarm‐seasonforage(e.g.,bermudagrass)ingrazinglandsystems,despitethemorevigorousgrowinghabitofbermudagrass(Franzluebbersetal.,2000).Thisresultislikelyduetotheopportunitiesofforagesforgrowthandthebalanceofwaterinsoilthatremainsformicrobialdecompositionoforganicmatter.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-33

Timingofforagegrazingcanaffectplantproductivity,wildlifehabitat,andcompactionofsoil.Eachoftheseeffectscan,inturn,affectsoilorganiccarbonsequestrationandGHGemissions.Thecapacityofsoiltowithstandcompactionforcesofanimaltreading,resultinginsignificantdeformation,destabilization,lossofinfiltrationcapacity,andsoilorganiccarbonsequestration,canbeexceeded—especiallyunderwetconditions(Bilottaetal.,2007).Soilsaturationduringwinterandspringleadtosevereeffectsfromanimaltrampling.InnorthernlatitudesandrangelandsofthewesternUnitedStatessubjecttofreeze‐thawcycles,sandyandloamysoilsarelesslikelytobeaffectedbythenegativeimpactsofcompaction.Intuitively,deferringgrazingtoperiodsoflimitedactiveforagegrowth(e.g.,winterandspring)mightcontributetoincreasedsoilcompaction.However,allowingforagetoaccumulatetofullcanopypriortograzingmightbebeneficialtocontrollingerosionbyprovidingalongerperiodofforageandresiduecover.Grazingofwintercovercropsmayalsobeaneffectivefarm‐diversitystrategy,buttheeffectsonsoilerosioncontrolandsoilconditionneedtobequantified.Wildlifemanagementguidelinesonrangelandsuggestlonger‐term(>oneyear)resttoaccumulatevegetationstructureforcertainbirdsneedinghabitat.Timingofgrazingcouldbeacriticalfactorincontrollingcompaction,susceptibilitytoerosion,andsoilorganiccarbonsequestration,sothesequenceofwhenpasturesaregrazedshouldberotatedamongyearstoensurethatplantcommunitiesarenotalwaysgrazedatthesametimetoensuregreatercommunitysustainability.

Organicmatter‐richsurfacesoilabsorbscompactiveforcesofgrazingmuchlikeasponge,inwhichsoiloftenreboundsinvolumeonceforcesareremoved.However,effectsofwintergrazingofdeferredgrowthmaybedifferentincolderthaninwarmerregions:frozensoilmayavoidcompaction,butnutrientrunoffmaybecomemoreimportant(Clarketal.,2004).InthesouthernUnitedStates,perennialcool‐seasongrassesareoftengrazedduringlatewinterandthroughoutspringduringtypicallywetconditions,butduetoactiveforagegrowth,soilcanalsodryquicklyandtramplingmaynotalwayscausedamage.InGeorgia,soilorganiccarbonwasgreaterunderlong‐termstandsofcool‐seasontallfescue(typicallygrazedinspringandautumn)thanunderwarm‐seasonbermudagrass(typicallygrazedinsummer)(Franzluebbersetal.,2000).

InthesoutheasternUnitedStates,annualcool‐seasonforagesareoftenplantedasacovercropfollowingsummercropsorsod‐seededintoperennialgrasspastures.ThispracticecanenhanceforageproductionandshouldincreasesoilorganicC,althoughlimiteddataareavailabletosupportthisconclusion.Inanintegratedcrop/livestocksysteminthesoutheasternUnitedStates,therewasalimitedeffectofgrazingannualcovercropsonsoilorganicC,eitherinthesummerorwintercomparedwithungrazedcovercrops(FranzluebbersandStuedemann,2009).

3.3.1.3 Irrigation

WaterisalimitingfactorintheabilityofplantstofixcarbonandsubsequentlyproducethecarboninputnecessarytoaccumulatesoilorganicC.ItisalsoafactorlimitingdecompositionofsoilorganicC.Whiletheextentofirrigationingrazinglandsislimited,whereitoccursthereareconsequencesforsoilorganiccarbonstorage.Forexample,someproductivemeadowsinthewesternUnitedStatesareirrigated.Howirrigationaffectssoilorganiccarbonwilldependonthequantity,frequency,andtimingofirrigationevents.Irrigationonlyatpeakplantgrowthstageswilllikelycauseamuchgreaterpositiveimpactonforagecarbonfixationthananegativeimpactonsoilorganiccarbondecomposition.Inthesamemanner,irrigationquantity,frequency,andtimingwilllikelyaffectN2OandCH4emissions,althoughpulsedresponsesoftheseGHGscouldlikelybemuchmoredramatic.Unfortunately,thereareonlylimitedstudiesonthesepotentialimpacts.SeeSection3.2.1.4formoreinformationonirrigationmethods.

Inacomparisonofagriculturalsystemswithsurroundingaridandsemi‐aridnaturalvegetation,Entryetal.(2002)foundthatsoilorganiccarbonwasgreaterinirrigatedagriculturalsystemsdue

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-34

toenhancedproductivity.EmissionofN2Ofromirrigatedsystemsoccursfollowingcloselytimedirrigationandnitrogenfertilizerapplicationsincroplandconditions,andthiswouldbeexpectedundergrazinglandsaswell,buttherearefewdataavailable(Liebigetal.,2006;Liebigetal.,2012).

3.3.1.4 NutrientManagement(SyntheticandOrganic)

Fertilizersareoftenappliedtopastures,duetothehighyieldresponsewithadequateprecipitation,butarelesscommoninwesternrangelandsduetoinconsistentyieldresponseandriskycost‐effectivenesswithlimitedandvariableprecipitation.NitrogenavailabilityinsoildeterminestoalargeextenttheemissionsofN2O.Grazinglandstypicallyhavelowernitrogenavailabilityinsoilthancroplands,andthereforehavelowerN2Oemissions(Liebigetal.,2005).However,applicationoffertilizernitrogentorangelandhasbeenfoundtoconsistentlystimulateN2Oemissions(Flechardetal.,2007).Liebigetal.(2010)observedtwo‐foldgreaterN2Oemissionsfromfertilizedcrestedwheatgrasscomparedwithunfertilizedmixed‐grassprairie.AdditionoffertilizernitrogentopastureinMichiganhadanegligibleeffectonN2Oemissions(AmbusandRobertson,2006),whereasapplicationofpoultrymanureonabermudagrasspastureinArkansasincreasedN2Oemissionsby45percentcomparedwithpasturewithoutmanure;N2Ofluxandsoilnitratedynamicswerepositivelyassociated(Saueretal.,2009).Astrategytoreducesoilnitratebyinterseedingannualryegrassonmanure‐amendedsoildecreasedN2Oemissionsby50percent.Similartocropland,reducingsoilnitratetolowlevelsduringperiodsoflowrootactivityandhighlevelsduringperiodsofhighrootactivitywillgenerallyenhanceplantnitrogenuptakeandreduceN2Oemissions.ApplicationofcompostedgreenwastecouldsequesterC,butthisresearchtopichasnotbeenfullyevaluated.AsignificantincreaseinsoilorganiccarbonhasonlybeendemonstratedatoneoftwositesinCalifornia(Ryalsetal.,2014).Frommodelsimulations,compostapplicationhasbeenshowntoreducetheoverallGHGemissiononCO2equivalentbasis,bysequesteringcarbonandreducingN2Oemissions,whilemanureslurryandinorganicfertilizerapplicationsledtonetGHGemissionsonCO2equivalentbasis(DeLongeetal.,2013).Formoreinformationonmanagementoptionsassociatedwithfertilizationpractices,seeSection3.2.1.1.

3.3.1.5 PrescribedFires

Burninghasthepotentialtoaltersoilorganiccarbonthrougheffectsonphotosynthesis,soil,andcanopyrespiration,andthroughspecieschanges,inadditiontostabilizingorincreasinglivestockgains,improvinghabitatdiversity,andreducingfuelloads(Bouttonetal.,2009;Toombsetal.,2010).Althoughcarbonlossfromburninggrazinglandsisaminorcomponentoftheannualcarbonemissions,burningrangelandswithasignificantwoodyabovegroundplantbiomasscanresultinsubstantialimmediateecosystemcarbonloss(BremerandHam,2010;Rauetal.,2010).However,prescribedburningofgrazinglandscouldalsoaffectlong‐livedcharthataccumulatesinsoil,andthereforewouldinfluencesoilcarbonstocks.Burningalsoleadstonon‐CO2GHGemissions,whichcanbesignificantduetothehigherglobalwarmingpotentialofthesegasescomparedwithCO2(IPCC,2006).Formoreinformationonnon‐CO2GHGemissionsfromburning,seeSection3.2.3.4.

3.3.1.6 ErosionControl

Riparianbufferscanbeasignificantsinkforexcessnutrientsrunningoffneighboringgrazinglands.Thefateofnutrientsisdependentontheflowcharacteristicsandtypeofvegetation.ExcessnitrateinsaturatedsoilofriparianareascanleadtosignificantN2Oemissions—althoughtheseemissionsaretypicallytreatedasindirect,withtheemissionsassociatedwiththefieldorlivestockfacilitythatiscontributingtheexcessnutrients(SeeSection3.2.1.1).TransportofsolublecarbonintoriparianareascouldalsoenhanceCH4emissionsfromsaturatedsoil.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-35

3.3.1.7 ManagementofDrainedWetlands

DrainageofwetlandorhydricsoilsthatareusedforgrazinghasimplicationsforsoilorganiccarbonandGHGemissions,similartodrainageforcropproduction.Thewaterregimeandplantcommunitiesaresignificantlyalteredandsoilsaremodifiedfromanaerobictoaerobicconditions.Increasingoxygeninsoilwillcauseorganicmattertodecomposemorerapidlythanundersaturatedconditions,resultinginreleaseofCO2(Eagleetal.,2010;FranzluebbersandSteiner,2002;IPCC,2006;Liebigetal.,2012).LargeemissionsofCO2resultfromdrainageofwetlands(Allen,2007;2012),anddrainagecanalsoincreasenitrogenmineralizationandenhanceN2Oemissionsdirectly(IPCC,2006).EmissionsofCH4arereducedconsiderablywithdrainage,butthisimpactisoftennotconsideredinestimationofGHGemissions(IPCC,2006).Alargeproportionofgrasslandwetlandshavebeendirectlydrainedormodifiedtoenhanceagriculturalproduction(DahlandJohnson,1991),andmanyotherwetlandsareindirectlyaffectedbysubsurfacetiledrainsandagriculturalpracticesinsurroundingcatchments.SeeSection3.2.1.6formoreinformationaboutmanagementofdrainedsoils.

3.3.1.8 LimeAmendments

LimeamendmentsareneededwhensoilpHislow(e.g.,pH<5)toenhanceproductivityandsupportbalancednutrientlevelsingrazinglandsoils.Typicallimingmaterialsingrazinglandsarecalciticlimestone(CaCO3),dolomiticlimestone(CaMg(CO3)2),andconfinedlivestockmanure,particularlypoultrylitter,whichhaslimingactivityfromlimeadditivetothefeedration.Whencarbonatelimeisappliedtosoilitdissolvesinsolutionovertime,withthecationandcarbonatedissociating.ThereispotentialforreleasingCO2totheatmospheredependingonwhetherthelimereactswithcarbonicornitricacidinthesoilsolution.Theenhancedplantnutrientofferedbylimingcanhaveanetpositiveeffectonthecarbonbalanceforanextendedperiodoftime.SeeSection3.2.1.7formoreinformationonlimeandtheconsequencesforGHGemissions.

3.3.1.9 WoodyPlantEncroachment

Woodyplantencroachment3leadstocarbonaccumulationinabove‐groundandrootbiomassandmayincreaseoverallecosystemcarbonstorage,butcandegradeagriculturalproductivityofgrazingland(McClaranetal.,2008).Overthepastcenturyinwesternrangelands,soilorganiccarbonhasincreasedinnear‐surfacesoilswithwoodyplantencroachment(Bouttonetal.,2009;Creameretal.,2011;Liaoetal.,2006;Liebigetal.,2012).Removalofwoodyplantsbyfireorothermechanismsdepletestheseshallow,relativelysusceptiblesoilorganiccarbonstoresassociatedwithencroachment(Neffetal.,2009;Rauetal.,2010);butdoesnothaveaneffectonSOCortotalnitrogenstocksatdepthsof>20cm(Daietal.,2006).Regardless,removalofthewoodyplantswillcauseadeclineinabovegroundbiomasscarbonstocks(Rauetal.,2010).

InasummaryofresearchonCH4emissionsfromgrazinglands,Liebigetal.(2012)reportedCH4uptakeundermesquite,butnetCH4productionundergrasslandanddeadmesquitestumps.Methaneuptakeundermesquitewasassociatedwithreducedsoilbulkdensityandincreasedsoilmoisture(McLainandMartens,2006),aswellasgreaternitrogenaccrual/accumulationassociatedintheareaaroundmesquiteplants(10meters)(BouttonandLiao,2010;Liaoetal.,2006;Liuetal.,2010).Methaneuptakeundermesquitewasalsoassociatedwithalteredsoilmicrobialcommunities(Hollisteretal.,2010;LiaoandBoutton,2008),whichcanaffectNOxandN2Orates,whileCH4productionfromgrasslandandwoodydetrituswaslikelycausedbytermiteactivity.The

3Woodyencroachmentwilleventuallyleadtoatransitionfromgrazinglandtoaforest.SeeChapter7:LandUseChangefordefinitionofforestlandtodeterminewhenwoodyencroachmentwillleadtoatransitiontoforestland.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-36

roleofmesquitetofixN,therebyalteringnitrogendynamics,resultedinN2Oemissionsundermesquitecanopyfour‐foldgreaterthanundergrassesorwoodydetritus(McLainetal.,2008).

3.3.2 Land‐UseChangetoGrazingLands

Land‐useconversiontograzinglandsinfluencesthecarbonstocksandGHGemissionsofaparcel.Priorlanduse,climate,soiltype,andmanagementpracticesarejustafewofthefactorsinfluencingthemagnitudeanddirectionofGHGemissionsandremovalsresultingfromaland‐useconversiontograzinglands.Theparagraphsbelowsummarizethecurrentstateofthescienceontheinfluenceofaland‐useconversiononcarbonstocks,soilN2O,CH4,andnon‐CO2GHGsresultingfrombiomassburning.

3.3.2.1 InfluenceonCarbonStocks

Establishmentofpasturesonpreviouscroplandhelpsreducesoilerosionandimprovessoilquality(Singeretal.,2009).Thereissubstantialevidencethatestablishmentofpasturesleadstosignificantsoilorganiccarbonsequestration.Therateofaccumulationacrossanumberofstudiesaveraged0.84MgCha‐1year‐1(Franzluebbers,2010a).Literatureisinadequatetodeterminewhetherforagecompositionorsoiltypehaveadiscernibleinfluenceonsoilorganiccarbonstock(seeSection3.3.1.2).Thequantityofforageproducedandthequantityofresiduesfromsurfacelitterandrootbiomassarelikelykeydeterminantsofsoilorganiccarbonaccumulation.Thesequantitiescanbeinfluencedbyfactorssuchasforagemixture,climaticconditions,soiltype,inherentsoilfertility,fertilizerapplication,andliming.

3.3.2.2 InfluenceonSoilNitrousOxide

Dependinguponpreviouslanduse,grasslandestablishmentmayormaynotaffectnetN2Oemissionsduringland‐usechange.Ingeneral,emissionsofN2Oarecontrolledbysoilnitrogenavailabilitywithadditionalinfluenceofsoiloxygenandsolublecarbonavailability.Ifthepreviouslandusewasforexample,anutrient‐limitedforest,convertedsubsequentlytohigh‐fertilitypasture,thenN2Oemissionswouldlikelyincrease.Ifthepreviouslandusewasnutrient‐richcroplandconvertedtopasture,thenN2OemissionswouldlikelydeclineduetogreateropportunityforperennialforagespeciestoassimilateavailablesoilnitrogenandthusreduceopportunitiesforsoilnitrogentransformationstoN2O.Thisisanarearequiringfurtherresearchtoobtainquantitativeresponses,however.

3.3.2.3 InfluenceonMethanotrophicActivity

Land‐usechangetograzingland,particularlyfromforestland,mayinvolvefertilizationtoenhanceforageproduction.NitrogenfertilizationcausesareductionofmethanotrophicactivityinsoilsandthereforereducestheuptakeofCH4fromtheatmosphere(AmbusandRobertson,2006).SeeSection3.2.3.3formoreinformationontheimpactofland‐usechangeonmethanotrophicactivity.

3.3.2.4 Non‐CO2GHGEmissionsfromBurning

BiomassburningingrazinglandcanbeanimportantsourceofGHGs(CO2,N2O,CH4)(Aaldeetal.,2006;AndreaeandMerlet,2001;Badarinathetal.,2009;IPCC,2006).Whileconversionofcroplandtograzinglandrarelyinvolvesburning,conversionofforesttograzinglandcaninvolveburningofthewoodand/orslashleftfromlandclearing.TheeffectonGHGemissionsfrombiomassburningisdiscussedfurtherinthecroplandsection(Section3.2.3.4)andintheforestlandsection(Section6.4.1.9).

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-37

3.4 Agroforestry

AgroforestryrepresentsauniquecasewithinGHGaccounting,encompassingbothforestandagriculturalcomponents,alongwithmanycombinationsoftheirrespectivemanagementactivities(Table3‐1andTable3‐2).AgroforestryisdefinedwithintheUnitedStatesasan“intensiveland‐usemanagementthatoptimizesthebenefits(physical,biological,ecological,economic,andsocial)frombiophysicalinteractionscreatedwhentreesand/orshrubsaredeliberatelycombinedwithcropsand/orlivestock”(GoldandGarrett,2009).Anotherwayoflookingatagroforestryisasasetoftree‐based4conservation/productionpracticescombinedintobiggeragriculturaloperations,providingforest‐derivedfunctionsandinteractingwithagriculture‐derivedfunctionsinsupportofagriculturallanduse.Whileprovidingmanyotherservices(seeTable3‐3),agroforestrycancontributetocarbonsequestration,GHGmitigation,andadaptationtoshiftingclimate(CAST,2011;IPCC,2000;Morganetal.,2010;Verchotetal.,2007).

Table3‐3:SixCategoriesofAgroforestryPracticesPracticedintheUnitedStates

Practice Descriptiona Benefitsb

Alleycropping

Treesorshrubsplantedinsetsofsingleormultiplerowswithagronomic,horticulturalcrops,orforagesproducedinthealleysbetweenthesetsofwoodyplantsthatproduceadditionalproducts

Produceannualandhigher‐valuebutlonger‐termcropsfordiversificationofincome

Enhancemicroclimateconditionstoimprovecroporforagequalityandquantity

Reducesurfacewaterrunoffanderosion Improvesoilqualitybyincreasingutilizationandcyclingofnutrients

Altersubsurfacewaterquantityorwatertabledepths

Enhancewildlifeandbeneficialinsecthabitat Decreaseoffsitemovementofnutrientsorchemicals Increasecarbonstorageinplantbiomassandsoils Improveairquality

Forestfarming(alsocalledmulti‐storycropping)

Existingorplantedstandsoftreesorshrubsthataremanagedasanoverstorywithanunderstoryofwoodyand/ornon‐woodyplantsthataregrownforavarietyforproducts

Improvecropdiversitybygrowingmixedbutcompatiblecropshavingdifferentheightsonthesamearea

Improvesoilqualitybyincreasingutilizationandcyclingofnutrientandmaintainingorincreasingsoilorganicmatter

Increasenetcarbonstorageinplantbiomassandsoil

Riparianforestbuffersc(combinesNaturalResourcesConservationServicePracticeStandards:RiparianForestBufferandFilterStrip)

Acombinationoftrees,shrubs,andgrassesestablishedonthebanksofstreams,rivers,wetlands,andlakes

Decreaseoffsitemovementofnutrientsorchemicals Stabilizestreambanks Enhanceaquaticandterrestrialhabitats Provideeconomicdiversificationeitherthroughplantproductionorrecreationalfees

Increasecarbonstorageinplantbiomassandsoils

4Alsoreferredtoastrees‐outside‐forests,theterm“tree”hereincludesbothtreeandshrubs(Bellefontaineetal.,2002).

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-38

Practice Descriptiona Benefitsb

SilvopastureTreescombinedwithpastureandlivestockproduction

Providediversificationofcropsintimeandspace Produceannualandhigher‐valuebutlonger‐termcrops

Decreaseoffsitemovementofnutrientsorchemicals

Windbreaks(alsoreferredtoasshelterbelts)

Linearplantingsoftreesandshrubstoformbarrierstoreducewindspeed(maybespecificallyreferredtoascroporfieldwindbreak,livestockwindbreak,livingsnowfence,orfarmsteadwindbreak,dependingontheprimaryuse)

Controlwinderosion Protectwind‐sensitivecrops Enhancecropyields Reduceanimalstressandmortality Serveasabarriertodust,odor,andpesticidedrift Conserveenergy Providesnowmanagementbenefitstokeeproadsopenorharvestmoisture

Specialapplications

Useofagroforestrytechnologiestohelpsolvespecialconcerns,suchasdisposalofanimalwastesorfilteringirrigationtailwater,whileproducingashort‐orlong‐rotationwoodycrop

Treatmunicipalandagriculturalwastes Treatstormwater Useincenterpivotcornerplantings Producebiofeedstock Reduceimpactsofflooding Decreaseoffsitemovementofnutrientsorchemicals

Source:USDANaturalResourcesConservationService(2012).aDescriptionsfollowUSDANaturalResourcesConservationServiceConservationPracticesStandards.bAllagroforestryplantingsaddincreaseddiversitywithintheagriculturallandscape.Assuch,theywillimprovewildlifehabitatandgenerallyaredesignedormanagedwiththisasasecondarybenefit.cRiparianforestbufferreferstotheplantedpractice.Thiscategorydoesnotincludenaturallyestablishedriparianforests.

IntheUnitedStates,fivemaincategoriesofagroforestrypracticesarerecognized:alleycropping,forestfarming,riparianforestbuffers,silvopasture,andwindbreaks.Thereisanemergingsixthcategoryofspecialapplicationsoradaptationsofthesepractices(Table3‐3).Thesepracticesaretreatedwithinthecroplandandgrazinglandsystemsectionwiththeexceptionofforestfarming.Forestfarming(alsoreferredtoasmulti‐storycroppingwithinUSDANaturalResourcesConservationServicePracticeStandards)involvesthemanipulationofexistingforestcanopycoverinordertoproducehigh‐valuenon‐timber(i.e.,food,floral,medicinal,andcraft)productsintheunderstory,thusmaintaininglanduseasforest.Assuch,GHGaccountinginforestfarmingpracticeswillneedtobetreatedwithinthemethodsandapproachespresentedinSection6.2andSection6.4.

Themanyservicesderivedfromagroforestrypracticescanextendwellbeyondthesmallparceloramountoflandtheyphysicallyoccupywithintheagriculturallandscape(Bellefontaineetal.,2002;Garrett,2009).Theuseofagroforestrytechnologiesareimportantcomponentsattherural/communityinterface,aswellaswithinurbansettingstoaddressemergingneedssuchasstormwatertreatment,recreationorgreenspace,andfeedstockproduction(Schoenebergeretal.,2001).Althoughagroforestryiscategorizedintothesepractices,eachagroforestryplanting,evenwithinapractice,potentiallyrepresentsauniquecaseofspeciesselection,arrangement,placementwithinotherpracticesandthelargerlandscape,anduseofmanagementactivities,dependingonlandownerobjectives.Agroforestryplantingsarethereforemoreofa“designerlandscapefeature”thanastandardizedandeasilydescribedpractice(Mizeetal.,2008)withinGHGaccountingactivities.

Silvopastureprovidesagoodillustrationofthiscomplexityinagroforestrysystems.Silvopastureisthedeliberatecombinationofthreecomponents—trees,forage,andlivestock—alongwiththerangeoftheirrespectivemanagementactivities.Studiesdemonstrateahighercarbonsequestrationpotentialinsilvopasturecomparedwithforestorpasturealone(Haileetal.,2010;Nairetal.,2007;

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-39

SharrowandIsmail,2004).Muchofthisnewcarbonisinthewoodybiomass,butsoilcarbonalsohasthepotentialtoincreaseasaconsequenceofcarboninputsfromthetrees,whichovertimeextendfurtherintotheforagecomponent(Peichletal.,2006),aswellasmanagementoftheforageandofthelivestock(seeFranzluebbersandStuedemann,2009;Karkietal.,2009).Managementactivitieswithinasilvopasturemayincludefertilization,liming,cultivation,andharvestingoftheforagecrop(insomeyears);periodicharvestingofpineneedlesforpinestraw;incorporationofprunedwoodymaterialintotheforagecomponent;anddifferentgrazingintensitiesandrotations.Thefrequencyandintensityofmanagementactivitiesandinputsfromallthreecomponentscanvarysignificantlyfromyeartoyear,whichmakesaccountingforthesequesteredcarboninasilvopastureoperationchallenging.

RatesandamountsofGHGemissionswithineachagroforestryplantingwillvarydependingonpriorlandmanagementandcurrentconditions(i.e.,site,climate),aswellasbystanddevelopment.Theseratesandamountswillalsobedependentonlandowners’decisionsthatdetermineplantingdesign,aswellasmanagementactivities—agricultural,forestry,andgrazing—usedoverthelifetimeofanagroforestrysystem(Table3‐4).

Table3‐4:ManagementActivities5andOtherFactorsWithinAgroforestryPracticesThatMayAlterCarbonSequestrationandGHGEmissionAmounts

Practice ManagementActivities

Windbreaks

Establishmentdisturbancetosoilduringsitepreparation Depositionofwind‐andwater‐transportedsediments,nutrients,andotheragriculturalchemicalsintotheplanting Windbreakrenovation(removalofdeadanddyingtreesovertime)

Riparianforestbuffers

Establishmentdisturbancetosoilduringsitepreparation Depositionofwind‐andwater‐transportedsediments,nutrients,andotheragriculturalchemicalsintotheplanting HarvestingofherbaceousmaterialsplantedinZone3(zoneclosesttocrop/grazingsystem)andofwoodymaterialsplantedinZone2(middlezone)

Alleycropping

Establishmentdisturbancetosoilduringsitepreparation Weedcontrol(mechanicalorchemical) Pruning,thinning,andharvestingofwoodymaterial(amountandfrequencyvarygreatlydependingonshort‐andlong‐termobjectiveofpractice) Fertilizationforalleycropandoccasionallyneededfortreesinrows Tillageinalleys(frequencyandintensity) Cropspeciesusedinalleyproduction Complexharvestingschedulesstratifiedinspaceandtime

Silvopasture

Establishmentdisturbancetosoilduringsitepreparation Weedcontrol(mechanicalorchemical) Pruning,thinning,andharvestingofwoodymaterial(amountandfrequencyvarygreatlydependingonshort‐andlong‐termobjectiveofpractice) Fertilizationofforagecomponent Tillageinforagecomponent(frequencyandintensity) Cropspeciesusedinforagecomponent Grazingmanagement(timing,intensity,frequency) Complexharvestingschedulesstratifiedinspaceandtime

3.4.1 CarbonStocks

Agroforestry’spotentialforsequesteringlargeamountsofcarbonperunitareaiswellrecognized(Dixonetal.,1994;KumarandNair,2011;Nairetal.,2010),withsequestrationratesbeinggreater

5ForestFarmingisnotincludedintheseconsiderations.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-40

thanmanyoftheotheragriculturaloptions(IPCC,2000).Carbonissequestereddirectlyintothewoodybiomassandsoil.Indirectly,agroforestrypracticescanaltercarboncyclingbyenhancingcropandforageproduction(upto15H—heightoftrees—distancefromthewindbreak)andtrappingwind‐blownandrunofferosion(Brandleetal.,2009).Lackofdatalimitsaccountingoftheseothercarbonfluxesimpactedbytheadditionoftreesandisbeyondthescopeofthiseffort.

WoodyBiomass:Themajorityofnewcarboncontributedtoasitebyagroforestrywillbefromtheproductionofwoodybiomass,withthelargercontributionbeingfromtheabovegroundwoodybiomass,asgenerallyobservedinforestestablishmentplantings(NuiandDuiker,2006).Themoreopenenvironmentcreatedinagroforestryplantingsresultsinthetreeshavingdifferentgrowthformsthanencounteredunderforestconditions—e.g.,greaterbranchproduction(Zhou,1999)andspecificgravity(Zhouetal.,2011)—whichwillneedtobetakenintoaccountwhenestimatingtheabovegroundwoodybiomass.

Thebelowgroundbiomasspoolinagroforestryplantingswillalsobeasignificantportionofnewcarbonaddedtothesite.However,measuring,estimating,and/orverifyingthiscomponentisverydifficultandexpensive.Thecontributionsfromrootbiomasscanbeestimatedusingvariousapproachesthatrelyonknowingtheabovegroundportion.

ForestProductsandOtherRemovedMaterials:Windbreaksandriparianforestbuffersareplantedforpurposesthatrequirethetreestobeinplaceforthetargetedfunction(s)(i.e.,alterationofmicroclimate;interceptionofsediments,nutrients,andchemicals).Windbreakrenovation(removalofdeadtreesandreplanting)isrecommendedtomaintainmicroclimatebenefits(Brandleetal.,2009).Periodicharvestingofplantmaterialsintheherbaceouszone(adjacenttocropfield)andmiddlewoodyzoneisalsorecommendedinriparianforestbufferstomaintainhigherratesofnutrientuptakeandthereforewaterqualityservices(Dosskeyetal.,2010).Moreinnovativeanddiversifiedplantingdesignsthatincorporatebioenergyfeedstocksarebeingconsideredforbothofthesepractices,whichwouldincreaselevelsofharvestingwithinthesesystems.Inthecaseofriparianforestbuffers,harvestingoftheherbaceousandwoodymiddlezoneforbioenergyfeedstockswouldservetoreplenishahighernutrientuptakerateandthuswaterqualityservices,aswellasprovideanadditionalincomestream(Schoenebergeretal.,2008).Manyalleycroppingandsilvopasturesystemsaremanagedforhigh‐valueveneerandsaw‐timber.Thesetrees,alongwithsomespecialapplicationsofagroforestrytechnologies,arealsobeinginvestigatedfortheiruseinproducingbioenergyfeedstocks.Fortheseplantings,removalorharvestingofabovegroundwoodymaterialcanoccurasearlyasthreeyearsto75yearsormore,dependingontheproduct.Harvestedmaterialscanalsoincludestem‐pruning,generallyupto15feetoverseveralyearstoattainacleanbole,toperiodicthinninginordertomaintainacanopycoverthatisoptimalforthegrowthofthetreeaswellasthecropbeinggrowninthealleys.Thematerialmaybeleftonsitetocreatewildlifehabitat,choppedandincorporatedintothesoil,ortakenoff‐siteandburned.

Soil:StudieshavedocumentedthatU.S.agroforestrypracticesgenerallyhavegreatersoilcarbonstocks(underthewholepractice,whichmayvaryfromjustunderawindbreaktounderthewholetree/cropsystem,suchasalleycropping)whencomparedwiththatinconventionalagriculturalandgrazingpractices(Nairetal.,2010).However,estimatingchangeorfluxinsoilcarbonstocksinagroforestryplantingsischallengingduetoitsinherentlyhighspatialandtemporalvariability.Forinstance,SharrowandIsmail(2004)foundvariabilityofsoilcarbontobetwotothreetimesgreaterinanon‐grazedsilvopasturesystemthanintheadjacentforestorpasturealone.

Soilcarboncanincreaseinagroforestrysystemsduetoaddedcarboninputsfromthetrees,theeliminationofcarbonlossduetoannualcroppingactivities(i.e.,conservationtillage),andpotentiallytheadditionofcarbonthroughotheragriculturalmanagementactivities,suchasincorporationofdifferentcrops,covercrops,residuemanagement,andfertilizationregimes.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-41

ChangesinsoilcarbonstockshavebeenestimatedinanumberofforestestablishmentplotsfromtheMidwest,andwerefoundtovaryfrom‐0.07to0.58MgCha‐1year‐1and‐0.85to0.56MgCha‐1year‐1indeciduousandconiferousplots,respectively.Pauletal.(2003)attributedthevariationtotheimpactandvariablerecoveryfromtreeplanting,butalsomentionedthepossibilitythatvariationmaybeduetotheuseofpresent‐daycroppingfieldsasthecarbonbaselineforcomparison.Manyagroforestrystudiesarereportingcomparableratesofsoilsequestration(seeNairetal.,2010).Resultsfromtemperateagroforestrystudiesindicate,especiallyforalleysreceivinghighleveloforganicmatterinputfromthetrees,thatitmaybeseveralyearsbeforesignificantlymeasurablecarbondifferencesaredetectablebetweentheagroforestryplantingandtraditionalsolecroppingsystem(Peichletal.,2006;Udawattaetal.,2009).Theamountanddurationofsoilorganicmatteraccumulationinagriculturalsoilswithagroforestrymanagementwilldependonthedegreetowhichpriorsoilcarbonstocksaredepleted.Inaddition,itwilldependonthesoilsingeneral,climate,placementwithinalandscape,typeofvegetation,andmostimportantly,bytheadditionalmanagementactivitiesemployedinthemixedtree/agriculturalsystem(Table3‐4).

NotethatcarbonincreasesfromnitrogeninputsmaybeoffsetthroughenhancedN2Oemissions,dependingonanumberoffactors(seeSection6.4.1.6).Manyagroforestryplantings,suchaswindbreaksandriparianforestbuffers,arepurposefullydesignedtointerceptsoilinwinderosionandsurfacerunoff,whichisanotheradditionofcarbontothispool(Saueretal.,2007).DepositionofsedimentwillinfluencecyclingofbothelementsandthereforenetGHGvalues(McCartyandRitchie,2002;SudmeyerandScott,2002).Wecurrentlylacktheunderstandinganddataneededforadequatelymodelingandthereforepredictingtheseintra‐andinter‐soilcarbontransfersfromerosionanddeposition.

3.4.2 NitrousOxide

DataondirectN2Oemissionsinagroforestryplantingsaresparse.Thefewstudiesto‐datefoundreducedN2Oemissionsinafforestedplotsthatwereolderthanfiveyears(Allenetal.,2009),underwindbreaks(RyskowskiandKedziora,2007)andriparianforestbuffers(Kim,2008).AlleycroppingsystemsreducedN2Oemissionsby0.7kgha‐1year‐1comparedwiththeannualcroppingsystemswithnotreecover(ThevathasanandGordon,2004).Thesestudiessuggestthetreescanactasa“nitrogen‐safetynet”inthesystem,takingupthe“extra”nitrogenthatmightotherwiseresultinN2Oemissions.Inaddition,reducednitrogenleachinghasbeendocumentedwithinagroforestryplantingscomparedwiththeannualcroppingsystemwithnotreecover(Allenetal.,2004;Lopez‐Diazetal.,2011;Nairetal.,2007).ThereducedleachingimpliesthatlessnitrogenisavailableforindirectsoilN2Oemissions,whichcouldbebeneficialinthoseagroforestryplantingsrequiringfertilization(i.e.,alleycroppingandsilvopasturesystems)orthatreceivelargeinputsofnitrogenthroughsurfaceandsubsurfacerunoff(i.e.,riparianforestbuffers).Asmanyagroforestryplantingsarepurposefullydesignedandplantedtoprovidetighternutrientcyclingcapabilitiesasameanstoprotectwaterquality(Olsonetal.,2000),thecapabilityandcapacityofthesesystemstoreduceN2OemissionsinagriculturalsystemswarrantsfurtherstudytodeterminewhetherandhowitshouldbeaccountedforinGHGaccountingmethods.

3.4.3 Methane

VerylittleresearchhasbeendonetodeterminewhethertheestablishmentofagroforestryplantingscanleadtoanychangeinCH4sinksorsourcesinsoilsduetochangesinmethanotrophyormethanogenesis,respectively.Kimetal.(2010)didnotfindanyevidenceinestablishedriparianforestbuffersinIowa(sevento17yearsold)thatCH4fluxdifferedfromneighboringcropfields.RiparianforestbufferscouldpotentiallyserveasaCH4emittergiventheperiodicfloodingthatmayoccurwithintheseplantings.However,riparianforestbuffersestablishedonagriculturallandsmay

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-42

notbesignificantemittersofCH4becausethehydrologicalconnectionswithintheselandscapeshavebeendecoupled.Thisindicatesuseofriparianforest(naturallyoccurring)deriveddatamayresultinoverestimatingsink/sourcecapacityofriparianforestbuffers.Ingeneral,thereisinsufficientdatatomodelandpredictmethanefluxesinagroforestryatthistime.

3.4.4 ManagementInteractions

Agroforestrypracticescanindirectlyaltercarboncyclingbyenhancingcropandforageproductionandtrappingwindblownandsurfacerunoffsediments.ExaminingthecarbonpotentialofwindbreaksintheGreatPlains,Brandleetal.(1992)estimatedindirectcarbonbenefitscouldpotentiallybedoubletheamountofthecarbonsequesteredinthewood.Althoughprojectstoexamineindirectcarbonbenefitsfromseveraloftheagroforestrypracticesareongoing,wecurrentlylacktheabilitytomodelorpredicttheseimpacts.

3.5 EstimationMethods

ThissectionprovidesmethodsforestimatingGHGemissionsfromcroplandandgrazinglandsystemsonanentity’sland.Themethodsareappliedforbothlandremainingincroplandorgrazinglands,aswellasland‐usechangetocroplandorgrazinglands.Themethodsprovidedareforestimatingtheemissionlevelsforagivenyearonaparcelofland.Aparcelisafieldintheentity’soperationwithuniformmanagement.Ifmanagementvariesacrossthefield,thenthefieldshouldbesubdividedintoseparateparcelsforestimatingtheemissions.

Trendsacrossyearsorcomparisonstobaselinescanbemadeusingtheannualemissionestimates.Guidanceisnotgivenhereonhowtodevelopbaselinesorsubsequenttrendsforemissionestimation.Thelevelofemissionsforcarbonstocksisbasedonestimatingthechangeinstockfromthebeginningandendoftheyear,whilethelevelofemissionsforN2OandCH4arebasedonestimatingthetotalannualemissions.Methodsarealsoprovidedforestimatingtotalemissionsofprecursorgasesemittedduringbiomassburning,aswellasnitrogencompoundsthatarevolatilizedorsubjecttoleachingandrunofffromanentity’scroplandorgrazinglandthatarelaterconvertedintoGHGs.

Themethodsrangeincomplexityforthedifferentemissionsourcecategoriesaccordingtothestateofthescienceandpriormethoddevelopment.Simplemethodsareselectedforseveraloftheemissionorcarbonstockchangesourcecategories;becausethemorecomplexmethodsarenotfullydevelopedforoperationalaccountingofemissionsorthesimplemethodsprovideareasonablyaccurateandpreciseresult.Althoughsimplicitymaybepreferredfortransparencyinestimation,someofthemethodsusemorecomplexapproaches,suchasprocess‐basedsimulationmodels,becausethesemethodsgreatlyimprovetheaccuracyand/orprecisionoftheresult.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-43

3.5.1 BiomassCarbonStockChanges

3.5.1.1 RationaleforSelectedMethod

BothIPCC(2006)andtheU.S.EnvironmentalProtectionAgency(2011)considerherbaceousbiomasscarbonstockstobeephemeral,andrecognizethattherearenonetemissionstotheatmospherefollowingcropgrowthandsenescenceduringoneannualcropcycle(Westetal.,2011).However,withrespecttochangesinlanduse(e.g.,foresttocropland),theIPCC(Lascoetal.,2006)recommendsthatcroplandbiomassbecountedintheyearthatlandconversionoccurs,andthesameassumptionalsoappliesforgrassland(Verchotetal.,2006).AccordingtotheIPCC,accountingfortheherbaceousbiomasscarbonstockduringchangesinlanduseisnecessarytoaccountfortheinfluenceofherbaceousplantsonCO2uptakefromtheatmosphereandstorageintheterrestrialbiosphere.However,thismethoddoesnotrecognizechangesinherbaceousbiomassthatoccurwithchangesincroprotations,nordoesitrecognizelong‐termincreasesinannualcropyields.ThemethodisaconsideredaTier2methodasdefinedbytheIPCCbecauseitincorporatesfactorsthatarebasedonU.S.specificdata.

Agroforestry,alongwithotherwoodyvegetationincroplands,suchasorchardsandvineyards,sequestersignificantamountsofnewcarbonwithinlong‐livedbiomassovertimewithtreegrowth.MethodsforestimatingtheabovegroundwoodyandwholetreebiomassfortreesgrowingunderforestconditionsaredescribedintheForestrySectionofthisreport.However,thesemethods,developedfromforest‐derived(i.e.,greatercanopyclosure)conditions,donotaccuratelyreflectconditionsencounteredinagroforestryorwoodycrops.Treesgrowingunderwindbreakandotherlinear‐typeplantingshavebeendocumentedtodifferfromforest‐growntreesintermsofarchitectureandproperties,suchascrown:trunkallocation(Zhou,1999),specificgravity(Zhouetal.,2011),andtaper(Zhouetal.,inreview).Moreover,theForestInventoryandAnalysisprogramoftheUSDAForestServiceandNationalResourceInventoryoftheUSDANaturalResourcesConservationServicedonotcollectagroforestryorwoodycropdatathroughtheirsurveys(Perryetal.,2005).Therefore,aTier3methodusingprocess‐basedmodelsisaviablealternativeforestimatingthecarbonstockchangesassociatedwithagroforestryandwoodycropswithoutdirectmeasurementthroughasurvey.Specifically,theDAYCENTmodelhasbeenparameterizedtosimulatetreegrowthandhasbeenadoptedforestimatingwoodybiomasscarbonforagroforestryandwoodycrops.

MethodforEstimatingBiomassCarbonStockChanges

AmodifiedversionofthemethodologydevelopedbytheIPCC(Lascoetal.,2006;Verchotetal.,2006)hasbeenadoptedforentity‐scaleestimationofherbaceousandwoodybiomassstockchangesassociatedwithlanduse.

TheDAYCENTprocess‐basedsimulationmodelorthetraditionalforestinventoryapproachesareusedtoestimatecarbonforabovegroundbiomassforagroforestry.

U.S.specificdefaultvalues(Westetal.,2010)areusedforestimatingbiomasscarbonforannualcropsandgrazinglands.TheIPCCdefaultisusedforestimatingthecarbonfractionvalue.YieldinunitsofdrymattercanbeestimatedbytheentityoraveragevaluesfromUSDA‐NationalAgriculturalStatisticsServicestatisticscanbeused.

Thismethodwaschosenbecauseitcapturestheinfluenceofland‐usechangeoncroporforagespeciesonbiomasscarbonstocksbyusingU.S.specificdefaultvalueswhereentityspecificactivitydataarenotavailableandaprocess‐basedsimulationmodelforagroforestrysystems.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-44

3.5.1.2 DescriptionofMethod

AmodifiedversionofthemethodologydevelopedbytheIPCC(Lascoetal.,2006;Verchotetal.,2006)hasbeenadoptedforentity‐scalereportingintheUnitedStatesofherbaceousandwoodybiomassstockchangesassociatedwithlandusechange.Themethodconsistsofestimatingthemeanannualbiomassstockforacroplandorgrazinglandsfollowingalandusechange,whichcanbeaveragedacrossyearsforacroporrotation.Thismethodonlyaddressesachangeintheherbaceousbiomasscarbonstocksintheyearfollowingaland‐usechange,consistentwiththeIPCCmethods(Lascoetal.,2006;Verchotetal.,2006).Incontrast,carbonstockchangeinwoodybiomassisestimatedeveryyear.

UseEquation3‐1toestimatethetotalbiomasscarbonstockchangeforalandparceloverayear:

HerbaceousBiomass:Estimatethemeanannualherbaceousbiomassstockinalandparcelforcroplandorgrazinglandfollowingalandusechangewiththefollowingequation:

Themeanannualbiomassstockisintendedtorepresentthetimeperiodfollowingharvestwherenocropexistsandbothlitterandrootsaredecomposingquickly(Gilletal.,2002),andthetimeperiodduringthegrowingseasonwherebiomasscontinuestogrowuntilitreachespeakannualbiomass.Theaverageofzerobiomassandpeakbiomass(e.g.,peakbiomassdividedbytwo)isconsideredrepresentativeofthemeanannualcarbonstock(i.e.,Yf=0.5).

Equation3‐3isusedtoestimatethepeakabovegroundbiomassinalandparcelfromharvestyielddataincroplandsorpeakforageyieldsingrazinglands.

Equation3‐1:TotalBiomassCarbon StockChange

ΔCBiomass=(Ht+Wt)–(Ht‐1+Wt‐1)

Where:

ΔCBiomass=Totalchangeinbiomasscarbonstock(metrictonsCO2‐eqyear‐1)

H =Meanannualherbaceousbiomass(metrictonsCO2‐eqyear‐1)

W =Meanannualwoodybiomass(metrictonsCO2‐eqyear‐1)

t =Currentyearstocks

t‐1 =Previousyear’sstocks

Equation3‐2:MeanAnnualHerbaceousBiomassCarbon Stock

H=[Hpeak+(Hpeak×R:S)]×A×CO2MW/Yf

Where:

H =Meanannualherbaceousbiomasscarbonstock(metrictonsCO2‐eqyear‐1)

Hpeak =Annualpeakabovegroundbiomass(metrictonsCha‐1year‐1)

R:S =Root‐shootratio(unitless)

A =Areaoflandparcel(ha)

CO2MW=RatioofmolecularweightofCO2tocarbon=44/12(metrictonsCO2(metrictonsC)‐1)

Yf =Approximatefractionofcalendaryearrepresentingthegrowingseason(unitless)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-45

Thismethodcapturestheinfluenceofland‐usechangeandchangesincroporforagespeciesonbiomasscarbonstocks.Therefore,cropharvestorpeakforageyieldsshouldbeaveragedacrossyearsaslongasthesameforagespecies,croporrotationofcropsaregrown.Theharvestindexissettooneforgrazinglands.

Peakforageestimatesforgrazinglandscanbeestimatedusingthebiomassclippingmethod.6Thismethodisdestructivewiththeremovalofforagesamplesfromthefield.Non‐destructivemethodscanalsobeusedincludingthecomparativeyieldmethodforrangelands7,ortherobelpolemethodonrangelandsorpastures(Harmoneyetal.,1997;Vermeireetal.,2002).Anysamplingthatisdone,whetherdestructiveornon‐destructive,shouldoccuratlocationsthatarerepresentativeofthelandparcel.Ifsamplingtheforageisnotfeasible,defaultforageproductionvaluesareprovidedbytheNaturalResourcesConservationServiceinEcologicalSiteDescriptions(ESDs).8AfteridentifyingtheappropriateESD,theentitywouldselecttheplantcommunitythatisrepresentativeoftheparcel.ThesevaluesrepresenttotalproductionforthesitesoYfinEquation3‐2wouldbesetto1iftheabovegroundforageproductionisobtainedfromanESD.

WoodyBiomass:Thelargestamountofcarboncapturedbyagroforestrysystemsisinwoodybiomass,withthemajorityoccurringintheabovegroundbiomass.Woodycropsalsogaincarbonastheygrow.Thismethodalsoaddressescarbonremovalsthroughharvestorothereventsthatremovetreebiomass.

Themethodstoestimatebiomasscarboninalandparcelforthemore‐opengrowthofagroforestrysystemsandwoodycrops(WtandWt‐1inEquation3‐1)arebasedonDAYCENTmodelsimulationsandgrowthfunctionsforagroforestry.AgroforestrypracticesarebasedontheNaturalResourcesConservationServiceagroforestrypracticestandards,whichareprovidedinapicklist.Forwoodycrops,theDAYCENTmodelsimulatestheinfluenceofcommonmanagementpracticesonbiomassstocks,includingirrigation,fertilization,organicmatteramendments,groundcovermanagement,

6Seesection15,“StandingBiomass”http://www.nrisurvey.org/nrcs/Grazingland/2011/instructions/instruction.htm7Seesection13,“DryWeightRank”http://www.nrisurvey.org/nrcs/Grazingland/2011/instructions/instruction.htm8SeeESDshttps://esis.sc.egov.usda.gov/

Equation3‐3:AbovegroundHerbaceousBiomassCarbonStock

Hpeak=(Ydm/HI)×C

Where:

Hpeak=Annualpeakabovegroundherbaceousbiomasscarbonstock (metrictonsCha‐1year‐1)

Ydm =Cropharvestorforageyield,correctedfordrymattercontent (metrictonsbiomassha‐1year‐1)

=YxDM

Y =Cropharvestorforageyield(metrictonsbiomassha‐1year‐1)

DM =Drymattercontentofharvestedcropbiomassorforage(dimensionless)

HI =HarvestIndex(dimensionless)

C =Carbonfractionofabovegroundbiomass(dimensionless)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-46

pruningofbranches,thinningofyoungfruit,andharvestandremovalofmaturefruit.Giventhepractice,DAYCENTsimulateschangesinwoodybiomasscarbonstocksforthereportingperiod.

Foragroforestrysystemswheretheentityhasmeasuredtreeparameters,anempiricalmodelisprovidedtomorepreciselyestimatewoodybiomasscarbongrowthincrementfortheyear(MerwinandTownsend,2007;Merwinetal.,2009).TheempiricalmodelusesanindividualtreegrowthequationsbasedonLessard(2000)andLessardetal.(2001).Carbonpoolsarethenderivedfromdiameter‐basedallometricequationsthatpredicttotalabovegroundbiomasscomponentsfor10broadspeciesgroupsintheUnitedStates.(Jenkinsetal.,2003;2004).BothpublishedandunpublisheddatafortheU.S.ForestServiceForestInventoryandAnalysisprogramwereusedtodevelopthegrowthincrementmodel.

Inaddition,harvestedwoodyproductsassociatedwithagroforestryareestimatedusingtheapproachesdescribedintheForestryChapter(Section6.5).Woodyproductsmaybeharvestedfromsilvopasture,alleycropping,andotheragroforestrypractices,providingavarietyofproductssuchasveneer,sawtimber,andbioenergyfeedstocks.

3.5.1.3 ActivityData

Activityandrelateddataneededtoestimatebiomasscarbonforannualcropsandgrazinglands(asapplicable)include:

Croptype,croplandarea,andharvestindices; Typeofforage,grazingarea,andpeakforageyielddata; Totalabovegroundyieldofcroporpeakforageyieldforgrazinglands(metrictonsbiomass

perha); Root:shootratios; Carbonfractions;and Drymattercontentofforageandharvestedcropbiomasstoestimatedrymattercontent.

Iftheentitydoesnotprovidevalues,defaultvaluesformoisturecontent,residue‐yieldratios,androot:shootratiosareprovidedinTable3‐5.Ageneraldefaultvalueforcropcarbonfractionis0.45.Insomeyears,theentitymaynotharvestthecropduetodrought,pestoutbreaksorotherreasonsforcropfailure.Inthosecases,theentityshouldprovidetheaverageyieldthattheyhaveharvestedinthepast,andanapproximatepercentageofaveragecropgrowththatoccurredintheyear.Theyieldisestimatedbasedonmultiplyingtheaveragecropyieldbythepercentageofcropgrowthobtainedpriortocroploss.Peakforageyieldswillvaryfromyeartoyear,butcanbebasedonafive‐yearaverage.

Table3‐5:RepresentativeDryMatterContentofHarvestedCropBiomass,HarvestIndex,andRoot:ShootRatiosforVariousCrops.a

CropDryMatterContent

HarvestIndexRoot:ShootRatio

FoodcropsBarley 0.865(3.8%) 0.46(18.7%) 0.11(90.7%)Beans 0.84(3.3%) 0.46(18.7%) 0.08(89.7%)Corngrain 0.86(1.9%) 0.53(15.0%) 0.18(97.3%)Cornsilage 0.74(1.9%) 0.95(3.3%) 0.18(97.1%)Cotton 0.92(1.4%) 0.40(20.0%) 0.17(44.0%)Millet 0.90(1.9%) 0.46(17.6%) 0.25(91.1%)Oats 0.865(1.9%) 0.52(18.7%) 0.40(90.9%)Peanuts 0.91(1.9%) 0.40(16.6%) 0.07(12.4%)Potatoes 0.20(9.3%) 0.50(20.0%) 0.07(44.1%)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-47

CropDryMatterContent

HarvestIndexRoot:ShootRatio

Rice 0.91(1.6%) 0.42(28.1%) 0.22(13.2%)Rye 0.90(1.9%) 0.50(18.7%) 0.14(90.1%)Sorghumgrain 0.86(1.9%) 0.44(14.8%) 0.18(97.2%)Sorghumsilage 0.74(1.9%) 0.95(3.3%) 0.18(97.2%)Soybean 0.875(1.7%) 0.42(16.7%) 0.19(89.8%)Sugarbeets 0.15(12.4%) 0.40(24.1%) 0.43(43.9%)Sugarcane 0.258(11.6%) 0.75(6.4%) 0.18(37.4%)Sunflower 0.91(1.9%) 0.27(11.1%) 0.06(44.0%)Tobacco 0.80(1.9%) 0.60(3.3%) 0.80(44.0%)Wheat 0.865(3.8%) 0.39(17.7%) 0.20(86.2%)

ForageandFoddercrops

Alfalfahay 0.87(1.8%) 0.95(3.3%) 0.87(21.8%)Non‐legumehay 0.87(1.8%) 0.95(3.3%) 0.87(21.8%)Nitrogen‐fixingforages 0.35(3.3%) 0.95(3.3%) 1.1(21.2%)

Non‐nitrogen‐fixingforages 0.35(3.3%) 0.95(3.3%) 1.5(21.2%)

Perennialgrasses 0.35(3.3%) 0.95(3.3%) 1.5(21.2%)Grass‐clovermixtures 0.35(3.3%) 0.95(3.3%) 1.5(21.2%)

Source:RevisedfromWestetal.(2010).aUncertaintyisexpressedonapercentagebasisashalfofthe95%confidenceinterval.

Activitydataforestimatingcarboninabovegroundbiomassforagroforestrywillentailthecollectionofsomelevelofinventoryoftreesassociatedwiththeagroforestrypractice.SimplifiedinventoryapproachesrequiringaminimumofworkbythelandownerhavebeendevelopedbytheUSDANaturalResourcesConservationServiceandtheColoradoStateUniversityNaturalResourceEcologicalLaboratory(USDA,2012),whicharelargelybasedonmethodsdescribedintheNaturalResourcesConservationServiceNationalForestHandbook(USDANRCS,2004).Thespecificactivitydatarequirementsinclude:

Speciesoftreesandnumberbyageofdiameterclassforeachagroforestrypractice;and Diameteratbreastheightforasubsampleoftreesusingoneofthreesamplingmethodsthat

capturethespacingarrangementsanddensitieswithinthedifferentpractices(i.e.,rowtypeplantings,woodlot‐likeplantings,andriparianforestbuffers).

3.5.1.4 AncillaryData

Noancillarydataareneededforthismethod.

3.5.1.5 ModelOutput

Modeloutputisgeneratedforthechangeinbiomasscarbonstocks.Thischangeisdeterminedbasedonsubtractingthetotalbiomasscarbonstockinthepreviousyearfromthetotalstockinthecurrentyear,whichwillincludebothherbaceousandwoodybiomass.Theherbaceousstockswillrepresentmeanestimatesoveryearsifthesameforages,crop,orrotationofcropsaregrown,andisonlyestimatedforalandusechange.TheapproachforestimatingbiomasscarbonforwetlandsandforestlandsaredescribedinSections4.3.1and6.2.1,respectively.

Emissionsintensityisalsoestimatedbasedontheamountofemissionsperunitofyieldforcropsincroplandsystems,orofanimalproductsingrazingsystems.Notethatthebiomasschangeisbasedsolelyonwoodyplantgrowthexceptinayearfollowingaland‐usechange.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-48

Theemissionsintensityisestimatedwiththefollowingequation:

3.5.1.6 LimitationsandUncertainty

Uncertaintyinherbaceouscarbonstockchangeswillresultfromlackofprecisionincroporforageyields,residue‐yieldratios,root‐shootratios,andcarbonfractions,aswellastheuncertaintiesassociatedwithestimatingthebiomasscarbonstocksfortheotherlanduses.Emissionsintensitywillalsoincludeuncertaintyinthetotalyieldforthecrop,meat,ormilkproduct.Thisherbaceousbiomassmethodisbasedontheassumptionthathalfofthecropharvestyieldsorpeakforageamountsprovideanaccurateestimateofthemeanannualcarbonstockincroplandorgrazinglands.Thisassumptionwarrantsfurtherstudy,andthemethodmayneedtoberefinedinthefuture.

UncertaintiesinmodelparametersarecombinedusingaMonteCarlosimulationapproach.Uncertaintyisassumedtobeminorforthemanagementactivitydataprovidedbytheentity.Table3‐6providestherelativeuncertaintyfortheDAYCENTmodelandthecarbonfractionofbiomass.

Table3‐6:AvailableUncertaintyDataforBiomassCarbonStockChanges

Parameter Mean UnitsRelativeUncertainty

Distribution DataSourceLow(%) High(%)

DAYCENT(empiricaluncertainty)

NS Various NS NS NormalOgleetal.(2007);EPA(2013)

Carbonfractionofabovegroundbiomass

0.45 Fraction 11 11 Normal IPCC(1997)

NS=NotShown.Dataarenotshownforparametersthathave100’sto1000’sofvalues(denotedasNS).

Theuncertaintydifferswhetheritisherbaceousbiomassortrees.Uncertaintyassociatedwithestimatingcarboninlivetreesisinfluencedbyanumberoffactors,includingsamplingandmeasurementerroranderrorassociatedwithregressionmodels(seeMelsonetal.2011;furtherdiscussioninForestrySection).Estimatingcarboninagroforestrytrees,especiallyforyoungseedlingsandsaplings(upto10yearsorsodependingonspeciesandgrowingconditions)remainshighlyuncertainparticularlysincetraditionalforestry‐derivedequationshavebeenshowntounderestimatewhole‐treebiomassinagroforestrysystemsandrequiresadditionalfieldworktofurtherdocumentbiomasscarbonallocationdifferences.Melsonetal.(2011)notedintheirforest‐basedworkthatestimationoflive‐treecarbonwassensitivetomodelselection(withmodel‐selectionerrorofpotentially20to40percent),andthatmodelselectioncouldbeimprovedbymatchingtreeformtoexistingequationsforuseinthemodels.On‐goingworkcomparingagroforestry‐derivedequationswithavarietyofforest‐derivedequationsintheGreatPlainsregionindicateuncertaintycouldbereducedthroughuseofacorrectionfactor.Currentlybelowgroundbiomass/Cestimatesarecalculatedusingtwoapproaches:root:shootratios(seeBirdsey,1992),

Equation3‐4:EmissionsIntensityofBiomassCarbon StockChange

EIBiomassC=ΔCBiomass/Y

Where:

EIBiomassC =Emissionsintensity(metrictonsCO2permetrictondrymattercropyield,metrictonsCO2perkgcarcassyield,ormetrictonsCO2perkgfluidmilkyield)

ΔCBiomass =ChangeinbiomassstockinCO2equivalents(metrictonsCO2‐eqyear‐1)

Y =Totalyieldofcrop(metrictonsdrymattercropyield),meat(kgcarcassyield)ormilkproduction(kgfluidmilkyield)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-49

andabovegrounddensityallometry(Cairnsetal.,1997),bothwithlargeuncertaintiesduetolackofdata.Thefullsetofprobabilitydistributionshavenotbeendevelopedfortheagroforestrymethod,andsowillrequirefurtherresearchbeforeuncertaintycanbeestimated.SeeChapter6,Forestry,forfurtherdiscussionofuncertaintyoftreevolumeandbiomassequations.

3.5.2 LitterCarbonStockChanges

Litterinherbaceousbiomassdecomposesmostlyoveraone‐yearperiod.HowevertheinfluenceoflittercarbonstocksonatmosphericCO2isassumedtobeinsignificantafteraddressingthechangesinbiomassandsubsequentinfluenceonsoilcarbonstocks.Furthermethodsdevelopmentmaybepossibleinthefuture,giventhispotentiallimitationtothemethodsinthisreport.Forcroplandorgrazinglandsystemswithtrees,coarsewoodydebrisandlittercarbonshouldbeestimatedbasedonforestmethods(SeeSection6.2.2.4and6.2.2.5).ThelossoflitterandcoarsewoodydebriswithconversionfromforestlandtocroplandandgrazinglandisalsoaddressedinSection6.3.

3.5.3 SoilCarbonStockChanges

3.5.3.1 RationaleforSelectedMethod

SOCstocksareinfluencedbylanduseandmanagementincroplandandgrazinglandsystems,aswellasconversionfromotherlandusesintothesesystems(Aaldeetal.,2006).SOCpoolscanbemodifiedduetochangesincarboninputsandoutputs(Paustianetal.,1997).Carboninputswillchangeovertimeduetointerannualvariabilityandlongertermtrendsinnetprimaryproduction,aswellasdifferencesincarbonremovalsfromharvestingandresiduemanagementpractices.ExternalcarboninputswillalsohaveaninfluenceontheSOCstocks,suchasmanure,compost,sewagesludge,woodchips,andbiocharamendments.Carbonoutputswillchangeduetointerannualvariabilityandlongertermtrendsinmicrobialdecompositionrates.Inaddition,erosionanddepositioncontributetochangesinSOCstocksassociatedwithcropandgrazinglandsoils.Recentstudies(Hardenetal.,2008;VanOostetal.,2007)provideevidencethatthemajorityofcarboninerodedsoilsisdynamicallyreplaced,compensatingforthelosses,andatleastsomeofthecarbontransportedfromthesiteisdepositedattheedgeoffields,downslope,orinrivers.Inallcases,SOCismovedfromonelocationtoanotherundertheassumptionthatonlyaportionofthe

MethodforEstimatingSoilCarbonStockChanges

Mineralsoils: TheDAYCENTprocess‐basedsimulationmodelestimatesthesoilorganiccarbon(SOC)at

thebeginningandendoftheyear.TheseinputsareenteredintotheIPCCequationtoestimatecarbonstockchangesinmineralsoilsdevelopedbyLascoetal.(2006),andVerchotetal.(2006).

ThismethodwaschosenbecausetheDAYCENTmodelhasbeendemonstratedtorepresentthedynamicsofsoilorganiccarbonandestimatesoilorganiccarbonstockchangeinU.S.croplandandgrasslands(Partonetal.,1993),anduncertaintieshavebeenquantified(Ogleetal.(2007).Themodelcapturessoilmoisturedynamics,plantproduction,andthermalcontrolsonnetprimaryproductionanddecompositionwithatimestepofamonthorless.

OrganicSoils: IPCCequationdevelopedbyAaldeetal.(2006;USDA,2011)usingregionspecific

emissionfactorsfromOgleetal.(2003). Thismethodwaschosenbecauseitistheonlyreadilyavailablemodelforestimatingsoil

carbonstockchangesfromorganicsoils.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-50

carbonintransportislosttotheatmosphere.Thisassumptionmayhavesignificantvariationduetothediversityofenvironmentalconditionsinwhicherodedcarbonistransportedandsubsequentlyresides.Otherenvironmentaldriverswillalsoinfluencecarbondynamicsinsoils,particularlyweatherandsoilcharacteristics.

Process‐basedmodels,whichareconsideredanIPCCTier3methodology,havebeendevelopedandsufficientlyevaluatedforapplicationinanoperationaltooltoestimateSOCstockchangesinmineralsoils.TheDAYCENTprocess‐basedmodel(Partonetal.,1987;Parton,1998)hasbeenselectedbecauseitiswell‐testedforestimatingsoilcarbondynamicsincroplandandgrazinglandsystems(Partonetal.,1993)andisalsousedintheU.S.nationalGHGinventory(Ogleetal.,2010;U.S.EPA,2011).DelGrossoetal.(2011)demonstratedthereductioninuncertaintyassociatedwiththemoreadvancedapproachusingtheDAYCENTmodelcomparedtothelowertiermethods.TheDAYCENTmodelsimulatesplantproductionbyrepresentinglong‐termeffectsoflanduseandmanagementonnetprimaryproduction(NPP),asinfluencedbyselectionofcropsandforagegrasses.TheinfluenceofmanagementpracticesonNPParealsosimulated,includingmineralfertilization,organicamendments,irrigationandfertigation,liming,greenmanuresandcovercrops,croppingintensity,hayorpastureinrotationwithannualcrops,grazingintensityandstockingrate,andbarefallow.Nutrientandmoisturedynamicsareinfluencedbysoilcharacteristics,suchassoiltexture.ThemethodaddressesinterannualvariabilityduetoannualchangesinmanagementandtheeffectofweatheronNPP.

IntheDAYCENTmodel,threesoilorganiccarbonpoolsareincludedrepresentingactive,slow,andpassivesoilorganicmatter,whichhavedifferentturnovertimes.Itisgenerallyconsideredthattheactivecarbonpoolismicrobialbiomassandassociatedmetaboliteshavingarapidturnover(monthstoyears),theslowcarbonpoolhasintermediatestabilityandturnovertimes(decades),andthepassivecarbonpoolrepresentshighlyprocessedandhumifieddecompositionproductswithlongerturnovertimes(centuries).However,thesepoolsarekineticallydefinedanddonotnecessarilyrepresentexplicitfractionsofsoilorganiccarbonthatcanbeisolated.Soiltexture,temperature,moistureavailability,aeration,burning,andotherfactorsarerepresentedinthesimulationsthatinfluencethedecompositionandlossofcarbonfromthesepools.

Themodelsimulatesmanagementpracticesinfluencingsoilorganiccarbonpools.Thesepracticesincludeadditionofcarboninmanureandotherorganicamendments,suchascompost,woodchips,andbiochar;tillageintensity;residuemanagement(retentionofresiduesinfieldwithoutincorporation,retentioninthefieldwithincorporation,andremovalwithharvest,burning,orgrazing).Theinfluenceofbareandvegetatedfallowsisrepresented,inadditiontoirrigationeffectsondecompositionincroplandandgrazinglandsystems.Themodelcanalsosimulatesetting‐asidecroplandfromproduction;theinfluenceoffireonoxidationofsoilorganicmatter;andwoodyplantencroachment,agroforestry,andsilvopastureeffectsoncarboninputsandoutputs.

Awater/soilmoisturesubmodel(e.g.,Partonetal.,1987)isusedtorepresenttheinfluenceofweather,irrigation,croptype,andmanagementonsoilmoisturedynamics.Thisimpactisparticularlyimportantbecausemoisturetendstobeamoreproximalfactorcontrollingsoilorganiccarbondynamics,which,inturn,isinfluencedbylanduseandmanagementactivity.Forexample,irrigationinfluencesplantproductionandcarboninputsbecauseofthemodificationtothemoistureregime.

ThemodeledestimatesfromDAYCENTarecombinedwithmeasurementdatafromamonitoringnetworktoformallyevaluateuncertainty.Thisapproachleveragesthescalabilityofthemodelwhileprovidinganunderlyingmeasurement‐basisforthemethod(Conantetal.,2011;Ogleetal.,2007).

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-51

Erosionanddepositioninfluencesoilorganiccarbonstocks(Izaurraldeetal.,2007)andthereforearerepresentedinthemethod,althoughthereisuncertaintyintheneteffectonCO2exchangebetweenthebiosphereandatmosphere.Moreover,thereisalsosomeriskofdouble‐countingcarbonasitistransferredacrossownershipboundaries,intermsofwhoreceivescreditfortheerodedcarbonintheiraccounting.Regardless,erosionclearlyhasanimpactoncarbonstocksinafield,whichcanbeestimatedwithreasonableaccuracyusingerosioncalculators,suchastheRevisedUniversalSoilLossEquation,Version2(RUSLE2)forwatererosion(USDA,2003)andWindErosionPredictionSystem(WEPS)forwinderosion(USDA,2004).Therefore,thecurrentmethodwillincludeanestimateoferosion‐relatedcarbonlossfromafield,butneitherthefateoferodedC,northedepositionofcarbonfromotherareasontoalandparcel,willbeestimated.Asmorestudiesareconducted,carbontransportanddepositioncanbeincorporatedinfutureversionsofthemethod.

Drainageoforganicsoilsforcropproductionleadstonetannualemissionsduetoincreaseddecompositionoftheorganicmatterafterloweringthewatertableandcreatingaerobicconditionsintheupperlayersofthesoil(Allen,2012;ArmentanoandMenges,1986).Therehasbeenlessevaluationofprocess‐basedmodelsfororganicsoils,particularlythesimulationofwatertabledynamicsthroughouttheyear,whichwillinfluencetheemissionrate.Consequently,theapproachisbasedonmoresimplisticemissionfactorapproachdevelopedbytheIPCC(Aaldeetal.,2006).ThemethodincorporatesU.S.emissionratesassociatedwithregion‐specificdrainagepatterns(Ogleetal.,2003),soitisaTier2methodasdefinedbytheIPCC.

3.5.3.2 DescriptionofMethod

ThemethodrepresentingtheinfluenceoflanduseandmanagementonSOCandassociatedCO2fluxtotheatmosphereisestimatedwithacarbonstockchangeapproach(Aaldeetal.,2006).Formineralsoils,themethodwillrequireestimatesofcarbonstocksatthebeginningandendoftheyearinordertoestimatetheannualchangeusingtheequationbelow.Incontrast,carbonstockchangesinorganicsoils(i.e.,Histosols)willaddressonlytheemissionsoccurringwithdrainage,whichisthetypicalsituationincropland.Emissionsoccurinorganicsoilsfollowingdrainageduetotheconversionofananaerobicenvironmentwithahighwatertabletoaerobicconditions(ArmentanoandMenges,1986),resultinginasignificantlossofcarbontotheatmosphere(Ogleetal.,2003).Recentdataonsubsidencewereusedtoderivetheseestimates(e.g.,Shihetal.,1998).

MineralSoils:ThemodeltoestimatechangesinSOCstocksformineralsoilshasbeenadaptedfromthemethoddevelopedbyIPCC(Aaldeetal.,2006).Theannualchangeinstockstoa30centimeterdepthforalandparcelisestimatedusingthefollowingequation:

Equation3‐5:ChangeinSoilOrganicCarbon StocksforMineralSoils

ΔCMineral=[(SOCt‐SOCt‐1)/t]×A×CO2MW

Where:

ΔCMineral =Annualchangeinmineralsoilorganiccarbonstock(metrictonsCO2‐eqyear‐1)

SOCt =Soilorganiccarbonstockattheendoftheyear(metrictonsCha‐1)

SOCt‐1 =Soilorganiccarbonstockatthebeginningoftheyear(metrictonsCha‐1)

t =1year

A =Areaofparcel(ha)

CO2MW =RatioofmolecularweightofCO2tocarbon =44/12(metrictonsCO2(metrictonsC)‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-52

TheDAYCENTmodelisusedtosimulatetheSOCstocksatthebeginningandendofeachyearforEquation3‐5basedonrecentmanagementpracticesforalandparcel.InitialvaluesforDAYCENTareneededfortheSOCt‐1andarebasedonasimulationofhistoricalmanagementtoprovideaccuratestocksanddistributionoforganiccarbonamongthepoolsrepresentedinthemodel(active,slow,andpassivesoilorganicmatterpools).Eachpoolhasadifferentturnoverrate(representingtheheterogeneousnatureofsoilorganicmatter),andtheamountofcarbonineachpoolatanypointintimeinfluencestheforwardtrajectoryofthetotalsoilorganiccarbonstorage(Partonetal.,1987).Bysimulatingthehistoricallanduse,thedistributionsofcarboninactive,slow,andpassivepoolsareestimatedinanunbiasedway.

Threestepsarerequiredtoestimatetheinitialvalues.Thefirststepinvolvesrunningthemodeltoasteady‐statecondition(e.g.,equilibrium)undernativevegetation,historicalclimatedata,andthesoilphysicalattributesforthelandparcel.Thesecondstepistosimulateperiodoftimefromthe1800’sto1980and1980to2000.Theentityisprovidedalistofoptionsforselectingthepracticesthatbestmatchthelandmanagementfortheparcel.From2000totheinitialyearforreporting,theentityentersmorespecificdataoncropsplanted,tillagepractices,fertilizationpractices,irrigation,andothermanagementactivity(SeeSection3.5.3.3formoreinformation).Thesimulatedcarbonstockattheendofthesimulationprovidestheinitialbaselinevalue(SOCt‐1).

Thestockattheendofayear(SOCt)isestimatedbytheDAYCENTmodelbasedonsimulatingmanagementactivityduringthespecificyear.Theentityprovidesthemanagementactivityforthelandparcel,includingcropsplanted,tillagepractices,fertilizationpractices,irrigationandothermanagementactivitydata(SeeSection3.5.3.3formoreinformation).ThechangeinSOCstocksareestimatedforadditionalyearsbyusingtheendingstockfromthepreviousyearastheinitialSOCstock(SOCt‐1)andthensimulatingthemanagementforanotheryeartoproducethestockattheendofthenextyear(SOCt).

ErodedcarbonisestimatedwiththeRUSLE2forwatererosion(USDA,2003)andWEPSforwinderosion(USDA,2004).NeitherthedepositionofcarbononthesitenorthefateoferodedcarbonisinthisversionoftheUSDAmethods.TheerodedcarbonestimateisreportedseparatelytoaccountforuncertaintyassociatedwiththepotentialeffectoferosiononSOCstocks,andmaybeusedasadiscountfortheSOCstockchangesestimatewithEquation3‐5.

TheDAYCENTmodelisnotabletoestimatesoilorganiccarbonstocksinmineralsoilsforallcrops.IninstanceswhereacropisnotestimatedbytheDAYCENTmodel,themethoddevelopedbytheIPCC(2006)(i.e.,aTier1methodology)maybeused(SeeAppendix3‐B).

OrganicSoils:ThemethodologyforestimatingsoilcarbonstockchangesindrainedorganicsoilshasbeenadoptedfromIPCC(Aaldeetal.,2006).ThemethodappliestoHistosolsandsoilsthathavehighorganicmattercontentanddevelopedundersaturated,anaerobicconditionsforatleastpartoftheyear,whichincludesHistels,Historthels,andHistoturbels.Thefollowingequationisusedtoestimateemissionsfromalandparcel:

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-53

EmissionfactorshavebeenadoptedfromOgleetal.(2003)andareregion‐specific,basedontypicaldrainagepatternsandclimaticcontrolsondecompositionrates;theseratesarealsousedintheU.S.nationalGHGinventory(U.S.EPA,2011).Drainedcroplandsoilslosecarbonatarateof11±2.5metrictonsCha‐1year‐1incooltemperateregions,14±2.5metrictonsCha‐1year‐1inwarmtemperateregions,and14±3.3metrictonsCha‐1year‐1insubtropicalclimateregions.Organicsoilsingrazinglandsaretypicallynotdrainedtothedepthofcroplandsystems,andthereforetheemissionfactorsareonly25percentofthecroplandvalues(Ogleetal.,2003).

3.5.3.3 ActivityData

Theactivitydatarequirementsvarybetweenmineralsoilsandorganicsoils.Mineralsoilsrequirethefollowingactivitydataforcroplands:

Areaoflandparcel(i.e.,field); Cropselectionandrotationsequence; Plantingandharvestingdates; Residuemanagement,includingamountharvested,burned,grazed,orleftinthefield; Irrigationmethod,applicationrate,andtimingofwaterapplications; Mineralfertilizertype,applicationrate,andtimingofapplication(s); Limeamendmenttype,applicationrate,andtimingofapplication(s); Organicamendmenttype,applicationrate,andtimingofapplication(s); Tillageimplements,datesofoperation,andnumberofpassesineachoperation(whichcan

beusedtodeterminetillageintensitywiththeSTIRModel(USDANRCS,2008)); Useofdrainagepracticesanddepthofdrainage(commonlyinhydricsoils);and Covercroptypes,planting,andharvestingdates(ifapplicable).

Themethodforgrazinglandonmineralsoilsrequiresthefollowingmanagementactivitydata:

Areaoflandparcel(i.e.,field); Plantspeciescomposition; Periodsofgrazingduringtheyear; Animaltype,class,andsizeusedforgrazing; Stockingratesandmethods; Irrigationmethod,applicationrate,andtimingofwaterapplications; Mineralfertilizertype,applicationrate,andtimingofapplication(s); Limeamendmenttype,applicationrate,andtimingofapplication(s); Organicamendmenttype,applicationrate,andtimingofapplication(s); Pasture/Range/Paddock(PRP)Nexcreteddirectlyontolandbylivestock(i.e.,manurethat

isnotmanaged);

Equation3‐6:ChangeinSoilOrganicCarbon StocksforOrganicSoils

ΔCOrganic=A×EF×CO2MW

Where:

ΔCOrganic=AnnualCO2emissionsfromdrainedorganicsoilsincropandgrazinglands (metrictonsCO2‐eqyear‐1)

A =Areaofdrainedorganicsoils(ha)

EF =Emissionfactor(metrictonsCha‐1year‐1)

CO2MW=RatioofmolecularweightofCO2toC(=44/12)(metrictonsCO2(metrictonsC)‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-54

Useofdrainagepracticesanddepthofdrainage(commonlyinhydricsoils); Levelofwoodyplantencroachment;and Totalyieldofcrop(metrictonsdrymattercropyieldyear‐1),meat(kgcarcassyieldyear‐1)

ormilk(kgfluidmilkyear‐1).

Longer‐termhistoryofsitemanagementwillbeusedtosimulateinitialsoilorganiccarbonstocksforthecroporgrazingsystem.Inordertoestimatetheinitialvalues,theentitywillneedtoprovidemanagementactivitydataforthepastthreedecades.Alistofmanagementsystemswillbeprovided.Theentitywillalsoprovidethepreviouslanduseandyearofconversionifaland‐usechangeoccurredduringthepastthreedecades.Historicaldataforactivityfrommorethanthreedecadesinthepastwillberepresentedbasedonnationalagriculturalstatisticsusingenterprisebudgetsandcensusdataforvariousregionsinthecountry.However,anentitycanprovidethelongertermhistoryifitisknown.Dataonthecarbonandnitrogencontentoforganicamendmentswillalsobeneededfromtheentity,althoughdefaultsareprovidedbelowiftheentitydoesnothavethisinformation.Pasture/Range/Paddock(PRP)manureNinputistheNexcreteddirectlyontolandbylivestock,andthemanureisnotcollectedormanaged(deKleinetal.,2006).TheamountofPRPmanureNisestimatedwiththelivestockmethods(SeeChapter5,Section5.3.2EntericFermentationandHousingEmissionsfromBeefProductionSystems)andassumedtobesplitwith50%oftheNinurineandtheother50%oftheNinsolids.

Table3‐7:NitrogenandCarbonFractionsofCommonOrganicFertilizers–MidpointandRange(PercentbyWeight)

OrganicFertilizer %Na %CPoultrymanure 2.25%(1.5‐3) 8.75%(7‐10.5)b

Pig,horse,cowmanure 0.45%(0.3‐0.6) 5.1%(3.4–6.8)c

Greenmanure 3.25%(1.5‐5) 42%d

Compost 1.25%(0.5‐2) 16%(12‐20)e

Seaweedmeal 2.5%(2‐3) 27%f

Sewagesludge 3%(1‐5) 11.7%(3.9‐19.5)b

Fishwaste 7%(4‐10) 24.3%(14.6‐34)g

Blood 11%(10‐12) 35.2%(32‐38.4)h

Humanurine/nightsoil 1.25%(1‐1.5) 9.5%(9‐10)iaHue,N.V.OrganicFertilizersinSustainableAgricultureRetrievedfromhttp://www.ctahr.hawaii.edu/huen/hue_organic.htm.bUSDA.1992.AgriculturalWasteCharacteristics.Chapter4.InAnimalWasteManagementFieldHandbook:NaturalResourcesConservationService,UnitedStatesDepartmentofAgriculture.cEPA,2013.InventoryofU.S.GreenhouseGasEmissionsandSinks:1990‐2011.WeightedU.S.averagecarbon:nitrogenratioformanureavailableforapplication.dAssumesdrymatteris42%carbon.eA1Organics.CompostClassification,SpecificationandResourceManual.http://www.a1organics.com/CLSP/CLASS%20MANUAL%20‐%20COLORADO.pdffhttp://www.naorganics.com/en/science_analysis.asp.NorthAtlanticOrganics.gHartz,T.K.andP.R.Johnstone.2006.Nitrogenavailablefromhigh‐nitrogen‐containingorganicfertilizers.HortTechnology16:39‐42.hSonon,D,etal.2012.Mineralizationofhigh‐Norganicfertilizers.ClemsonUniversity.iPolprasert,C.2007.OrganicWasteRecycling:TechnologyandManagement.IWAPublishing.

Themethodfororganicsoilsrequiresthefollowingactivitydataforcroplandsandgrazinglands:

Areaoflandparcel(i.e.,field);and Totalyieldofcrop(metrictonsdrymattercropyieldyear‐1),meat(kgcarcassyieldyear‐1)

ormilk(kgfluidmilkyear‐1).

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-55

3.5.3.4 AncillaryData

Ancillarydataforthemineralsoilmethodincludehistoricalweatherpatternsandsoilcharacteristics.WeatherdatamaybebasedonnationaldatasetssuchastheParameter‐ElevationRegressionsonIndependentSlopesModel(PRISM)data(Dalyetal.,2008).SoilcharacteristicsmayalsobebasedonnationaldatasetssuchastheSoilSurveyGeographicDatabase(SSURGO)(SoilSurveyStaff,2011).However,therewillalsobeanoptionforentitiestosubstitutesoilsdatacollectedfromthespecificfield.Theerosionmodelwillalsorequireancillarydataontopography(i.e.,slope),lengthoffieldandroworientation,cropcanopyheight,diversions,surfaceresiduecover,andsoiltexture.

Noancillarydataareneededforthemethodtoestimateemissionsfromdrainageoforganicsoils.

3.5.3.5 ModelOutput

Modeloutputisgeneratedforthequantityofemissionsandemissionsintensity.Thechangeinmineralsoilorganiccarbonstocksisestimatedbasedonstockchangesoverfive‐yeartimeperiodsinordertomanageuncertainty.Uncertaintiesinthemodel‐basedestimatesareaboutthreetimeslargerforannualestimatesinchangeratecomparedwithfive‐yearblocks(CompareU.S.EnvironmentalProtectionAgency(2009)and(2010)).Uncertaintiesarelargeratthefinertimescalebecausethereislargevariabilityinmeasurementsofsoilcarbonstockchangesatannualtimescales,andthisvariabilityisincorporatedintothemodeluncertaintyusingtheempiricallybasedmethod(Ogleetal.,2007).Inaddition,trendsinsoilorganiccarbonwillbeestimatedforthe30previousyearsofhistoryandthereportingperiod.

Emissionsintensityisbasedontheamountofemissionsperunitofyieldforcropsincroplandsystemsoranimalproductsingrazingsystems.Theemissionsintensityisestimatedwiththefollowingequation:

3.5.3.6 LimitationsandUncertainty

Uncertaintiesinthemineralsoilmethodsincludeimprecisionandbiasintheprocess‐basedmodelparametersandalgorithms,inadditiontouncertaintiesintheactivityandancillarydata.Uncertaintyintheparameterizationandalgorithmswillbequantifiedwithanempiricallybasedapproach,asusedintheU.S.nationalGHGinventory(Ogleetal.,2007;U.S.EPA,2011).ThemethodcombinesmodelingandmeasurementstoprovideanestimateofSOCstockchangesforentityscalereporting(Conantetal.,2011).Measurementsofcarbonstockchangesareexpectedtobebasedon

Equation3‐7:EmissionsIntensityofSoilOrganicCarbon StockChange

EISoilC=(ΔCMineral+ΔCOrganic)/Y

Where:

EISoilC =Emissionsintensity(metrictonsCO2permetrictondrymattercropyield,metrictonsCO2perkgcarcassyield,metrictonsCO2perkgfluidmilkyield)

ΔCMineral =AnnualCO2equivalentemissionsfromsoilorganiccarbonchangeinmineralsoils(metrictonsCO2‐eqyear‐1)

ΔCOrganic =AnnualCO2equivalentemissionsfromsoilorganiccarbonchangeinorganicsoils,Histosols(metrictonsCO2‐eqyear‐1)

Y =Totalyieldofcrop(metrictonsdrymattercropyieldyear‐1),meat(kgcarcassyieldyear‐1)ormilkproduction(kgfluidmilkyieldyear‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-56

anationalsoilmonitoringnetwork(Spenceretal.,2011).Thenetworkshouldincludesamplesfromdifferentregionsofthecountryandsoiltypesthatareusedforcropproductionorgrazing,andarandomsamplingofthemanagementsystemsineachoftheregions.ThesamplingplotswillneedtobedesignedforresamplingovertimeinordertoevaluatethemodeledchangesinSOCstocks(Conantetal.,2003).Uncertaintiesinnationaldatasetsforweatherwillbebasedoninformationincludedwiththedataset,whileuncertaintiesintheSSURGOshouldbequantifiedusingtheunderlyingfielddatathatformthebasisforthemappingexercise,oranindependentaccuracyassessmentofthemapproduct.Otherinputdataisassumedtobeknownbytheentity,suchasthecropplants,yields,tillage,andresiduemanagementpractices.

Thelimitationsofthemineralsoilcarbonmethodincludenoassessmentoftheeffectoflanduseandmanagementinsub‐surfacelayersofthesoilprofile(below30centimeters),noassessmentofthelocationoftransportanddepositionoferodedC,andlimiteddatatoassessuncertaintyintheparametersandalgorithmsusingtheempiricallybasedmethod.Foragroforestry,theDAYCENTmodelhasbeenusedintheCOMET‐Farmvoluntarycarbonreportingtooltosimulatesoilorganiccarbonstockchanges.However,thereareseveralunknownswiththeuseoftheDAYCENTmodelforestimatingsoilorganiccarbonstockchangesinagroforestry,includingwhetherthemodelisabletotakeintoaccounttheinteractionsoccurringbetweenwoodyandherbaceousvegetationandrespectivemanagementactivities.OelbermannandVoroney(2011)evaluatedtheuseoftheCenturymodel,themonthlytime‐stepversionoftheDAYCENTmodel,topredictsoilorganiccarbonintemperateandtropicalalleycroppingsystemsthatwere13and19yearsold,respectively.Theyfoundthatthemodelunderestimatedthelevelsofsoilorganiccarboncomparedwithmeasuredvalues.Withmoretesting,themethodsmayberevisedinthefuturetousetheDAYCENTmodelforthepurposesofestimatingsoilorganiccarbonstockchangesinagroforestrysystems.

Biocharresearchhasbeenanareaofrapiddevelopmentoverthepastfewyears,buttherearestilluncertainties.Biocharisaproductofcombustedbiomassthathasavarietyofchemicalstructuresdependingonthebiomassandpyrolysismethod,andthevariationhasimplicationsforthestabilityofthecarboninthesoil(Spokas,2010).BiocharcanhaveconcomitantimpactsonemissionsofotherGHGssuchasCH4andN2O(Cayuelaetal.,2010;Malghanietal.,2013;Yuetal.,2013),althoughsomestudieshaveshownnoeffect(Caseetal.,2013;Cloughetal.,2010).SoilamendmentswithbiocharmayalsoprimethedecompositionofthenativesoilorganicmatteralthoughtheCO2emissionsfromprimingappeartobeconsiderablysmallerthanthecarbonaddedinthebiochar(Stewartetal.,2013;WoolfandLehmann,2012).Otherresearchsuggeststhattheremayevenbe“negative”primingleadingtoareductioninheterotrophicrespiration(Caseetal.,2013).Furthermore,thetemporaldurationoftheGHGmitigationpotentialofbiocharisalsouncertainbutappearstobeofashorttermnature(Spokas,2013).TheinfluenceofbiocharonemissionsandprimingneedsmoreresearchbeforethefulleffectofbiocharoncarbonsequestrationandGHGemissionscanbeincorporatedintomodelsandGHGreportingframeworks.Microbialdegradationofbiocharcanoccurovertimescalesrangingfromaslittleasafewdecadesto1000sofyears(Spokas,2010).Inthetechnicalmethods,biocharistreatedasahighcarbontolownitrogenamendmentintheDAYCENTmodelframework,butwithaconservativeresidencetimeofthecarbonfromdecadestoacentury.Thesemethodscanbefurtherrefinedinthefutureasthedifferenttypesandresidencetimesofbiochararefurtherresolved.

Themethodfororganicsoilsalsohaslimitations,particularlytheinabilitytoestimatetheeffectofmitigationmeasuressuchaswatertablemanagementbecauseemissionfactorsaresetforeachclimateregion(i.e.,currentlyscalingfactorsarenotavailabletorevisetheemissionfactorsforwatertablemanagement).Onlycompleterestorationofthewetlandwithnofurtherdrainagecanbeaddressedwiththemethod(i.e.,assumesnofurtheremissionsofCO2).However,ifcrop

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-57

productionismaintainedonthelandparcel,themostpracticalmethodforreducingemissionsistoraisethewatertabletoneartherootingdepthofthecropduringthegrowingseasonandthennotdrainingthesoilduringthenon‐growingseason(Jongedyketal.,1950;Shihetal.,1998),orpossiblymanagingthesystemwithperiodicflooding(Morrisetal.,2004).

Forallsystemsthereisadditionaluncertaintyassociatedwithclimatechange.Modeledoutputforanygivenlocationassumestemperatureandprecipitationsimilartothatofthepast30years,theperiodforwhichhistoricalweatherisusedtosimulatesoilorganiccarbondynamics.Expectedchangesintemperature,precipitation,andextremeeventssuchasdroughts,floods,andheatwaveswilladdfurtheruncertaintytoestimatesofsoilorganiccarbonstockchange.

WhilethereisconsiderableevidenceandmechanisticunderstandingabouttheinfluenceoflanduseandmanagementonSOC,thereislessknownabouttheeffectonsoilinorganicC.Consequently,thereisuncertaintyassociatedwithlanduseandmanagementimpactsonsoilinorganiccarbonstocks,whichcannotbequantified.CurrentmethodsdonotincludeimpactsoninorganicC,butthismaybeaddedinthefutureasmorestudiesareconductedandmethodsaredeveloped.

UncertaintiesinmodelparametersandstructurearecombinedusingaMonteCarlosimulationapproach.Uncertaintyisassumedtobeminorforthemanagementactivitydataprovidedbytheentity.Table3‐8providestheprobabilitydistributionfunctionsassociatedwiththemineralandorganicsoilsmethods.

Table3‐8:AvailableUncertaintyDataforSoilOrganicCarbonStockChange

Parameter Mean Units

RelativeUncertainty

Distribution DataSourceLow(%)

High(%)

DAYCENT(empiricaluncertainty) NS Various NS NS Normal

Ogleetal.(2007);EPA(2013)

Emissionfactorforcroplandincooltemperateregions 11

metrictonsCha‐1year‐1 45 45 Normal

Ogleetal.(2003)

Emissionfactorforcroplandinwarmtemperateregions 14

metrictonsCha‐1year‐1 35 35 Normal

Ogleetal.(2003)

Emissionfactorforcroplandinsubtropicalregions 14

metrictonsCha‐1year‐1 46 46 Normal

Ogleetal.(2003)

Emissionfactorforgrazinglandincooltemperateregions

2.8metrictonsCha‐1year‐1

45 45 NormalOgleetal.(2003)

Emissionfactorforgrazinglandinwarmtemperateregions

3.5metrictonsCha‐1year‐1

35 35 NormalOgleetal.(2003)

Emissionfactorforgrazinglandinsubtropicalregions

3.5metrictonsCha‐1year‐1

46 46 NormalOgleetal.(2003)

NS=NotShown.Dataarenotshownforparametersthathave100’sto1000’sofvalues(denotedasNS).

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-58

3.5.4 SoilNitrousOxide

3.5.4.1 RationaleforSelectedMethod

N2Ofluxesarenotoriouslydifficulttomeasurebecauseofthelaborrequiredtosampleemissions,combinedwithhighspatialandtemporalvariability.AgronomicpracticesthataffectN2Ofluxesinonesoil,climate,orsite‐yearmayhavelittleornomeasurableeffectinothers.Consequently,considerablecareisrequiredtoensurethatmethodstoestimatechangesinemissionsforaparticularcroppingpracticeareaccurateandrobustforthegeographicregionforwhichtheyareproposed,oraresufficientlygeneralizabletobeaccurateinaggregate.

DeKleinetal.(2006)providethreeestimationstrategiesfordirectN2Oemissionsfromcropland.Twoarebasedonemissionfactors,theproportionofnitrogenaddedtoacropthatbecomesN2O.Tier1isbasedonanear‐universalemissionfactor,applicablegloballywithoutregardtogeography,croppingpractice,orfertilizerplacement,timing,orformulation.Tier2methodsutilize

MethodforEstimatingSoilDirectN2OEmissions

MineralSoils

Themethodisbasedonusingresultsfromprocess‐basedmodelsandmeasuredN2OemissionsincombinationwithscalingfactorsbasedonU.S.specificempiricaldataonaseasonaltimescale.

Process‐basedmodeling(anensembleapproachusingDAYCENTandDNDC)combinedwithfielddataanalysisareusedtoderivebaseemissionratesforthemajorcroppingsystemsanddominantsoiltextureclassesineachUSDALandResourceRegion.Incaseswherethereareinsufficientempiricaldatatoderiveabaseemissionrate,thebaseemissionrateisbasedontheIPCCdefaultfactor.Thebaseemissionfactorsareadjustedbyscalingfactorsrelatedtospecificcropmanagementpracticesthatarederivedfromexperimentaldata.

OrganicSoils

DirectN2OemissionsfromdrainageoforganicsoilsusestheIPCCequationsdevelopedindeKleinetal.,(2006).Themethodfororganicsoilsassumesthatthereisstillasignificantorganichorizoninthesoil,andtherefore,therearesubstantialinputsofnitrogenfromoxidationoforganicmatter.

TheemissionratefordrainedorganicsoilsisbasedonIPCCTier1emissionfactor(0.008metrictonsN2O‐Nha‐1year‐1).

Thismethodreliesonentityspecificactivitydataasinputintotheequations.

MethodforEstimatingSoilIndirectN2OEmissions

ThismethodusestheIPCCequationforindirectsoilN2O(deKleinetal.,2006). IPCCdefaultsareusedforestimatingtheproportionofnitrogenthatissubjectto

leaching,runoff,andvolatilization.Inlandparcelswheretheprecipitationplusirrigationwaterinputislessthan80percentofthepotentialevapotranspiration,nitrogenleachingandrunoffareconsiderednegligibleandnoindirectN2Oemissionsareestimatedfromleachingandrunoff.

Thismethodusesentityspecificseasonaldataonnitrogenmanagementpractices.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-59

geographic,crop,orpractice‐specificemissionfactorswherefieldtestsshowthatafactordifferentfromtheonepercentTier1factoriswarranted.AtpresentthereisonlyoneTier2exampleintheprimaryliteraturethatisspecifictoconditionsintheUnitedStates,anditisforcornintheNorthCentralregion(Millaretal.,2010).ThismethodhasbeenincorporatedintoseveralN2Oreductionprotocols(VerifiedCarbonStandard,AmericanCarbonRegistry,andClimateActionReserve).ThethirdoptionforestimatingdirectN2Oemissions,orTier3,isameasurementorprocess‐basedmodelingapproach.Inthiscase,emissionsaremonitoredspecificallyfortheentity’sfieldbydeployinginstrumentsinameasurementsystemorbygatheringtheinformationspecifictothefieldconditionstosimulateN2Oemissionswithaprocess‐basedmodel.Thisthirdoptionisthemostprecise,butrequiresmoreresourcesandsufficienttestingpriortoimplementation.

InSection3.2.1.1,severalpracticesarediscussedthathavebeenshowntoreduceN2Oemissionsinfieldexperiments.However,manyoftheexperimentshavebeenconductedforalimitednumberofspecificcroppingsystemsandregions.Consequently,therearenomitigationpracticesforwhichemissionreductionshavebeenquantifiedunderallconditionsintheUnitedStates.Nevertheless,formanypracticesthereissufficientknowledgeatthecroppingsystemandregionallevelstoestablishthatadoptionwillreducesoilN2Oemissions.

Process‐basedsimulationmodelsuseknowledgeofC,N,andwaterprocesses(amongothers)topredictecosystemresponsestoclimateandotherenvironmentalfactors,includingcropandgrazinglandmanagement(seesoilcarbonmethodologyinSection3.5.3).N2Ofluxescanbepredictedusingsimulationmodels(Chenetal.,2008;DelGrossoetal.,2010).Akeyadvantageofsimulationmodelsisthattheyaregeneralizabletoawidevarietyofsoils,climates,andcroppingsystems,allowingfactorstointeractincomplexwaysthatmaybedifficulttopredictwithlesssophisticatedapproaches.However,adisadvantageisthatcomplexitycanlimittheirtransparency,andatpresenttherearestillsubstantialdatagapsthatlimitourabilitytofullytestavailablemodelsfortheirsensitivitytodifferentmanagementpracticesacrossvariousregionsandcropsintheUnitedStates.

Toovercomethesechallenges,ahybridapproachthatutilizesprocess‐basedsimulationmodelsandfielddatawasdevelopedtoestimateN2Oemissions.Themethodusesabaseemissionrateassociatedwiththetypicalamountofnitrogenapplied,andthenadjustmentsareappliedviascalingfactorstoaccountformanagementpracticesthataffectN2Oemissions.ThisapproachisaTier3methodasdefinedbytheIPCC.

Baseemissionratesareestimatedforeachdominantcropandthreesoiltextureclasses(coarse,medium,fine)withinaclimaticregionusingprocess‐basedsimulationmodeling.ThefactorsaredevelopedatthescaleofUSDALandResourceRegions(LRR).FielddataindicatethatN2Oemissionsgenerallyincreaseastheamountofappliednitrogenincreases,especiallywhennitrogenapplicationratesexceedcropuptakerates(Hobenetal.,2011;Kimetal.,2013;McSwineyandRobertson,2005;Shcherbaketal.,inpress)Researchdatafromfieldexperimentswerecompiledandusedtoadjusttheemissionratesfornitrogenfertilizerapplicationratesthatexceededthetypicalnitrogenapplicationrateforthecropinalandresourceregion.Forcropswheresufficientdataarenotavailabletosimulatethebaseemissionratewithaprocess‐basedmodel,thestandardIPCCTier1emissionfactorisapplied.Inaddition,forlandparcelsthathaveamixofcropswhereonlysomecanbesimulated,thestandardIPCCTier1approachshouldalsobeapplied.

Emissionsareaffectedbyspecificfarmmanagementpracticessuchasreducingtillageintensity;addingnitrificationinhibitors,orchanginghow,whenandwherenitrogenfertilizersareapplied.ToaccountfortheeffectofmanagementpracticesonN2Oemission,scalingfactorsweredevelopedtoadjustthebaseemissionrates.Thescalingfactorswereestimatedfromavailableresearchdata(SeeAppendix3‐Aformoreinformation).Managementpracticesotherthanthoseincludedinthe

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-60

equationmayalsomitigateN2Oemissions,buttherearenotcurrentlysufficientdatatocreategeneralizedscalingfactors.Additionaldatamayleadtotheirinclusioninfutureupdatestothemethod.

ThismethodincorporatesmoreinformationthanamethodbasedsolelyontheIPCCmodel.Itprovidesatransparentandscience‐basedmeansofestimatingannualizedN2Oemissionsfromcropandgrazinglands,anditfacilitatestheestimationofuncertainty.ForN2Oemissionsfromcropandgrazinglands,anIPCCTier1approachisonlysensitivetonitrogenapplicationrate,andthereforedoesnotreflectthefullsuiteoffactorsthatareknowntoinfluenceN2Oemissionsincludingclimate,soils,crops,andmanagementpracticesthatrangefromtillagetocovercropstofertilizertiming,placement,formulation,andadditives.DynamicprocessmodelsasembodiedintheIPCCTier3approachcan,inconcept,accountformostofthesefactorsbuttodatehavenotbeensufficientlyevaluatedformanyU.S.locations,crops,andmanagementpractices.Thisreporttakesahybridapproachthatrepresentsthebestavailablescienceatthetimeofpublication:dynamicprocessmodelstoestimatebaselineN2Oemissionsforthosecropsandlocationssufficientlyevaluated,thenscaledbymanagementpracticestotheextentsupportedbyavailableresearchresults.InitialtestingindicatesthatthismethodismoresensitivetoU.S.nutrientmanagementpracticesthantheIPCCTier1approach.Theauthorsanticipatepublicationofanaddendumthatwillprovidetestresultsandsuggestfurthertuningofthemethod.Overtime,asdynamicprocessmodelsarefurtherdevelopedandtested.ThemethodwilllikelymigratetowardsanexclusiveTier3approachtobetteraccountformanagementeffectsgiventhelocalvariablesandconditions.Intheinterim,inadditiontoprovidingbest‐availableandreliableestimatesofN2Oemissionsfromcropandgrazinglands,themethodoutlinedhereisexpectedtosetaresearchagendathatprovidesforbroaderevaluationofenvironmentalconditionsandmanagementpracticesinfluencingN2Oemissionsaswellasfurtherdevelopmentofmodelstomoreaccuratelyestimateemissions.

OffsiteorindirectN2Oemissions,whichoccurwhenreactivenitrogenescapestodownwindordownstreamecosystemswherefavorableconditionsforN2Oproductionexist,areevenmoredifficulttoestimatethandirectemissionsbecausethereisuncertaintyinboththeamountofreactivenitrogenthatescapesandtheportionofthisnitrogenthatisconvertedtoN2O.Ideally,fluxesofvolatileandsolublereactivenitrogenleavingtheentity’sparceloflandwouldbecombinedwithatmospherictransportandhydrologicmodelstosimulatethefateofreactiveN.Atpresenttherearenolinkedmodelingapproachessufficientlytestedtobeusedinanoperationalframework.Consequently,theindirectN2OemissionsarebasedontheIPCCTier1method(deKleinetal.,2006).

Similarly,directN2OemissionsfromdrainageoforganicsoilsarebasedontheIPCCTier1methods(deKleinetal.,2006).AlthoughresearchisongoingtoprovideimprovedemissionfactorsandmethodsforestimatingN2Oemissionsfromdrainageoforganicsoils(Allen,2012),moretestingwillbeneededbeforeincorporatingthemintoanoperationalmethod.Futurerevisionstothesemethodswillneedtoconsideradvancementsandrevisethemethodsaccordingly.

3.5.4.2 DescriptionofMethod

N2Oisemittedfromcroplandbothdirectlyandindirectly.Directemissionsarefluxesfromcroplandorgrazinglandswheretherearenitrogenadditionsornitrogenmineralizedfromsoilorganicmatter.IndirectemissionsoccurwhenreactivenitrogenisvolatilizedasNH3orNOxortransportedviasurfacerunofforleachinginsolubleformsfromcroplandorgrazinglands,leadingtoN2Oemissionsinanotherlocation.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-61

DirectN2OEmissions

MineralSoils:TotaldirectN2OemissionsfrommineralsoilsareestimatedforalandparcelusingEquation3‐8.

Thepractice‐scaledemissionratefortheparcelofland(ERp)isestimatedusingEquation3‐9.

Equation3‐8:DirectSoilN2OEmissionsfromMineralSoils

N2ODirect=ERp×A×N2OMW×N2OGWP

Where:

N2ODirect=TotaldirectsoilN2Oemissionforparcelofland(metrictonsCO2‐eqyear‐1)

ERp =Practice‐scaledemissionrateforlandparcel(metrictonsN2O‐Nha‐1year‐1)

A =Areaofparcelofland(ha)

N2OMW =RatioofmolecularweightsofN2OtoN2O‐N =44/28(metrictonsN2O(metrictonsN2O‐N)‐1)

N2OGWP =GlobalwarmingpotentialforN2O(metrictonsCO2‐eq(metrictonsN2O)‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-62

aAdifferencearisesintheERbestimationofPRPmanureNinputandtheactualPRPmanureNinputbecauseatypicalrateofNinputwasassumedintheDAYCENTandDNDCsimulationsfortheERbcalculation(SeeTextbox3‐1andAppendix3‐A).bEmissionfactorsfromdeKleinetal.(2006).

Inthisequation,thebaseemissionrate(ERb)variesbytheamountofnitrogeninputtothesoil.TheratemayalsovaryfordifferentcropandgrazinglandsystemsbyLRRtocapturevariationinclimate,andbytextureclassinordertorepresenttheinfluenceofsoilheterogeneityonN2Oemissions.MoreinformationaboutbaseemissionratesisgiveninTextbox3‐1.

Practice‐basedemissionscalingfactors(0to1)areusedtoadjusttheportionoftheemissionrateassociatedwithslowreleasefertilizers(Ssr),nitrificationinhibitors(Sinh),andpasture/range/paddock(PRP)manurenitrogenadditions(Sprp,cps).Theslow‐releasefertilizer,

Equation3‐9:Practice‐Scaled SoilN2OEmissionRateforMineralSoils

ERp=[ERb+(ΔNprp*EFprp)]x{1+[Ssrx(Nsr/Ni)]}x{1+[Sinhx(Ninb/Ni)]}x(1+Still)x{1–[Nresidr/(Ni+Nresidr)]}

Where:

ERp =Practice‐scaledemissionrateforlandparcel(metrictonsN2O‐Nha‐1year‐1)

ERb =Baseemissionrateforcroporgrazinglandthatvariesbasedonnitrogeninputratefrommineralfertilizer,organicamendments,residues,andadditionalmineralizationwithland‐usechangeortillagechange

(metrictonsN2O‐Nha‐1year‐1)

ΔNprp =DifferenceinPRPmanureNexcretionabetweenthePRPmanureNexcretionbasedonentityactivitydata(NPRPe)andPRPmanureNexcretionforthebaseemissionrate(NPRPb)(metrictonsN)

=NPRPe‐NPRPb

EFprp =EmissionfactorforPRPmanureNinputtosoils,0.02metrictonsN2O‐Nha‐1year‐1(metrictonsN)‐1forcattle,poultryandswine,and0.01metrictonsN2O‐N(metrictonsN)‐1forotherlivestockb

Ni =Nitrogeninputs,includingmineralfertilizer,organicamendments,PRPmanureN,residues,andSOMmineralization(SeeEquation3‐11)

(metrictonsNha‐1year‐1)Ssr =Scalingfactorforslow‐releasefertilizers,0wherenoeffect(dimensionless)

Nsr =Nitrogeninslow‐releasenitrogenfertilizerappliedtotheparcelofland (metrictonsNha‐1year‐1)

Sinh =Scalingfactorfornitrificationinhibitors,0wherenoeffect(dimensionless)

Ninh =Nitrogeninnitrogenfertilizerwithinhibitorappliedtotheparcelofland (metrictonsNha‐1year‐1)

Still =Scalingfactorforno‐tillage,0exceptforNT(dimensionless)

Nresidr =Nremovedthroughcollection,grazing,harvestingorburningofabovegroundresidues(metrictonsNha‐1year‐1).EstimateusingEquation3‐10forresultsgeneratedwithDAYCENTandDNDCmodelswiththeexceptionofhaycrops.NocalculationisneededforresultsgeneratedbytheIPCCmethodorforresultsassociatedwithhaycropsgeneratedbyDAYCENTandDNDC(setvalueto0).

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-63

nitrificationinhibitorandPRPmanurescalingfactorsareweightedsothattheireffectisonlyontheamountofnitrogeninfluencedbythesepracticesrelativetotheentirepoolofnitrogen(i.e.,theamountofslow‐releasefertilizer,fertilizerwithnitrificationinhibitororPRPmanurenitrogenaddedtothesoil).Incontrast,scalingfactorsfortillage(Still)areusedtoscaletheentireemissionrateundertheassumptionthatthispracticeinfluencestheentirepoolofmineralnitrogeninputs(i.e.,Ni).

Table3‐9:ScalingFactorsforNitrogenManagementPractices

ManagementPracticeNitrogen Management

FactorFactor(ProportionalChangeinEmissions) Source

Slow‐releasefertilizeruse Ssr ‐0.21(‐0.12to‐0.30) SeeAppendix3‐AManurenitrogendirectlydepositedonpasture/range/paddock

Sprp,cps +0.5(0.33to0.67) IPCC(2006)

Nitrificationinhibitoruse Sinh–semiarid/aridclimate ‐0.38(‐0.21to‐0.51) SeeAppendix3‐ANitrificationinhibitoruse Sinh–mesic/wetclimate ‐0.40(‐0.24to‐0.52) SeeAppendix3‐A

TillageStill–semiarid/aridclimate(<10yearsfollowingno‐till

adoption)0.38(0.04to0.72)

vanKesseletal.(2012),Sixetal.(2004)

TillageStill–semiarid/aridclimate(≥10yearsfollowingno‐till

adoption)‐0.33(‐0.16to‐0.5)

vanKesseletal.(2012),Sixetal.(2004)

Equation3‐10:AbovegroundResidueN Removal

ForCrops:

Nresidr=[((Ydm/HI)–Ydm)xRr)xNa]

ForGrazingForage:

Nresidr=[Ydmx(Fr+Rr)xNa]

Where:

Nresidr=Nremovedthroughcollection,grazing,harvestingorburningofabovegroundresidues(metrictonsNha‐1year‐1)

Ydm =Cropharvestorforageyield,correctedformoisturecontent (metrictonsbiomassha‐1year‐1) =YxDM

Y =Cropharvestortotalforageyield(metrictonsbiomassha‐1year‐1)

DM =Drymattercontentofharvestedbiomass(dimensionless)

HI =HarvestIndex(dimensionless)

Fr =Proportionofliveforageremovedbygrazinganimals(dimensionless)

Rr =Proportionofcrop/forageresidueremovedduetoharvest,burningorgrazing(dimensionless)

Na =Nitrogenfractionofabovegroundresiduebiomassforthecroporforage (metrictonsN(metrictonsbiomass)‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-64

ManagementPracticeNitrogen Management

FactorFactor(ProportionalChangeinEmissions)

Source

TillageStill–mesic/wetclimate

(<10yearsfollowingno‐tilladoption)

‐0.015(‐0.16to0.16)vanKesseletal.(2012),

Sixetal.(2004)

TillageStill–mesic/wetclimate

(≥10yearsfollowingno‐tilladoption)

‐0.09(‐0.19to0.01) vanKesseletal.(2012),Sixetal.(2004)

Note:SeeAppendix3‐AforfurtherexplanationonthepracticesincludedinthesoilN2Omethodandthesourcesofdatathatwereusedtoderivethebaseemissionratesandscalingfactorsforthemanagementpractices.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-65

Textbox3‐1:BaseEmissionRateforDirectSoilN2OEmissionsfromMineralSoils

Thebaseemissionrateisacroporgrazinglandspecificestimatethatvariesbasedonthetotalmineralnitrogeninputtothesoil.Therearetwomethodsusedtoestimatethebaseemissionrate.Thefirstmethodusesacombinationofprocess‐basedmodelingandmeasurementdatatoestimatesN2Obaseemissionratesbylandresourceregion,majorcroptype,andsoiltextureclass.ThesecondmethodusesthedefaultIPCCemissionfactorofonepercent(deKleinetal.,2006),multiplyingthisvaluebythetotalnitrogeninput(SeeEquation3‐11)toestimatethebaseemissionrate.Thesecondapproachisusedforcropsthatarenotincludedintheprocess‐basedmodelinganalysis.

Theremainderofthisboxdescribesthefirstmethod.Theequationforthefirstmethod,combiningthemodelingandmeasurementdata,isgivenbelow:

ERb=ER0+(EFtypical+(SEF×ΔNf))×Nf

ERb =Baseemissionrate(metrictonsN2O‐Nha‐1year‐1)

ER0 =Emissionratemodeledat0levelofnitrogeninput(Nt=0) (metrictonsN2O‐Nha‐1year‐1)

EFtypical =Emissionfactorforthetypicalfertilizationrate(metrictonsN2O‐N(metrictonsN)‐1) =(ERtypical–ER0)/Ntf

ERtypical=Emissionrateforthetypicalcasemodeled(metrictonsN2O‐Nha‐1year‐1)

SEF =BaseEFscalar; forΔNf>zero:SEF=0.0274forallnon‐grasslandcrops,

SEF=0.117forgrasslands; forΔNf<zero(lessthanorthesameastypicalfertilizerrates):SEF=0; ((metrictonsN2O‐N(metrictonsN)‐2)hayear)

ΔNf =Nf‐Ntf(metrictonsNha‐1year‐1)

Nf =Actualnitrogenfertilizerrate,includingsyntheticandorganic(metrictonsNha‐1year‐1)

Ntf =Typicalnitrogenfertilizerrate(metrictonsNha‐1year‐1)

Process‐basedmodelswereusedtosimulateN2OemissionsatthetypicalnitrogenfertilizationrateformajorcommoditycropsaccordingtotheUSDAAgriculturalResourceManagementSurveydata(ERtypical),inadditiontoazerorateapplication(ER0).TheN2Oemissionatthetypicalrateoffertilizationformajorcommoditycropsareproducedforcoarse,medium,andfinetexturedsoilsineachlandresourceregion.Theemissionfactor(EFtypical)forfertilizationratesgreaterthanthetypicalrateforthecroporgrassarescaledaccordingtothetrendinmeasuredsoilN2Odataacrossarangeoffertilizationratesbasedonexperimentaldata.ThechangeintheemissionfactorbetweenthetypicalnitrogenfertilizationrateandahigherratewasaveragedtoderiveanemissionfactorscalarorrateofchangeperunitofadditionalN.Thescalarismultipliedbytheadditionalnitrogentoderiveanadjustmenttotheemissionfactor(SEF×ΔNf)thatisthenaddedtotheemissionfactorderivedforthetypicalfertilizerrate(EFtypical).NoscalingisdoneforthecasewhereΔNf≤zero,i.e.,wherethefertilizationrateisequaltoorlessthanthetypicalrateofnitrogenapplication.InthiscaseSEF=0suchthatSEF×ΔNf=0.Theresultingemissionfactorismultipliedbytheactualfertilizerrate(Nf)andaddedtotheemissionrateatthe0levelofnitrogenfertilization(ER0)toderivethebaseemissionrate(ERb).

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-66

Nitrogeninputsareestimatedwiththefollowingequation:

aTheapproachforestimatingnitrogenmineralizationinputsisconsistentwiththeU.S.NationalInventory(U.S.EPA,2013).bPasture/Range/Paddock(PRP)manureNisatermutilizedbytheIPCC(deKleinetal.,2006)fortheNexcreteddirectlyontolandbylivestock,andthemanureisnotcollectedormanaged.ThetotalPRPmanureNisestimatedwithmethodsfromChapter5,andassumedtobesplitwith50%oftheNinurineand50%oftheNinsolids.

ThetotalNmineralizationisestimatedfromtheDAYCENTmineralsoilCmethodinaggregateformanureamendments(Nman),compost(Ncom),residues(Nres),soilorganicmatter(Nsmin)andsolidsassociatedwithPRPmanure,andisusedtoapproximatetheseNinputsinEquation3‐11.ThisapproachcreatesalinkagebetweenthemineralsoilCmethod(SeeSection3.5.3.2)andtheN2Omethod,ensuringconsistencyintreatmentofN.IninstanceswherecropscannotbeestimatedbytheDAYCENTmineralsoilCmethod,themethodfromtheIPCCguidelines(Aaldeetal.,2006)canbeusedtoestimatetheNinputsfrommineralizationwiththeexceptionofNsmin,whichissetto0(SeeAppendix3‐B).

OrganicSoils:ThemethodfororganicsoilsincludesHistosolsandsoilsthathavehighorganicmattercontentanddevelopedundersaturated,anaerobicconditionsforatleastpartoftheyear,whichincludesHistels,Historthels,Histoturbels.Themethodassumesthatthereisasignificantorganichorizoninthesoil,andtherefore,majorinputsofnitrogenarefromoxidationoforganicmatterratherthanexternalinputsfromsyntheticandorganicfertilizers.Iftheseassumptionsarenottrue,thentheentityshouldusethemineralsoilmethodtoestimatetheN2Oemissions.TotaldirectN2Oemissionsfromdrainedorganicsoilsareestimatedforindividualparcelsofland(i.e.,fields)withthefollowingequation:

Equation3‐11:NitrogenInputsa

Ni=Nsfert+Nman+Ncomp+Nresid+Nsmin+Nprp

Where:

Ni =Nitrogeninputs,includingmineralfertilizer,organicamendments,PRPmanureN,residues,andSOMmineralization

(metrictonsNha‐1year‐1)

Nsfert =Nitrogeninsyntheticfertilizerappliedtoaparcelofland (metrictonsNha‐1year‐1)

Nman =Nitrogenmineralizationfrommanureamendments(orsewagesludge)appliedtoaparcelofland(metrictonsNha‐1year‐1)

Ncomp =Nitrogenmineralizationfromcompostappliedtoaparcelofland (metrictonsNha‐1year‐1)

Nresid =Nitrogenmineralizationfromcropandcovercropresiduesaboveandbelowgroundthatareleftontheparceloflandfollowingsenescence(i.e.,notcollected,grazed,orburned)(metrictonsNha‐1year‐1)

Nsmin=NitrogeninputsfromsoilorganicmattermineralizationasestimatedbytheDAYCENTmineralsoilCmethod(SeeSection3.5.3.2)(metrictonsNha‐1year‐1).Valuesetto0forcropsthatarenotestimatedwiththeDAYCENTmineralsoilCmethod.

Nprp =Nitrogeninurineandmineralizationfromsolidsassociatedwithmanureinpasture/range/paddock(PRP)(metrictonsNha‐1year‐1)b

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-67

IndirectN2OEmissions:ThemethodtoestimateindirectN2OemissionsformineralsoilshasbeenadoptedfromtheapproachdevelopedbyIPCC(deKleinetal.,2006).ThefollowingequationisusedtoestimatethetotalindirectN2Oemissionsassociatedwithnitrogenvolatilizationandnitrogenleachingandrunofffromthelandparcel:

Thefollowingequationisusedtoestimatetheindirectemissionsassociatedwithnitrogenvolatilizationfromthelandparcel:

Equation3‐12:DirectN2OEmissionsfromDrainageofOrganicSoils(Histosols)

N2OORGANIC=AOS×EROS

Where:

N2OORGANIC =DirectsoilN2Oemissionfromdrainageoforganicsoils (metrictonsN2O‐Nyear‐1)

Aos =Areaoforganicsoilsdrainedonaparcelofland(ha)

EROS =EmissionrateforcroppedHistosols, IPCCTier1EROS=0.008metrictonsN2O‐Nha‐1year‐1

Equation3‐13:TotalIndirectSoilN2OEmissionsfromMineralSoils

N2OIndirect=(N2OVol+N2OLeach)×N2OMW×N2OGWP

Where:

N2OIndirect=IndirectsoilN2Oemission(metrictonsCO2‐eqyear‐1)

N2OVol =N2Oemittedbyecosystemreceivingvolatilizednitrogen (metrictonsN2O‐Nyear‐1)

N2OLeach =N2Oemittedbyecosystemreceivingleachedandrunoffnitrogen (metrictonsN2O‐Nyear‐1)

N2OMW =RatioofmolecularweightsofN2OtoN2O‐N=44/28 (metrictonsN2O(metrictonsN2O‐N)‐1)

N2OGWP =GlobalwarmingpotentialforN2O(metrictonsCO2‐eq(metrictonsN2O)‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-68

TheIPCCdefaultsareusedforFRSNandFRON.

ThefollowingequationisusedtoestimatetheindirectN2Oemissionsassociatedwithleachingoroverlandflowofreactivenitrogenthatistransportedfromthelandparcel(i.e.,field):

Thefractionofnitrogenthatisleachedfromaprofilewillvarydependingonthelevelofprecipitationandirrigationwaterappliedinthefield.Inlandparcels(i.e.,fields)wheretheprecipitationplusirrigationwaterinputislessthan80percentofthepotentialevapotranspiration,nitrogenleachingandrunoffareconsiderednegligibleandnoindirectN2Oemissionsareestimated(U.S.EPA,2011).IPCCdefaultfractionsareusedforEFleachandFRleachwherenocovercropsarepresent.Wherewintercovercropsprecedethecashcrop,FRleachisfurtheradjustedtoaccountforcovercropeffectsonnitrateleaching.Inameta‐analysisof36geographicallydistributedfield

Equation3‐14:IndirectSoilN2OEmissionsfromMineralSoils—Volatilization

N2OVol=[(FSN×FRSN)+(FON×FRON)]×EFVOL

Where:

N2OVol =IndirectsoilN2Oemittedbyecosystemreceivingvolatilizednitrogen (metrictonsN2O‐Nyear‐1)

FSN =Syntheticnitrogenfertilizerapplied(metrictonsNyear‐1)

FRSN =FractionofNSNthatvolatilizesasNH3andNOx.IPCCdefaultTier1=0.10 (metrictonsN(metrictonNsfert)‐1)

FON =Nitrogenfertilizerappliedoforganicoriginincludingmanure,sewagesludge,compostandotherorganicamendments(metrictonsNyear‐1)

FRON =FractionorproportionofFONthatvolatilizesasNH3andNOx.IPCCdefaultTier1=0.2(metrictonsN(metrictonNON)‐1)

EFVOL =EmissionfactorforvolatilizednitrogenorproportionofnitrogenvolatilizedasNH3andNOxthatistransformedtoN2Oinreceivingecosystem;IPCCTier1EF=0.01(metrictonsN2O‐N(metrictonN)‐1)

Equation3‐15:IndirectSoilN2OEmissionsfromMineralSoils—LeachingandRunoff

N2Oleach=(Ni×FRleach)×EFleach

Where:

N2Oleach =IndirectsoilN2Oemittedbyecosystemreceivingleachedandrunoffnitrogen(metrictonsN2O‐Nyear‐1)

Ni =Nitrogeninputs,includingmineralfertilizer,organicamendments,PRPmanureN,residues,andSOMmineralization(metrictonsNha‐1year‐1)(SeeEquation3‐11)

FRleach =FractionorproportionofNithatleachesorrunsoff.IPCCdefaultTier1=0.30excepta)whereirrigation+precipitationislessthan80%ofpotentialevapotranspiration(metrictonsN(metrictonN)‐1)FRleach=0;andb)croppingsystemswithleguminousornon‐leguminouswintercovercrops,forleguminouscovercrops,FRleach=0.18,andfornon‐leguminouscovercrops,FRleach=0.09.

EFleach =EmissionfactorforleachedandrunoffnitrogenorproportionofleachedandrunoffnitrogenthatistransformedtoN2Oinreceivingecosystem;IPCCTier1EF

=0.0075(metrictonsN2O‐N(metrictonN)‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-69

studies,Tonittoetal.(2006)founda40percentand70percentreductioninnitrateleachingwiththeuseoflegumeandnon‐legumecovercrops,respectively.Accordingly,FRleach,isreducedto0.18forlegumecovercrops(0.3×(1‐0.4);or18%oftotalnitrogeninputs)and0.09fornon‐legumecovercrops(0.3×(1‐0.7);orninepercentoftotalnitrogeninputs).

3.5.4.3 ActivityData

Calculatingemissionsrequiresthefollowingactivitydataforcroplands:

Areaoflandparcel(i.e.,field); Prior‐yearcroptype,drymatteryields,andresidue‐yieldratiostocalculatecropresidue

nitrogeninput,includingcovercrop(ifpresent); Residuemanagement,includingamountharvested,burned,grazed,orleftinthefield; Syntheticfertilizertype(chemicalformulation)andcoatings(ifpresent); Syntheticandorganicfertilizerapplicationrate,applicationmethod(broadcast,banded,or

injected,includingdepthofinjection),timingofapplication(s); Typeofnitrificationinhibitorapplications(ifused); Tillageimplements,datesofoperation,andnumberofpassesineachoperation(whichcan

beusedtodeterminetillageintensitywiththeSTIRModel),(USDANRCS,2008); Irrigationmethod,applicationrateandtimingofapplications; Totaldrymatteryieldofcrop(metrictonsdrymatteryear‐1),drymattercontentofyield,

andharvestindex;and Covercroptypes,planting,andharvestingdates(ifapplicable).

Themethodforgrazinglandrequiresthefollowingmanagementactivitydata:

Areaoflandparcel(i.e.,field); Prior‐yeargrasstypeanddrymatterproductiontocalculategrassnitrogeninput; Syntheticfertilizertype(chemicalformulation)andcoatings(ifpresent); Organicamendmenttypesandtiming; Syntheticandorganicamendmentapplicationrate,applicationmethod(broadcast,banded,

orinjected,includingdepthofinjection),timingofapplication(s); Pasture/range/paddock(PRP)Nexcreteddirectlyontolandbylivestock(i.e.,manurethat

isnotmanaged); Typeofnitrificationinhibitorapplications(ifused); Tillageimplements,datesofoperation,andnumberofpassesineachoperationwhichcan

beusedtodeterminetillageintensitywiththeSTIRModel,(USDANRCS,2008); Irrigationmethod,applicationrate,andtimingofapplications; Periodsofgrazingduringtheyear; Animaltype,class,andsizeusedforgrazing; Stockingratesandmethods;and Totalyieldofmeat(kgcarcassyieldyear‐1)ormilk(kgfluidmilkyear‐1).

Cropyieldsareprovidedbytheentityforthecropsystem,orpeakforageamountsforgrazingsystems.Insomeyears,theentitymaynotharvestthecropduetodrought,pestoutbreaks,orotherreasonsforcropfailure.Inthosecases,theentityshouldprovidetheaverageyieldthattheyhaveharvestedinthepastfiveyears,andanapproximatepercentageofcropgrowththatoccurredpriortocropfailure.Theyieldisestimatedbasedonmultiplyingtheaveragecropyieldbythepercentageofcropgrowthobtainedpriortofailure.

Tocalculatetheamountofsyntheticfertilizernitrogenappliedtosoils,thetypeoffertilizerappliedanditsnitrogencontentarerequired.Table3‐10providesnitrogencontentinformationforcommontypesofsyntheticfertilizers.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-70

Pasture/range/paddock(PRP)manureNinputistheNexcreteddirectlyontolandbylivestock,andthemanureisnotcollectedormanaged(deKleinetal.,2006).TheamountofPRPmanureNisestimatedwiththelivestockmethods(SeeChapter5),andassumedtobesplitwith50%oftheNinurineandtheother50%oftheNinsolids.

3.5.4.4 AncillaryData

AncillarydataforestimatingdirectsoilN2Oemissionsfrommineralsoilsincludelandresourceregion,soiltexture,andclimatevariables.Landresourceregioncanbeidentifiedbasedonthegeographiccoordinatesofthefield.SoildataareavailablefromnationaldatasetssuchasSSURGO(SoilSurveyStaff,2011),andaveragegrowingseasonprecipitationandevapotranspirationdataareavailablefromnationalweatherdatasetssuchasPRISM(Dalyetal.,2008).Thesedataareusedbythemodelstodeterminebaseemissionrates.

3.5.4.5 ModelOutput

N2Oemissionsareexpressedbothasthequantityofemissionsandasemissionsintensity—emissionsperunityield,e.g.,gN2OperMggrainoranimalproduct.Reducingtheemissionsintensitycanbeassumedtoavoidemissionsfromindirectland‐usechange.Incontrast,iftheemissionsintensityincreasesduetoalossofyield,thenthereispotentialforadditionallandtobeconvertedintoagriculturetomakeupforayieldloss.

3.5.4.6 LimitationsandUncertainty

TheprimarylimitationofN2Oestimationmodelsisthattheydependonsurrogatemeasuresthatwillnotallowfluxesforaparticularlocationortimetobepredictedprecisely.Nevertheless,whileitmaybedecades,ifever,beforeannualratesofN2Oemissionsfromaspecificfieldcanbemeasuredwithgreatcertaintyandforlowcost,averageestimatesforsimilarcroppingsystemsandlandscapeswillconvergeasestimatesaggregatetolargerareas.

Table3‐10:NitrogenFractionofCommonSyntheticFertilizers(percentbyweight)

SyntheticFertilizer %NAmmoniumnitrate(NH4NO3) 33.5%Ammoniumnitratelimestone 20.5%Ammoniumsulfate 20.75%Anhydrousammonia 82%Aquaammonia 22.5%Calciumcyanamide(CaCN2) 21%Calciumammonianitrate 27.0%Diammoniumphosphate 18%Monoammoniumphosphate 11%Potassiumnitrate(KNO3) 13%Sodiumnitrate(NaNO3) 16%UreaCO(NH2)2 45%Source:Fertilizer101(2011).

Equation3‐16:SoilN2OEmissionsIntensity

EIN2O=(N2ODirect+N2OIndirect)/Y

Where:

EIN2O =N2Oemissionsintensity (metrictonsCO2‐eqpermetrictondrymattercropyieldorkgcarcassorkgfluid

milk)

N2ODirect =TotaldirectsoilN2Oemission(metrictonsCO2‐eqyear‐1)(SeeEquation3‐8)

N2OIndirect=TotalindirectsoilN2Oemission(metrictonsCO2‐eqyear‐1)(SeeEquation3‐13)

Y =Totalyieldofcrop(metrictonsdrymattercropyieldyear‐1),meat(kgcarcassyieldyear‐1),ormilkproduction(kgfluidmilkyieldyear‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-71

Limitationsinthemethodalsooccurdueto:

Lackofknowledgeofhowdifferentpracticesaffectfluxesinsomeregionsandcroppingsystems.

LackofknowledgeabouthowsomeofthemanagementpracticesinteractwitheachotherandwithsoilandclimatefactorstoaffectthefundamentalprocessesdrivingN2Oemissions—e.g.,nitrification,denitrification,gasdiffusion,etc.—andincorporationoftheseeffectsintoprocessmodels.

Limitednumberofdatasetscurrentlyavailabletotesttheefficacyofpracticestomitigatefluxesandtoevaluateprocess‐basedmodels.

Limitednumberofdatasetswithmorethantwofertilizerratestoestimatethescalarsforemissionfactorsassociatedwiththebaseemissionrates,particularlythepossibilityfornon‐linearscalars.

ThemineralsoilsmethodassumesaonepercentemissionfactorforindirectN2Oemissionsfromvolatilizednitrogenand0.75percentemissionfactorforleachedNO3‐.However,thereisevidencethattheEFforNO3‐leachingvariesfrom0.75%,dependingonthetypeofwaterway(Beaulieuetal.,2011)anditisalsolikelythatthesoilN2Oemissionsfromatmosphericdepositionofnitrogenwillvarydependingonthenitrogenstatusofthereceivingecosystem.

Thefractionofnitrogenthatisvolatilized(assumedtobe10percentforinorganicnitrogensourcesand20percentfororganicnitrogensourcesinEquation3‐15)isveryuncertain.Likewise,thefractionofnitrogenthatisleachedfromaprofileorrunsoffishighlyuncertain(assumedtobe30percentofallnitrogensourcesexceptwhereprecipitationplusirrigationislessthan80percentofpotentialevapotranspiration;U.S.EnvironmentalProtectionAgency,2011).Experimentssuggestthatgrossgeneralizationsarenotvalidandthatmanypracticescanreducebothvolatilizednitrogenandthenitrogenthatislostbyleachingandrunoff.9

ClimatechangewillaffectmodeloutputinsofarasbaselineN2Oestimatesaresimulatedforanygivenlocationusingtemperatureandprecipitationdistributionsforthepast30years.Expectedchangesintemperature,precipitation,andextremeeventssuchasdroughts,floods,andheatwaveswilladdfurtheruncertaintytoestimatesofallN2Oemissionsandpotentiallyinteractwithscalingfactors.Cropnitrogenmanagementmayfurtherchangewithclimatechange(Robertson,2013).

UncertaintiesinmodelparametersarecombinedusingaMonteCarlosimulationapproach.UncertaintyisassumedtobeminorforthemanagementactivitydataprovidedbytheentityTable3‐11providestheprobabilitydistributionfunctionstoestimateuncertaintyinthedirectandindirectsoilN2Oemissions.DataarenotshownforDNDCandDAYCENToutputthataredelineatedbyLRR,soiltype,andclimate.

9TheIPCCfactorsassumethatthemaximumabovegroundnitrogenrecoverybycropsis50to60percent.However,ratesofnitrogenrecoverycanbesignificantlyhigherwithbestpractices.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-72

Table3‐11:AvailableUncertaintyDataforDirectandIndirectN2OEmissions

ParameterEstimatedValue Units

EffectiveLowerLimit

EffectiveUpperLimit

Distribution DataSource

TypicaldirectN2Oemissionrateand0‐levelinputratefromprocess‐basedmodel

NS Various NS NSMultiple

distributionsDAYCENT,DNDC

Scalingfactorforslow‐releasefertilizers

‐0.21ProportionalChangeinEmissions

‐0.30 ‐0.12 Normal Appendix3‐A

ScalingfactorforPRPmanureN

+0.5ProportionalChangeinEmissions

0.33 0.67 NormalAppendix3‐

A

Scalingfactornitrificationinhibitors–semi‐arid/aridclimate

‐0.38ProportionalChangeinEmissions

‐0.51 ‐0.21 Normal Appendix3‐A

Scalingfactornitrificationinhibitors–mesicclimate

‐0.40ProportionalChangeinEmissions

‐0.52 ‐0.24 NormalAppendix3‐

A

Scalingfactorforno‐till,semi‐arid/aridclimate,<10years

0.38ProportionalChangeinEmissions

0.04 0.72 Normal

vanKesseletal.(2012),Sixetal.(2004)

Scalingfactorforno‐till,semi‐arid/aridclimate,≥10years

‐0.33ProportionalChangeinEmissions

‐0.5 ‐0.16 Normal

vanKesseletal.(2012),Sixetal.(2004)

Scalingfactorforno‐till,mesic/wetclimate,<10years

‐0.015

ProportionalChangeinEmissions

‐0.16 0.16 Normal

vanKesseletal.(2012),Sixetal.(2004)

Scalingfactorforno‐till,mesic/wetclimate,≥10years

‐0.09ProportionalChangeinEmissions

‐0.19 0.01 Normal

vanKesseletal.(2012),Sixetal.(2004)

BaseEFscalar–croplandfornon‐grasslandcrops

0.0274

(metrictonsN2O‐N(metrictonsN)‐2)ha

year

NormalAppendix3‐

A

BaseEFscalar–forgrasslands 0.117

(metrictonsN2O‐N(metrictonsN)‐2)ha

year

NormalAppendix3‐

A

EmissionrateforcroppedHistosols 0.008

metrictonsN2O‐Nha‐1year‐1

0.002 0.024 Uniform IPCC(2006)

Fractionofsyntheticnitrogen(NSN)thatvolatilizesasNH3andNOx

0.1metrictonsN(metrictonNsfert)‐1

0.03 0.3 Uniform IPCC(2006)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-73

ParameterEstimatedValue Units

EffectiveLowerLimit

EffectiveUpperLimit

Distribution DataSource

Fractionofnitrogeninorganicamendments(FON)thatvolatilizesasNH3andNOx

0.2metrictonsN(metrictonNON)‐1

0.05 0.5 Uniform IPCC(2006)

EmissionfactorforvolatilizednitrogenasNH3andNOxthatistransformedtoN2O.

0.01metrictonsN2O‐N(metric

tonN)‐10.002 0.05 Uniform IPCC(2006)

FractionofNtthatleachesorrunsoffexceptinsystemswithcovercrops

0.3metrictonsN(metrictonN)‐1 0.1 0.8 Uniform IPCC(2006)

FractionofNtthatleachesorrunsoffwithaleguminouscovercrop

0.18 metrictonsN(metrictonN)‐1

0.14 0.26 Log‐Normal Tonittoetal.(2006)

FractionofNtthatleachesorrunsoffwithnon‐leguminouscovercrop

0.09metrictonsN(metrictonN)‐1

0.06 0.15 Log‐NormalTonittoetal.(2006)

EmissionfactorforleachedandrunoffnitrogenthatistransformedtoN2O

0.0075metrictonsN(metrictonN)‐1 0.0005 0.025 Uniform IPCC(2006)

NS=NotShown.Dataarenotshownforparametersthathave100’sto1000’sofvalues(denotedasNS).Dataareprovidedinsupplementarymaterialavailableonline.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-74

3.5.5 MethaneUptakebySoils

3.5.5.1 RationaleforSelectedMethod

TherearenoagronomicpracticesknowntoenhanceCH4uptake(oxidation)incroplands,otherthaninwetlandsconvertedtofloodedrice(discussedinSection3.2.2).Agronomicactivityuniversallyreducesmethanotrophyinarablesoilsby70percentormore(Mosieretal.,1991;Robertsonetal.,2000;Smithetal.,2000).RecoveryofCH4oxidationuponabandonmentfromagricultureisslow,probablytaking50to100yearsforthedevelopmentofeven50percentofformer(original)rates(Levineetal.,2011).NorecoveryhasbeendocumentedforCRPgrasslandsorperennialbiofuelcropstodate.TherearecurrentlynomodelsforquantifyingCH4oxidationrecoveryotherthanrateofreversiontonaturalvegetation,sothisisaTier3methodasdefinedbytheIPCC.

3.5.5.2 DescriptionofMethod

Themodelisbasedonaveragevaluesformethaneoxidationinnaturalvegetation—whethergrassland,coniferousforest,ordeciduousforest—attenuatedbycurrentlandusepractices.AveragevaluesarefromthedatasetusedbyDelGrossoetal.(2000a),whoreportedaveragefluxes(±standarddeviation)fortemperateandtropicalgrasslandsoilsof3.2±1.9kgCH4ha‐1year‐1;forconiferousforestsoils,2.8±1.4kgCH4ha‐1year‐1;andfordeciduousforestsoils,11.8±5kgCH4ha‐1year‐1.Managementreducespotential(historic)oxidationto30percentoforiginalratesbasedonavailabledata(DelGrossoetal.,2000a;Mosieretal.,1991;Robertsonetal.,2000;Smithetal.,2000)asnotedinSections3.2.3.3and3.3.2.3.Recoveryofoxidationisassumedtooccurovertheperiodrequiredforecologicalsuccessiontorestoreoriginalvegetation(DelGrossoetal.,2000a;Mosieretal.,1991;Robertsonetal.,2000;Smithetal.,2000),whichisapproximatedat100yearsafterabandonmentfromagricultureorforestharvest.Recoveryisassumedtooccuratalinearrate(Smithetal.,2000)suchthatsuccessionalforestsandgrasslandswillconsumeCH4ataratethatisbetween30and100percentoftheoriginaloxidationcapacitybetweentheinitialyearofabandonmentuntilyear100.Thefollowingequationisusedtoestimatemethaneoxidationforalandparcel:

MethodforEstimatingMethaneUptakebySoil

Methaneuptakebysoilusesanequationbasedonaveragevaluesformethaneoxidationinnaturalvegetation—whethergrassland,coniferousforest,ordeciduousforest—attenuatedbycurrentlandusepractices.

AnnualaverageCH4oxidationfluxesarefromthedatasetusedbyDelGrossoetal.(2000a)whoreviewedaveragefluxesfromgrasslandandagriculturalsoils,coniferousforestsoils,anddeciduousforestsoils.Managementreducespotential(historic)oxidationto30percentoforiginalratesbasedonavailabledata(DelGrossoetal.,2000a;Mosieretal.,1991;Robertsonetal.,2000;Smithetal.,2000).KuchlerpotentialvegetationmapscanbeusedtodeterminethenaturalvegetationacrosstheUnitedStatesiftheentitydoesnothaveinformationforlandparcelsinoperation.

ThisnewlydevelopedmethodologymakesuseofrecentU.S.‐basedresearchthatisnotaddressedbyIPCCortheU.S.Inventory.Themethodincorporatesentityspecificannualdatasuchascurrentmanagementofthelandparcel,cultivationforcropproduction,grazingactivity,recentlyharvestedforests,orfertilizedgrasslandsorforests.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-75

3.5.5.3 ActivityData

Thismethodrequireslanduseandtypeofvegetationforthepast80years.KuchlerpotentialvegetationmapscanbeusedtodeterminethenaturalvegetationacrosstheUnitedStates(grassland,coniferousforest,ordeciduousforest)iftheentitydoesnothavethisinformationforlandparcelsintheoperation.Theentitywillneedtoidentifyifthecurrentmanagementofthelandparcelincludescultivationforcropproduction,grazingingrasslands,recentlyharvestedforests,orfertilizedgrasslandsorforests.Assumingtheparceloflandisnotundercultivation,fertilized,grazedgrasslands,orrecentlyharvestedforest,theentitywillneedtoprovidethetimesincethelandhasbeenmanagedwithoneofthesepractices.

3.5.5.4 AncillaryData

Noancillarydataarerequiredforthismethod.

3.5.5.5 ModelOutput

ThemodelprovidesavaluefordiminishedCH4oxidationcapacity.ThechangeinCH4oxidationcapacitywillbenegative,andsothereisnopotentialforincreasedCH4oxidationwiththismethod.Unlikeothermethodsinthissection,theemissionsintensityisnotrelevantforthismethod.

3.5.5.6 LimitationsandUncertainty

Lackofprecisioninknowledgeofpriorlanduse. UncertaintiesassociatedwithestimatingCH4oxidationratespriortoconversion(PCH4in

Equation3‐17).Inareviewofavailabledata,DelGrossoetal.(2000a)notedannualCH4

oxidationratesof<1.8kgCH4ha‐1year‐1forgrasslandandagriculturalsoils,1.4to4.1kgCH4ha‐1year‐1forconiferousandtropicalforestsoils,and5.3to12kgCH4ha‐1year‐1fordeciduousforestsoils.

Equation3‐17:Methane(CH4)Oxidation

CH4SoilOxidation=(PCH4×AF)×SF×A×CH4GWP

Where:

CH4SoilOxidation=CH4oxidationinsoils(metrictonsCO2‐eqyear‐1)

PCH4 =PotentialCH4oxidationbasedonhistoricnaturalvegetation;grasslands=3.2;coniferousforests=2.8,deciduousforests=11.8(kgCH4ha‐1year‐1)

AF =CH4oxidationattenuationfactor;croplandincludingset‐aside(CRP)grassland,grazingland,andfertilizedorrecentlyharvestedforests=0.30;naturalvegetation,0‐100yearsafterabandonmentofagriculturalproductionortimberharvest=0.3+(0.007×yearssinceabandonment);>100yearspost‐managementorneverusedforagriculturalmanagementortimberharvest=1.0

SF =Scalingfactor,1/1000(metrictonskg‐1)

A =Area(ha)

CH4GWP =GlobalwarmingpotentialofCH4(metrictonsCO2‐eq(metrictonsCH4)‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-76

Uncertaintyassociatedwiththeattenuationfactor.Inareviewoftemperateregioncomparisonsofpairedsitesinnaturalvegetationvs.agriculturalmanagement,Smithetal.(2000)foundthatagriculturalconversiontocroplandorpasturereducedoxidationby71percentonaverage.

UncertaintiesinmodelparametersarecombinedusingaMonteCarlosimulationapproach.Uncertaintyisassumedtobeminorforthemanagementactivitydataprovidedbytheentity,althoughthismaynotbethecaseifthereislimitedknowledgeaboutland‐usechange.Table3‐12providestheprobabilitydistributionfunctionsassociatedwithestimatinguncertaintyinmethaneoxidation.

Table3‐12AvailableUncertaintyDataforMethaneOxidation

ParameterEstimatedValue

EffectiveLowerLimit

EffectiveUpperLimit

Distribution DataSource

CH4oxidationratespriortoconversion(PCH4)grasslands(kgCH4ha‐1year‐1)

3.2 0 6.9 NormalDelGrossoetal.(2000a)

CH4oxidationratespriortoconversion(PCH4)coniferousforests(kgCH4ha‐1year‐1)

2.8 0.1 5.5 Normal DelGrossoetal.(2000a)

CH4oxidationratespriortoconversion(PCH4)deciduousForests(kgCH4ha‐1year‐1)

11.8 1.9 21.6 Normal DelGrossoetal.(2000a)

CH4oxidationattenuationfactor:croplandincludingset‐aside(CRP)grassland,grazingland,andfertilizedorrecentlyharvestedforests

0.30 0.07 1 Log‐NormalSmithetal.(2000)

CH4oxidationattenuationfactor:naturalvegetation,0‐100yearsafterabandonmentofagriculturalproductionortimberharvest

0.3+(0.007×yearssince

abandonment)

0.07+(0.007×yearssince

abandonment)

1 Log‐NormalSmithetal.(2000)

CH4oxidationattenuationfactor:>100yearspost‐managementorneverusedforagriculturalmanagementortimberharvest

1 0.07 1 Log‐Normal Smithetal.(2000)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-77

3.5.6 MethaneandNitrousOxidefromFloodedRiceCultivation

3.5.6.1 RationaleforSelectedMethod

ThereareanumberofpossibilitiesforestimatingGHGemissionsfromfloodedricesystems.ProcessbasedmodelsarebeingdevelopedtoquantifyGHGemissions,suchastheDNDC(e.g.,Zhangetal.,2011)andDAYCENTmodels(Chengetal.,2013).While,thesemodelshavebeenevaluatedforvariousregionsandcountriesinAsia,theyhavenotbeensufficientlyevaluatedforU.S.ricesystems,whicharesignificantlydifferentfromthosefoundinAsia(establishmentpractices,residuemanagement,watermanagement,andvarieties).Therefore,theselectedmethodisbasedontheIPCCTier1methodology.WhiletheIPCCmethodologyhasalsobeenlargelydevelopedfromAsianricestudies,itismoretransparentanduncertaintiescanbederivedintheemissionsestimates.Itisanticipatedthattheprocess‐basedmodelsmaybefurthertestedandcalibratedinthenearfutureforU.S.conditionsandpossiblyusedinafutureversionofthesemethods.

SeveralmanagementpracticeshavethepotentialtoinfluenceCH4andN2Oemissionsfromfloodedricesystems.However,therearecurrentlynotenoughdataavailabletoquantitativelyaccountfor(orestablishscalingfactorsfor)theeffectsofallofthesemanagementpractices.Thereissufficientinformationtoaccountfortheinfluenceofwatermanagement,residuemanagement,andorganicamendmentsonCH4emissionsfromfloodedrice(Lascoetal.,2006;Yanetal.,2005).

3.5.6.2 DescriptionofMethod

Methane:Themethodologyassumesabaselineemissionfactoror“typical”dailyrateatwhichCH4isproducedperunitoflandarea.Thisbaselinefactorrepresentsfieldsthatarecontinuouslyfloodedduringthecultivationperiod,notfloodedatallduringthe180dayspriortocultivation,andreceivenoorganicamendments.Differencesbetweenthebaselinescenarioandotherscenariosareaccountedforbytheuseofscalingfactorsthatareusedtoadjustthebaselineemissionfactorfor

MethodforEstimatingMethaneandN2OEmissionsfromRiceCultivation

IPCCequationsdevelopedbyLascoetal.(2006)forCH4anddeKleinetal.(2006)forN2O.‐ ThebaselineemissionfactorortypicaldailyrateatwhichCH4isproducedper

unitoflandarearepresentsfieldsthatarecontinuouslyfloodedduringthecultivationperiod,notfloodedatallduringthe180dayspriortocultivation,andreceivenoorganicamendments.Differencesbetweenthebaselinecontinuouslyfloodedfieldswithoutorganicamendmentsareaccountedforbyscalingfactors(e.g.,waterregimeadjustments(pre‐andduringthecultivationperiod),ororganicamendments).CH4scalingfactorstoaccountforwaterregimesandorganicamendmentscomefromLascoetal.(2006).

‐ N2OemissionfactorsrelyonLascoetal.(2006),andthescalingfactortoaccountfordrainageeffectscomesfromAkiyamaetal.(2005;USDA,2011).

ThismethodusestheIPCC(2006)equationswiththeadditionofascalingfactorforestimatingN2Oemissionsfromdrainage(Akiyamaetal.,2005;U.S.EPA,2011).ThemethodformethaneemissionsusesentityspecificseasonalparceldataasinputintotheIPCCequation.

Thismethodwaschosentominimizeuncertainty.Processmodelswereconsidered,butnotchosenforthismethodduetoaneedforfurtherresearchonU.S.ricecultivationconditionsandpractices.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-78

theeffectsofwatermanagement(occurringbothbeforeandduringthecultivationperiod)andtheamountoforganicamendments.TherateatwhichCH4isemitteddependsonwaterflooding/drainageregimesandonratesandtypesoforganicamendmentsappliedtothesoil.Assuch,scalingfactorsforabroadrangeofscenariosareprovidedwiththismethodology.Thefactorsaredifferentiatedbyhydrologicalcontext(e.g.,irrigated,rainfed,upland—allricefieldsintheUnitedStatesareirrigated),cultivationperiodfloodingregime(e.g.,continuous,multipleaeration),timesincelastflooding(priortocultivation;e.g.,over180days,under30days)andtypeoforganicamendment(e.g.,compost,farmyardmanure).

ThefollowingequationhasbeenadoptedfromthemethodologydevelopedbytheIPCCtoestimateCH4emissionsfromalandparcel(Lascoetal.,2006):

Thedailyemissionfactorisestimatedbasedontheconditions(i,j,k,etc.)thatinfluenceCH4emissionsforfloodedriceproduction,includingtheecosystemtype,waterregime,andorganicamendmentrate.Asmoredatabecomeavailable,additionalconditionsthatinfluenceCH4emissionsmaybeadded.The“i"intheequationsbelowrepresentsthespecificscenarioor“otherconditions”thatcansignificantlyinfluenceCH4emissionsonaparcel.Inthefuture,additionalscenarioswithfactorsthataffectCH4emissionsmaybeincludedastherelationshipbetweentheseconditionsbecomesclear.Thefollowingequationisusedtoestimatethedailyemissionfactorforalandparcel:

Equation3‐18:Flooded RiceMethaneEmissions

CH4Rice=CH4GWP×Σijk(EFijkxtijkxAijkx10‐3)

Where:

CH4Rice =Annualmethaneemissionsfromricecultivation(metrictonsCO2‐eqyear‐1)

EFijk =Adailyemissionfactorfori,j,andkconditions(kgCH4ha‐1day‐1)

tijk =Cultivationperiodofricefori,j,andkconditions(days)

Aijk =Annualharvestedareaofricefori,j,andkconditions(hayear‐1)

CH4GWP =GlobalwarmingpotentialforCH4(metrictonsCO2‐eq(metrictonsCH4)‐1)

i,j,andk =Representdifferentecosystems,waterregimes,typeandamountoforganicamendments,soiltype,ricecultivar,sulfatecontainingamendments,andotherconditionsunderwhichCH4emissionsfromricemayvary.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-79

Thescalingfactorfororganicamendmentstoalandparcelisestimatedusingthefollowingequation:

ThescalingfactorsforEquation3‐19andEquation3‐20arefromLascoetal.(2006)andshownbelow.

Table3‐13:RiceWaterRegimeEmissionScalingFactors(DuringCultivationPeriod)

WaterRegimeDuringtheCultivationPeriod(assumesirrigated) SFwContinuouslyflooded 1Intermittentlyflooded–singleaeration 0.6Intermittentlyflooded–multipleaeration 0.52Source:Lascoetal.(2006),Table5.12.

Table3‐14:RiceWaterRegimeEmissionScalingFactors(BeforeCultivationPeriod)

WaterRegimeBeforetheCultivationPeriod SFpNonfloodedpre‐season<180days 1Nonfloodedpre‐season>180days 0.68Floodedpre‐season>30days 1.9Source:Lascoetal.(2006),Table5.13.

Equation3‐19:Flooded RiceMethaneEmissionFactor

EFi=EFcxSFwxSFpxSFoxSFs,r

Where:

EFi=adjusteddailyemissionfactorforaparticularharvestedarea(kgCH4ha‐1day‐1)

EFc=baselineemissionfactorforcontinuouslyfloodedfieldswithoutorganicamendments(kgCH4ha‐1day‐1)

SFw=scalingfactortoaccountforthedifferencesinwaterregimeduringthecultivationperiod(fromLascoetal.2006,Table5.12)(unitless)

SFp=scalingfactortoaccountforthedifferencesinwaterregimeinthepre‐seasonbeforethecultivationperiod(fromLascoetal.2006,Equation5.3andTable5.14)(unitless)

SFo=scalingfactorshouldvaryforbothtypeandamountoforganicamendmentapplied(Equation3‐20)(unitless)

SFs,r=scalingfactorforsoiltype,ricecultivar,etc.,ifavailable

Equation3‐20:OrganicAmendmentsScalingFactor

SFo=(1+(ROAixCFOAi))0.59

Where:

SFo =scalingfactorforbothtypeandamountoforganicamendment

ROAi=rateofapplicationoforganicamendment(s)(metrictonsha‐1)

CFOAi =conversionfactorfororganicamendments(fromLascoetal.2006,Table5.14)(unitless)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-80

Table3‐15:RiceOrganicAmendmentEmissionScalingFactors;adaptedfromLascoetal.(2006)

OrganicAmendments CFOAStrawincorporatedshortly(<30days)beforecultivation 1Strawincorporatedlong(>30days)beforecultivation 0.29Compost 0.05Farmyardmanure 0.14Greenmanure 0.50Source:Lascoetal.(2006),Table5.14.

SoilN2O:TheIPCCmethodology(deKleinetal.,2006)hasbeenadaptedtoestimatedirectN2Oemissionsfromricefields.Theemissionfactorforricesoilsaccountsfornitrogenadditionsfrommineralfertilizers,organicamendments,andcropresidues.Notethataneffectofnitrogenmineralizedfrommineralsoilasaresultoflossofsoilcarbonisnotincludedinthisequation.Floodedricecultivationleadstominimallossesofsoilcarbonduetoperiodicflooding,whichisthedefaultassumptionwiththeIPCCmethod(Lascoetal.,2006),andthereforeitisnotnecessarytoincludetheeffectofenhancednitrogenmineralizationfromlossofsoilC.

ThefollowingequationisusedtoestimatethesoilN2Oemissionsfromaparcelofland:

TheemissionfactorandSFDfactorsarebasedonresearchconductedbyAkiyamaetal.(2005).TheIPCC(2006)doesnotaccountfordifferencesinwatermanagement,andusesanemissionfactorof0.3,butAkiyamaetal.(2005)providefurtherdisaggregationoftheemissionfactorsbasedonwatermanagement.Therefore,theselectedemissionfactorvalueis0.0022basedonAkiyamaetal.(2005),andthescalingfactorsare0forcontinuouslyfloodedriceand0.59foraeratedsystems(i.e.,drainageeventsduringthegrowingseason).

IndirectN2OEmissions:ForindirectN2Oemissionsfromfloodedrice,thesamemethodisusedasdescribedinSection3.5.4.2,byapplyingEquation3‐13,TotalIndirectSoilN2OEmissionsfromMineralSoils;Equation3‐14,IndirectSoilN2OEmissionsfromMineralSoils—Volatilization;andEquation3‐15,IndirectSoilN2OEmissionsfromMineralSoils—LeachingandRunoff.Inthelatter

Equation3‐21:DirectSoilN2OEmissionsfromfloodedRice

N2ORice=Nt×EF×(1+SFD)×N2OMW×N2OGWP

Where:

N2ORice=DirectemissionsofN2Ofromsoilsinfloodedriceproductionsystems(metrictonsCO2‐eqyear‐1)

Nt =Totalnitrogeninputsfromallagronomicsources:mineralfertilizer,organicamendments,residues,andadditionalmineralizationfromland‐usechangeortillagechange(metrictonsNyear‐1)

EF =EmissionfactororproportionofNttransformedtoN2O(kgN2O‐N(kgN)‐1)

SFD =Scalingfactortoaccountfordrainageeffects;0forcontinuouslyflooded(dimensionless)

N2OMW=RatioofmolecularweightsofN2OtoN2O‐N=44/28(metrictonsN2O(metrictonsN2O‐N)‐1)

N2OGWP=GlobalwarmingpotentialforN2O(metrictonsCO2‐eq(metrictonsN2O)‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-81

twoequations,usetheIPCCdefaultfractionsforFRSN,FRON,andFRleach,whichareprovidedintheequationboxes.

3.5.6.3 ActivityData

Theactivityandrelateddatarequirementsforthismethodinclude:

Harvestedarea(ha); Cultivationperiodindays; Watermanagementpracticesthroughouttheyear(e.g.,aerationornot); Organicmatteramendment(includingresidue)rate; OrganicfertilizerN; Fertilizernitrogenmanagement(rate); Typeoffertilizer(s)applied(qualitative); CropresidueN;and Cropyield,metrictonsdrymattercropyieldyear‐1.

3.5.6.4 AncillaryData

Noancillarydataareneededforthismethod.

3.5.6.5 ModelOutput

ModeloutputisthecombinedemissionsofCH4andN2OinCO2equivalents,expressedonanareabasis.TheintensityofCH4emissionsandnitrousoxide(i.e.,emissionsperunitoflandareacultivated)isrelatedtothequantityofcropsgrownandcanbeestimatedwiththefollowingequation:

3.5.6.6 LimitationsandUncertainty

Thismethodhasseverallimitationsthatwillpotentiallycreatebiasorimprecisionintheresults.Currently,scalingfactorsaccountonlyforwaterandorganicmattermanagementanddonotaccountforothermitigationoptions.Asindicatedearlierthereareothermanagementopportunitiesthatmayreduceemissions,butfurtherresearchisrequiredintheseareas.Baselineemissionsarehighlyvariable,butthismethodologyprovidesonlyonefactorvaluerepresentingthebaselineemissions.Inaddition,themethodologyassumesaperiodofdrainage;however,drainevents(eventhoseofsimilarduration)canvarymarkedlybasedonsoilandclimaticconditions,fromdryandcrackingonthesurfacetosaturatedattheendofadrainageevent.Theinfluenceofdrainageonthesoilsaturationisnotaddressedwiththecurrentmethod.Inaddition,thereiscurrentlyinsufficientinformationtodevelopamethodfortheuseofsulfurproductsasamendments;futureguidancemaybeupdatedwithamethodforthispractice.

Equation3‐22:FloodedRiceCombinedMethaneandNitrousOxideEmissionsIntensity

EI=(CH4Rice+N2ORice)/Y

Where:

EI =Emissionsintensity(metrictonsCO2‐eqpermetrictonsdrymattercropyield)

CH4Rice=Annualmethaneemissionsfromricecultivation(metrictonsCO2‐eqyear‐1)

N2ORice=DirectemissionsofN2Ofromsoilsinfloodedriceproductionsystems(metrictonsCO2‐eq‐year‐1)

Y =Totalyieldofcrop(metrictonsdrymattercropyieldyear‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-82

CH4emissionsaretheresultofanumberofinteractingbiologicalprocesses,whichbynaturevaryspatiallyandtemporally.Thegreatestamountofuncertaintyisthebaselineemissionfactor.Whenusingthismethodology,theemissionfactorisanaverageemissionfactorforcontinuouslyfloodedricesystemsthathavenotbeenfloodedthe180dayspriortocultivationandhavenotreceivedorganicamendments.InthecaseofCH4emissionsfromricecultivation,theuncertaintyrangesofTier1values(emissionandscalingfactors)areadopteddirectlyfromLascoetal.(2006).Rangesaredefinedasthestandarddeviationaboutthemean,indicatingtheuncertaintyassociatedwithagivendefaultvalueforthissourcecategory.

UncertaintiesinmodelparametersarecombinedusingaMonteCarlosimulationapproach.Uncertaintyisassumedtobeminorforthemanagementactivitydataprovidedbytheentity.Table3‐16providestheprobabilitydistributionfunctionsassociatedwithestimatinguncertaintyinmethaneandN2Oemissionsfromricecultivation.

Table3‐16:AvailableUncertaintyDataforMethane,DirectandIndirectN2OEmissions

MethanefromFloodedRiceCultivation

ParameterAbbreviation/

SymbolEstimatedValue

EffectiveLowerLimit

EffectiveUpperLimit

DistributionDataSource

Baselineemissionfactorforcontinuouslyfloodedfieldswithoutorganicamendments

EFc 1.3 0.8 2.2 UniformIPCC(2006)

Waterregimeduringthecultivationperiod–Scalingfactor

SFwforcontinuouslyflooded

1 0.79 1.26 UniformIPCC(2006)

Waterregimeduringthecultivationperiod–Scalingfactor

SFwforsingleaeration

0.6 0.46 0.8 UniformIPCC(2006)

Waterregimeduringthecultivationperiod–Scalingfactor

SFwformultipleaerations

0.52 0.41 0.66 UniformIPCC(2006)

Waterregimebeforethecultivationperiod–Scalingfactor

SFpfornon‐floodedpre‐season<180

days1 0.88 1.14 Uniform IPCC

(2006)

Waterregimebeforethecultivationperiod–Scalingfactor

SFpfornon‐floodedpre‐season>180

days0.68 0.58 0.8 Uniform IPCC

(2006)

Waterregimebeforethecultivationperiod–Scalingfactor

SFpforfloodedpre‐season>30days

1.9 1.65 2.18 Uniform IPCC(2006)

Organicamendmentconversionfactor

CFOAiforstrawincorporationlessthan30daysbefore

cultivation

1 0.97 1.04 Uniform IPCC(2006)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-83

MethanefromFloodedRiceCultivation (continued)

ParameterAbbreviation/

SymbolEstimatedValue

EffectiveLowerLimit

EffectiveUpperLimit Distribution

DataSource

Organicamendmentconversionfactor

CFOAiforstraw

incorporationmorethan30daysbeforecultivation

0.29 0.2 0.4 Uniform IPCC(2006)

Organicamendmentconversionfactor

CFOAiforcompost

0.05 0.01 0.08 UniformIPCC(2006)

Organicamendmentconversionfactor

CFOAiforfarmyardmanure 0.14 0.07 0.2 Uniform

IPCC(2006)

Organicamendmentconversionfactor

CFOAiforgreenmanure

0.5 0.3 0.6 Uniform IPCC(2006)

N2OfromFloodedRice

ParameterAbbreviation/

SymbolMean

RelativeUncertaintyLow(%)

RelativeUncertaintyHigh(%)

DistributionDataSource

EmissionfactororproportionofNttransformedtoN2O

EF 0.0022 0.24% 0.24% Normal Akiyamaetal.(2005)

Scalingfactortoaccountfordrainageeffects

SFDforaeratedsystems 0.59 0.35% 0.35% Normal

Akiyamaetal.(2005)

3.5.7 CO2fromLiming

3.5.7.1 RationaleforSelectedMethod

AdditionoflimetosoilsistypicallythoughttogenerateCO2emissionstotheatmosphere(deKleinetal.,2006).However,prevailingconditionsinU.S.agriculturallandsleadtoCO2uptakebecausethemajorityoflimeisdissolvedinthepresenceofcarbonicacid(H2CO3).Therefore,theadditionoflimeleadstoacarbonsinkinthemajorityofU.S.croplandandgrazinglandsystems.Whetherlimingcontributestoasinkorsourcedependsonthepathwaysofdissolutionandratesofbicarbonateleaching.Theemissionsfactorprovidedinthisguidancehasbeenestimatedfroma

MethodforEstimatingCO2 EmissionsfromLiming

ThismethodusestheIPCCequation(deKleinetal.,2006)withU.S.specificemissionsfactors.

EntityspecificannualparceldataasinputintotheIPCCequation(e.g.,theamountoflime,crushedlimestone,ordolomiteappliedtosoils).

ThismethodwasselectedasitwastheonlyreadilyavailablemodelforestimatingCO2

emissionsfromliming.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-84

reviewofexistingmodelsandmassbalanceanalysesconductedfortheapplicationoflimeintheUnitedStatesandisaTier2methodasdefinedbytheIPCC.

Sincecrushedlimestone(CaCO3)contains12percentC,anapplicationof1,000kgCaCO3places120kgConthesoilsurface.Itisassumedthattwo‐thirdsofthis(80kg)isacidifiedtoHCO3‐andleachedtotheoceanwhereitwillbesequesteredfordecadestocenturies(OhandRaymond,2006).Becausethistransferrepresentsamovementfromonelong‐termpool(geologicformations)toanother(ocean),thiscarbontransferdoesnotrepresentanetuptakeofCO2fromtheatmosphere.However,withthistransfer,thereis80kgCofatmosphericCO2uptakeintosoils.TheuptakeofCO2fromtheatmosphere,aftersubtractingtheone‐thirdofcarboninthelimethatisacidifieddirectlytoCO2(40kgC),yieldsatotalnetCO2uptakeof40kgCper1,000kgCaCO3applied.Thisresultsinacarboncoefficientoremissionfactorof40/1000=‐0.04kgCperkgCaCO3.Thisequatestoacarbonsink(40kgCsequestered/120kgC×100).DolomitecontainsonlyslightlymorecarbonthandoesCaCO3(13percentvs.12percent)sothefactorsareessentiallythesame.

Theemissionfactoriscountry‐specificbasedonarevisionoftheestimatesproposedinWestandMcBride(2005),whicharecurrentlyusedintheU.S.NationalGHGInventory(U.S.EPA,2011).TheunderlyingdifferencewiththeearlieremissionfactorfromWestandMcBride(2005)isthattherevisedvalueassumesthattheamountofbicarbonatecarriedintorivershasalongturnovertimeandisessentiallynotreturnedtotheatmosphereoverdecadaltocenturytimescales.

3.5.7.2 DescriptionofMethod

ThemodeltoestimateCO2emissionsfromliminghasbeenadaptedfrommethodsdevelopedbytheIPCC(deKleinetal.,2006),withrefinementintheemissionfactorsbasedonconditionsinU.S.agriculturallands.Thefollowingequationisusedtoestimateemissionsfromcarbonatelimeadditionstoalandparcel:

3.5.7.3 ActivityData

Themethodrequiresdataontheamountoflime(crushedlimestoneordolomite)appliedtosoils.

3.5.7.4 AncillaryData

Noancillarydataareneededinordertoapplythemethod.

Equation3‐23:ChangeinSoilCarbon StocksfromLimeApplication

ΔCLime=M×EF×CO2MW

Where:

ΔCLime =Annualchangeinsoilcarbonstocksfromlimeapplication(metrictonsCO2‐eq)

M =Annualapplicationoflimeascrushedlimestoneordolomite

(metrictonsofcrushedlimestoneordolomiteyear‐1)

EF =MetrictonCO2emissionspermetrictonoflime‐0.04

(metrictoncarbon(metrictonlime)‐1)

CO2MW =RatioofmolecularweightofCO2tocarbon(44/12)(metrictonsCO2(metrictonsC)‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-85

3.5.7.5 ModelOutput

Modeloutputisgeneratedonbothanabsolutequantityofemissionsandemissionsintensity.Thelatterisbasedontheamountofemissionsperunitofyieldforcropsincroplandsystemsorgrazingsystems.Theemissionsintensityisestimatedwiththefollowingequation:

Yieldsarebasedonthetotalamountofproductfromthelandmanagedwithlimeapplication.

3.5.7.6 LimitationsandUncertainty

LimitationsincludevariationinsoilcarbonemissionsduetosoilpHandrateofnitrogenfertilizerapplication,whichinfluencethechemicalpathwayoflimedissolution(Hamiltonetal.,2007;WestandMcBride,2005).Morespecifically,theEFwillnotaccuratelycapturetheresultoflimedissolutioninthepresenceofstrongernitricacid(HNO3),whichisproducedwhennitrifyingbacteriaconvertammonium(NH4+)basedfertilizerandothersourcesofNH4+tonitrate(NO3‐).

Uncertaintiesinthelimeemissionsmethodsincludeimprecisionatthefarmscale,becausethemethodofestimationisbasedonstream‐gaugedatathatarecollectedatthewatershedscale.UncertaintiesinmodelparametersarecombinedusingaMonteCarlosimulationapproach.Uncertaintyisassumedtobeminorforthemanagementactivitydataprovidedbytheentity.Table3‐17providestheprobabilitydistributionfunctionsassociatedwithCO2emissionspermetrictonoflimeapplied.

Table3‐17:AvailableUncertaintyDataforCO2fromLiming

Parameter MeanRelative

UncertaintyLow(%)

RelativeUncertaintyHigh(%)

Distribution DataSource

Emissionsfactor(metrictonCO2emissionspermetrictonoflime)

‐0.04 46% 46% NormalAdaptedfromWestand

McBride(2005)

Equation3‐24:EmissionsIntensityfromLimeApplication

EI=ΔCLime/Y

Where:

EI =Emissionsintensity(metrictonsCO2permetrictondrymattercropyield)

ΔCLime =Annualchangeinsoilcarbonstocksfromlimeapplication(metrictonsCO2)

Y =Totalyieldofcrop(metrictonsdrymattercropyieldyear‐1),meat(kgcarcassyieldyear‐1),ormilkproduction(kgfluidmilkyieldyear‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-86

3.5.8 Non‐CO2EmissionsfromBiomassBurning

3.5.8.1 RationaleforSelectedMethod

Non‐CO2GHGemissionsfrombiomassburningincludeCH4andN2O.COandNOxarealsoemittedandareprecursorsthatarelaterconvertedintoGHGsfollowingadditionalreactions(i.e.,releaseofthesegasesleadstoGHGformation).CO2isalsoemittedbutnotaddressedforcropresiduesorgrasslandburningbecausethecarbonisreabsorbedfromtheatmosphereinnewgrowthofcropsorgrasseswithinanannualcycle.

Therehasbeenlimiteddevelopmentandtestingofprocess‐basedapproachesforestimatingnon‐CO2GHGemissionfrombiomassburning.Moreover,country‐specificdataarelimitedontheamountofnon‐CO2GHGemissions.Therefore,thisguidancehasadoptedtheIPCCTier1methodasdescribedbyAaldeetal.(2006).

3.5.8.2 DescriptionofMethod

Themodeltoestimatenon‐CO2GHGemissionsandprecursorshasbeenadaptedfrommethodsdevelopedbyIPCC(Aaldeetal.,2006).Thefollowingequationisusedtoestimateemissionsduetoburningbiomassonaparcelofland:

Combustionefficiency,asdefinedinIPCC(2006)combinestheproportionofbiomassthatisactuallyburnedinafirewiththeamountofcarbonreleasedasaproportionofthetotalcarbonintheburnedbiomass.Themassofthefuelcombustedincludesliveanddeadbiomass(i.e.,dead

MethodforEstimatingNon‐CO2 EmissionsfromBiomassBurning

ThemethodusestheIPCCequationandemissionfactorsdevelopedbyAaldeetal.(2006).

Entityspecificannualparceldata(e.g.,areaburnedforcroplandsandgrazingland;croptypeandharvestyielddata;residue‐yieldratios(Westetal.,2010);typeofforage,grazingarea,andamountofbiomassbeforethefireingrazinglandsthatareburned;andcombustionefficiency)areinputstotheIPCCequation.

Thismethodwasselectedasitwastheonlyreadilyavailablemodelforestimatingnon‐CO2emissionsfrombiomassburning.

Equation3‐25:GHGEmissionsfromBiomassBurning

GHGBiomassBurning=A×M×C×EF×10‐3×GHGGWP

Where:

GHGBiomassBurning=AnnualemissionsofGHGorprecursorduetobiomassburning(metrictonsofCO2‐eqyear‐1)

A =Areaburned(ha)

M =Massoffuelavailableforcombustion(metrictonsdrymatterha‐1year‐1)

C =Combustionefficiency,dimensionless

EF =Emissionfactor(gGHG(kgofburnedbiomass)‐1)

GHGGWP =GlobalwarmingpotentialforeachGHG(metrictonsCO2‐eq(metrictonsGHG)‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-87

biomassincludesplantresiduesingrazingandcroplandsystems)andisapproximatedforalandparcelwiththefollowingequation:

PeakabovegroundbiomassisestimatedwithEquation3‐3forcropsandgrassvegetation.Forcroplandsthatareburnedfollowingharvest,theresiduemassisestimatedbysubtractingtheharvestindex(HI)fromoneandconvertingtoapercentage,whichistheresidualbiomassleftinthefield.DefaultharvestindicesaregiveninTable3‐5.TheestimatedmassoffuelforgrazingsystemsbasedonEquation3‐3doesnotincludethedeadbiomass.Ifthereissignificantresiduallitteringrazingsystems,thenmultiplythemassoffuelbytwoasaconservativeestimateofthetotalliveanddeadbiomassonthelandparcel.Alternatively,entitiesmayenteranestimatefortheproportionofresiduallittermassrelativetothelivebiomass,insteadofusingtwo,whichdoublesthemassoffuel.AsummaryofemissionfactorsbylandusecategoryisprovidedinTable3‐18.

3.5.8.1 ActivityData

Thefollowingactivityandrelateddataareneededtoapplythemethod:

Areaburnedforcroplandsandgrazingland; Croptypeandharvestyielddataforcropsgrown

infieldswithresidueburningmanagement; Residue:yieldratios(optional); Typeofforage,grazingarea,andamountof

biomassbeforethefireingrazinglandsthatareburned;and

Combustionefficiency(optional).

Alistofdefaultcombustionefficienciesisprovidedforresiduesandforages(Table3‐19andTable3‐20),buttheentitycanprovidevaluespecifictotheiroperation.Defaultdrymattercontentsandresidue‐yieldratiosareprovidedinTable3‐5,butcanalsobeenteredbytheentityiftheinformationisavailable.

Table3‐18:EmissionFactorsforBiomassBurning

Land‐UseCategoryCO CH4 N2O NOx

(gkg‐1)

Grasslandburning 65 2.3 0.21 3.9

Croplandresidue 92 2.7 0.07 2.5

Forestbiomass(withconversiontocroplandorgrazinglands)

107 4.7 0.26 3.0

Source:Aaldeetal.(2006).

Table3‐19:DefaultCombustionEfficienciesforSelectedCrops

Crop CombustionEfficiency(C)

Corn 0.88x0.93=0.82Cotton 0.88x0.93=0.82Lentils 0.88x0.93=0.82Rice 0.88x0.93=0.82Soybeans 0.88x0.93=0.82Sugarcane 0.68x0.81=0.55Wheat 0.88x0.93=0.82Source:EPA(2013),Table6‐25.

Equation3‐26:MassofFuel

M=(Hpeak/C)×(D/100)

Where:

M =Massoffuelavailableforcombustion(metrictonsdrymatterha‐1year‐1)

Hpeak =Annualpeakabovegroundherbaceousbiomasscarbonstock(metrictonsCha‐1year‐1)

C =Carbonfractionofabovegroundbiomass(dimensionless)

D =Percentageofbiomasspresentatthestageofburningrelativetopeak(%)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-88

Insomeyears,theentitymaynotharvestthecropduetodrought,pestoutbreaks,orotherreasonsforcropfailure.Inthosecases,theentityshouldprovidetheaverageyieldthatithasharvestedinthepast,andanapproximatepercentageofaveragecropgrowththatoccurredpriortoburning.Theyieldisestimatedbasedonmultiplyingtheaveragecropyieldbythepercentageofcropgrowthobtainedpriortoburning.

3.5.8.2 AncillaryData

Noancillarydataareneededinordertoapplythemethod.

3.5.8.3 ModelOutput

Modeloutputisgeneratedonbothanabsolutequantityofemissionsandemissionsintensity.Thelatterisbasedontheamountofemissionsperunitofyieldforcropsincroplandsystemsoranimalproductsingrazingsystems.Theemissionsintensityisestimatedwiththefollowingequation:

Yieldsarebasedonthetotalamountofproductfromthelandmanagedwithburning.

Table3‐20:DefaultCombustionEfficienciesforSelectVegetationTypes

VegetationTypeCombustionEfficiency(C)

BorealForest(all) 0.34Wildfire 0.40

Crownfire 0.43Surfacefire 0.15

Postloggingslashburn 0.33Landclearingfire 0.59

TemperateForest(all) 0.45Postloggingslashburn 0.62

Felledandburned(land‐clearingfire) 0.51Shrublands(all) 0.72

Shrubland(general) 0.95Calluna health 0.71

Fynbos 0.61Savannawoodlands(earlydryseasonburns)(all)

0.40

Savannawoodland(early) 0.22Savannaparkland(early) 0.73

Savannawoodlands(mid/latedryseasonburns)(all)

0.74

Savannawoodland(mid/late) 0.72Savannaparkland(mid/late) 0.82

Tropicalsavanna 0.73Othersavannawoodlands 0.68

Savannagrasslands(earlydryseasonburns)(all)

0.74

Tropical/sub‐tropicalgrassland 0.74SavannaGrasslands/Pastures(mid/latedryseasonburns)(all) 0.77

Tropical/sub‐tropicalgrassland 0.92Tropicalpasture 0.35

Savanna 0.86Source:Aaldeetal.(2006),Table2.4(C×M)andTable2.6(C)

Equation3‐27:BiomassBurningEmissionsIntensity

EI=GHGBiomassBurning/Y

Where:

EI =Emissionsintensity(metrictonsCO2permetrictondrymattercropyield,metrictonsCO2perkgcarcassyield,metrictonsCO2perkgfluidmilkyield)

GHGBiomassBurning=AnnualCO2equivalentemissionsfromburning(metrictonsCO2‐eqyear‐1)

Y =Totalyieldofcrop(metrictonsdrymattercropyieldyear‐1),meat(kgcarcassyieldyear‐1),ormilkproduction(kgfluidmilkyieldyear‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-89

3.5.8.4 LimitationsandUncertainty

Uncertaintyintheemissionestimatesisattributedtoimprecisionincarbonfractions,drymattercontents,harvestindices,combustionefficiencies,andtheemissionfactors.UncertaintiesinmodelparametersarecombinedusingaMonteCarlosimulationapproach.Uncertaintyisassumedtobeminorforthecropyields,peakforage,andrelativeamountofcroporforagegrowthcomparedtothepeakproduction.However,thesevaluesarelikelytohavesomelevelofuncertainty,andmethodswillneedtoberefinedinthefuturetobetteraddresstheseuncertainties,particularlythemassoffuelingrazinglands.Table3‐21providestheprobabilitydistributionfunctionsforestimatinguncertaintyinnon‐CO2emissionsfrombiomassburning.

Table3‐21:AvailableUncertaintyDataforNon‐CO2EmissionsfromBiomassBurning

Parameter MeanRelative

UncertaintyLow(%)

RelativeUncertaintyHigh(%)

Distribution DataSource

CH4EFforgrassland(gCH4kg‐1)

2.3 8% 8% Normal IPCC(2006)

CH4EFforcropresidue(gCH4kg‐1)

2.7 50% 50% Normal IPCC(2006)

N2OEFforgrassland(gN20kg‐1)

0.21 93% 93% Normal IPCC(2006)

N2OEFforcropresidue(gN20kg‐1)

0.07 50% 50% Normal IPCC(2006)

Combustionefficiencyforshrublands

0.72 68% 68% Normal IPCC(2006)

Combustionefficiencyforgrasslandswithearlyseasonburns

0.74 50% 50% Normal IPCC(2006)

Combustionefficiencyforgrasslandswithmidtolateseasonburns

0.77 66% 66% Normal IPCC(2006)

Combustionefficiencyforsmallgrains

0.9 50% 50% NormalExpert

Assessmentbyauthors

Combustionefficiencyforlargegrainandothercropresidues

0.8 50% 50% NormalExpert

Assessmentbyauthors

CombustionefficiencyBorealforest(all) 0.34 102% 102% Normal IPCC(2006)

Wildfire 0.40 340% 340% Normal IPCC(2006)Crownfire 0.43 104% 104% Normal IPCC(2006)Surfacefire 0.15 96% 96% Normal IPCC(2006)

Postloggingslashburn 0.33 130% 130% Normal IPCC(2006)CombustionefficiencyTemperateforest(all) 0.45 51% 51% Normal IPCC(2006)

Postloggingslashburn 0.62 264% 264% Normal IPCC(2006)CombustionefficiencyShrublands(all)

0.72 147% 147% Normal IPCC(2006)

Callunahealth 0.71 121% 121% Normal IPCC(2006)Fynbos 0.61 195% 195% Normal IPCC(2006)

CombustionefficiencySavannawoodlands(earlydryseasonburns)(all)

0.40 93% 93% Normal IPCC(2006)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-90

Parameter MeanRelative

UncertaintyLow(%)

RelativeUncertaintyHigh(%)

Distribution DataSource

CombustionefficiencySavannawoodlands(mid/latedryseasonburns)(all)

0.74 99% 99% Normal IPCC(2006)

Savannawoodland(mid/late)

0.72 270% 270% Normal IPCC(2006)

Tropicalsavanna 0.73 598% 598% Normal IPCC(2006)Othersavannawoodlands 0.68 931% 931% Normal IPCC(2006)CombustionefficiencySavannagrasslands(earlydryseasonburns)(all)

0.74 183% 183% Normal IPCC(2006)

Tropical/sub‐tropicalgrassland

0.74270% 270% Normal IPCC(2006)

Tropical/sub‐tropicalgrassland

0.92151% 151% Normal IPCC(2006)

Tropicalpasture 0.35 427% 427% Normal IPCC(2006)Savanna 0.86 85% 85% Normal IPCC(2006)

3.5.9 CO2fromUreaFertilizerApplications

3.5.9.1 RationaleforSelectedMethod

UreafertilizerapplicationtosoilscontributesCO2emissionstotheatmosphere.ThesourceoftheCO2thatisincorporatedintotheureaduringthefertilizerproductionprocessisfromfossilfuelsourcesintheU.S.fertilizerplants.TheCO2capturedduringtheproductionprocessisconsideredanemissionsremovalinthemanufacturer’sreportingsoitsreleasefollowingureafertilizationonsoilsisincludedinthefarm‐scaleentityreporting.IfmanufacturersdonotestimateCO2captureduringureaproductionandincludetherecapturedCO2asanemission,thereisnoneedforafarm‐scaleentitytoreportrelease.

TheTier1methodhasbeenadoptedfromtheIPCC(deKleinetal.,2006).Noothermethodshavebeendevelopedortestedsufficientlyforanoperationalsystem.

3.5.9.2 DescriptionofMethod

ThemodeltoestimateCO2emissionsfromureaapplicationhasbeenadoptedfromthemethodologydevelopedbytheIPCCandusestheIPCCdefaultemissionfactor(deKleinetal.,2006).ThefollowingequationisusedtoestimatetheCO2emissionfromalandparcelwhereurea‐basedfertilizershavebeenapplied:

MethodforEstimatingCO2 EmissionsfromUreaFertilizerApplication

ThismethodusesIPCCequationandemissionfactorsdevelopedbydeKleinetal.(2006). ThismethodusesentityspecificannualparceldataasinputintotheIPCCequation(e.g.,

theamountofureafertilizerappliedtosoils). ThismethodassumesthatthesourceofCO2usedtomanufactureureaisfossilfuelCO2

capturedduringNH3manufacture.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-91

3.5.9.3 ActivityData

Thismethodrequiresdataontheamountofureafertilizerappliedtosoils.

3.5.9.4 AncillaryData

Noancillarydataareneededinordertoapplythemethod.

3.5.9.5 ModelOutput

Modeloutputisgeneratedonbothanabsolutequantityofemissionsandemissionsintensity.Thelatterisbasedontheamountofemissionsperunitofyieldforcropsincroplandsystemsoranimalproductsingrazingsystems.Theemissionsintensityisestimatedwiththefollowingequation:

Yieldsarebasedonthetotalamountofproductfromthelandmanagedwithureaapplication.

3.5.9.6 LimitationsandUncertainty

Urea(CO(NH2)2)isconvertedintoammoniumandCO2inthepresenceofwaterandtheenzymeurease.TheCO2willdissolveinwatertoformcarbonate,bicarbonate,andcarbonicacidasafunctionofsoilpHandtemperature.Someofthebicarbonatemaybetransferredtogroundwater,waterways,andeventuallytheocean,andthereforereducetheCO2emissionstotheatmosphere(deKleinetal.,2006;Hamiltonetal.,2007)).However,thereisinsufficientinformationavailabletoincludethispossibilityintheureamethod,soitisassumedthatanyincreaseinbicarbonatewillleadtoproductionofCO2.

Equation3‐28:CO2 EmissionsfromUreaFertilization

CUrea=M×EF×CO2MW

Where:

CUrea =Annualreleaseofcarbonfromureaaddedtosoil(metrictonsCO2‐eqyear‐1)

M =Annualamountofureafertilization(metrictonsureayear‐1)

EF =Emissionfactororproportionofcarboninurea,0.20 (metrictonC(metrictonurea)‐1)

CO2MW=RatioofmolecularweightofCO2tocarbon(44/12) (metrictonsCO2(metrictonsC)‐1)

Equation3‐29:EmissionsIntensityfromUreaFertilization

EIUrea=CUrea/Y

Where:

EIUrea=Emissionsintensity(metrictonsCO2permetrictondrymattercropyield,metrictonsCO2perkgcarcassyield,metrictonsCO2perkgfluidmilkyield)

CUrea =Annualchangeinsoilcarbonstocksduetoureaapplication(metrictonsCO2year‐1)

Y =Totalyieldofcrop(metrictonsdrymattercropyieldyear‐1),meat(kgcarcassyieldyear‐1),ormilkproduction(kgfluidmilkyieldyear‐1)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-92

Uncertaintyisassumedtobeminorforthemanagementactivitydataprovidedbytheentity,althoughthismaynotbethecaseifthereislimitedknowledgeaboutlandusehistoryforindividualparcels.Uncertaintymayalsoexistintheemissionfactor,assumingthatsomeofthebicarbonateisnotconvertedtoCO2.However,themethodassumesallCO2isemittedbecauseuncertaintyestimatesarenotavailableforthisemissionfactor.Therefore,nouncertaintyisestimatedforthissourceofGHGemissionsbasedonthisconservativeassumptionthatallCO2isemitted.

3.6 SummaryofResearchGapsforCropandGrazingLandManagement

ThissectiondiscussesresearchgapsassociatedwithcroplandandgrazinglandmanagementimpactsonsoilcarbonstockchangesandGHGemissions.Thelistisnotnecessarilyexhaustive,buthighlightssomekeygapsthatwillneedfurtherresearchbeforethereissufficientevidenceforadditionalcriteriatobeincludedinthemethodology.Ingeneral,themajorityofpriorexperimentaleffortshavefocusedoncomponentsofGHGs,butfewstudieshavebeenconductedontotalGHGbudgetstoincludeCO2,N2O,andCH4incombination,whichisneededtoquantifyinteractingeffectsonthenetemissionsofthesegases(Liebigetal.,2010).Inaddition,limitedresearchhasbeenconductedtoaddresstheinfluenceofcatastrophicweathereventsonGHGemissions,suchasmajorfloods,tornadoes,andhurricanes.

CarbonStocks:10Thefollowingprocessesandpracticesrequirefurtherstudytoimprovethefundamentalunderstandingorfilldatagapsinthecarboninventorymethods.Inparticular,deficienciesinunderstandingcontinuetounderminethedevelopmentofrobustestimatesofnetGHGemissionsinrangelandsandpastures.Suchdeficienciesstemfromalackofmeasurementsacrossthemajorgrasslandecoregions,aswellaslimitationsassociatedwithbasicunderstandingofmechanisticprocessesrelatedtoGHGfluxes.Therearealsomajorgapswithrespecttoagroforestry,woodyplantencroachment,andperennialwoodycropsystems.

Moredataonallometricrelationshipsforagroforestry,woodyplantencroachment,andperennialwoodycropsystems,suchasorchards.

Improvedabilitytoquantifytheinfluenceofagroforestry,woodyplantencroachment,andperennialwoodycropsonsoilorganiccarbonstocks,includingoptimaldensityoftrees,thetypeoftrees,andthelandscapepositionofsilvopasturesystems.

Improvedmechanisticunderstandingandabilitytoquantifythefateofcarbonwithtransportandsedimentationfollowingerosionevents.

Fieldestimatesoftheamountofcarbonaddedtosoilsthroughdynamicreplacementonerodiblelands.

Improvedmechanisticunderstandingofcarbondynamicsinthesubsoilhorizons. Furtherstudyontheeffectofirrigationonplantproductionanddecompositiontoquantify

theneteffectonsoilorganiccarbonstocks. Furtherresearchonthevariationintypesandresidencetimesofbiocharamendments,in

additiontobiocharimpactonotherGHGemissions,primingofsoilorganicmatterdecomposition,andtheoverallphysicalbreakdownanddisintegrationofbiocharovertime(Jafféetal.,2013).

Dataonlong‐termresponsesofsoilorganiccarbontovariationinstockingrate,grazingmethod(i.e.,continuous,rotational,short‐durationrotational,andultra‐highstockingdensity),andvegetationcomposition(i.e.,forbandgrassmixtures,cool‐andwarm‐seasongrassmixtures,grassandlegumemixtures,grassandwoodymixtures,andplantarchitecturetypes),andwhethertheseresponsesaremediatedbydifferentsoilstypes,climaticconditions,botanicalcomposition,grazingmethodused,fertilizerregime,etc.

10Exceptagroforestrycarbonstockchanges,whicharecoveredlaterinthissection.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-93

FurtherstudytoaddressmitigationofGHGsinaridrangelands,particularlyinshrublands,includinginteractionsbetweenmanagementandenvironmentalconditions(Ingrametal.,2008).Additionaldatacollectionandmodelimprovementarealsoneededinaridrangelands,asuncertaintyisextremelylargeforthesoilcarbonsequestrationestimatesassociatedwithreducedstockingratesandseedingoflegumes(Brownetal.,2010;Brown,2010).OurbasicknowledgeofcarbonsequestrationandGHGmitigationinaridandsemiaridenvironmentsislimited,andtheeffectofmanagementisrelativelyunderstudied.

Needforlife‐cycleassessmentofgrazingsystemswithparticularattentiontobalanceofsoilorganiccarbon,N2Oemissionsfromsoil,andCH4emissionsfromruminantsandsoil,dependingonstockingrate,stockingmethod,foragetypeassociatedwithqualityofintake,andenvironmentalconditionsofgrazingsystem.

DatafromadaptivemanagementapproachestoinformunderstandingofsoilorganiccarbonsequestrationandGHGemissionsunderdifferentgrazingmanagementstrategies.Thisapproachcouldhelpstrengthenconservation‐orientedprogramstoobtaingreaterimpactforreducingGHGemissionsandsequesteringsoilorganicC.

Additionalfieldexperimentsanddataonsoilcarbonemissionsresultingfromthecombinedapplicationoflimeandnitrogenfertilizers.

SoilNitrousOxideEmissions:Thefollowingpracticeshave,insomestudies,significantlyaffectedN2Oemissions,butrequireadditionalresearchinside‐by‐sidecomparisonstudiesacrossdifferentsoiltypesandclimate,especiallyforextensivelygrownrowcropsthatreceivehighlevelsofnitrogenfertilizers(cornandwheatinparticular):

EffectsofsplitordelayednitrogenapplicationsonloweringN2OfluxesandonincreasingNUEtoprovideequivalentyieldsatlowertotalnitrogeninput.

Capacityofspatiallyprecisefertilizerapplicationtechnology(variablerateapplicators)tolowerN2Ofluxes(bothdirectandindirect)andincreaseNUE.

Effectsofbandednitrogenfertilizerapplications,showninsomestudiestoincreaseNUEandinotherstoincreaseN2Oemissions.

ThegeneralizabilityofhigherN2OEFsandnitratelossatnitrogenfertilizerratesgreaterthancropneeds(i.e.,atratesgreaterthanthoserecommendedbyMaximumReturntoNitrogenapproaches).

ThegeneralizabilityofdifferentfertilizerformulationsonN2Oemissions,inparticularforureavs.anhydrousammoniavs.injectedsolutions.

Thegeneralizabilityofcoatedfertilizerssuchaspolymercoatedurea,ureaseinhibitors,biocharadditions,andnitrificationinhibitorsforloweringN2Oemissionsandnitrateloss.

MoreresearchontheresponsesofsoilN2Oemissionstovariationsinstockingrates,grazingmethods(continuous,rotational,short‐durationrotational,andultra‐highstockingdensity),andvegetationcomposition(forbandgrassmixtures,cool‐andwarm‐seasongrassmixtures,grassandlegumemixtures,grassandwoodymixtures,andplantarchitecturetypes),bothindividuallyandincombinations.

ThepotentialformobilewaterandsheltersourcesinpasturestoreduceN2Oemissionsbyallowingforamoreevendistributionofmanure.

InfluenceofcropresidueharvestingonN2Oemissions,aswellassoilorganiccarbonstocks,giventheinterestinusingcropresiduesasafeedstockforbioenergyproduction.

InfluenceofcovercropsonN2Oemissions,includingeffectsofplanttype(e.g.,legumevs.nonlegume)andresiduemanagement(e.g.,harvestedvs.incorporated).

InfluenceofmanureandcompostonN2Oemissionsinsofaraseffectsmaydifferfromsyntheticnitrogeninputswithrespecttorate,timing,placement,andformoforganicnitrogenadded(e.g.,liquidvs.drymanurevs.compostwithdifferentC:Nratios).

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-94

ImprovedquantificationofspatialandtemporalvariationofN2Oemissionsindifferentcroppingsystemsandlandscapestoprovideamoreaccurateassessmentofseasonalandannualemissionsacrosswholefields.

Improvedestimatesofindirectemissions,andinparticularthepercentageofnitrogenthatislostfromafieldthroughvolatilizationorleaching/runoff,andlaterconvertedtoN2Oindownstreamanddownwindecosystems.AdditionalstudyonpracticesthatcanreducenitratelossesaswellaspracticesthatcanreduceNH3andNOxlosses.

ResearchisalsoneededtoimprovemodelingandempiricalquantificationofsoilN2OemissionsinordertoprovideestimatesofN2Ofluxesthatintegrateacrossmultiplemanagementpracticessimultaneously:

FurtherdevelopmentandvalidationofquantitativesimulationmodelscapableofaccuratelypredictingN2Ofluxesinresponsetodifferingmanagementpractices,withparticularrespecttorate,timing,placement,andformulationofaddedfertilizers,bothsyntheticandorganic;tillagetypeandintensity;andresiduemanagement.

MoredataregardingseasonalandannualN2Oemissions,includingemissionsduringthenon‐growingseasonandinparticularwinterandfreeze‐thawperiods.

BetterknowledgeoffluxesacrossallLandResourceRegions(LRRs)concentratedespeciallyinthoseareasandcroppingandgrazedsystemsexpectedtocontributemosttolocalandregionalN2Ofluxes,withside‐by‐sidecomparisonsofdifferentmanagementpractices.

DevelopmentofstandardizedmethodologiesandcreationofnewtechnologiesforrapidassessmentofN2Ofluxesinthefield.

AnimprovedunderstandingofthesourcesofN2Oincroppedsoils(e.g.,nitrificationvs.denitrification)andconsequencesforfeedbacksamongadaptivemanagement,soilphysicalandbiologicalattributes,andSOCdynamics.

DevelopmentofasetofgeographicallystratifiedtestsitesatwhichfactorsknowntoaffectagronomicN2Oemissionscouldbetestedinthecontextofdifferentmanagementsystems.ThiswouldprovidearobustempiricaldatasetforestablishingTier2and3models.

FloodedRiceProductionEmissions:TheprimaryresearchgapisthelimitedamountofresearchconductedintheUnitedStatesonGHGfromricesystems.Therefore,mostofthecurrentconclusionsaboutmanagementinfluencesonriceCH4emissionsarebasedonAsianstudieswherericeistransplantedasopposedtodirectseeded.ThismaybeproblematicbecausewaterismanageddifferentlyinAsiantransplantedfloodedricesystemsduringtheestablishmentperiodthaninU.S.systems.Untilrecently,nostudiesevaluatedseasonalorannualN2OemissionsfromricesystemsintheUnitedStates(Adviento‐Borbeetal.,2007;Pittelkowetal.,2013).IntheUnitedStates,muchoftheresearchonGHGemissionscomesfromLouisiana,Texas,andCalifornia.Lindau’slabconductedonstationresearchinLouisianatoevaluateCH4emissions(e.g.,Lindauetal.,1995;Lindauetal.,1998).Sass’sgroupalsoevaluatedCH4emissionsonexperimentalstationsinTexas(e.g.,Huangetal.,1997;Sassetal.,1994).InCalifornia,variousresearchergroups(e.g.,Bossioetal.,1999;Fitzgeraldetal.,2000)havebeenconductingresearchbothonstationandoffstationandhaverecentlyalsoincludedN2Omeasurements(Adviento‐Borbeetal.,2007;Pittelkowetal.,2013).

ThefollowingpracticeshaveinsomestudiessignificantlyaffectedCH4orN2Oemissionsbutrequirefurtherside‐by‐sidecomparisonswithexperimentaldesignsacrossdifferentsoiltypesandclimateswithintheUnitedStates.

Watermanagementpractices(inparticularmidseasondrainsorintermittentirrigation)areoftensuggestedasviableoptionstomitigateCH4emissions.Whiledatasupportthisconclusion,thesemanagementpracticeshavenotbeenwidelytestedintheUnitedStates.In

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-95

studieswherethesoilhasbeendrainedduringtheseason,investigatorshavereporteddelayedcropmaturation(aproblemintemperateclimateswithrelativelyshortgrowingseasons),reducedyieldsandgrainquality,andincreasedweedanddiseasepressure.Therefore,althoughmidseasondrainageismentionedasamitigationoption,moreresearchisrequiredbeforeitisrecommendedforuseinU.S.ricesystems.

ReturningricestrawtosoiloftenresultsinincreasedCH4emissions,buttheremovalofstrawrequiresenergyandtime.Furthercompoundingtheproblemisthattherearerelativelyfewusesforricestraw.Theremovalofricestrawalsoremovesnutrientswhichwouldneedtobereplaced.Ofparticularconcernispotassium,asricestrawcontainsanaverageof1.4percentofpotassium.Therefore,itispossibletoremovemorethan100kg/haofpotassiumthroughremovalofricestraw,whichwillneedtobereplacedinordertomaintainasustainablecroppingsystem.

InCalifornia,farmerstypicallyincorporatericestrawandfloodtofacilitatestrawdecompositionduringthewinter.ThispracticeincreasesCH4emissionsfromricefieldsduringthewinterandthefollowinggrowingseason.However,ithasalsosignificantlyimprovedhabitatforoverwinteringwaterfowlinthePacificFlyway.Fitzgeraldetal.(2000)reportedthatuptohalfoftheannualCH4emissionsoccurredduringthewinterfallowperiodwhenstrawwasincorporatedandflooded.Recentstudiessuggestthat50percentmaybeahighestimateandthatfurtherresearchisneeded(Adviento‐Borbeetal.,2007;Pittelkowetal.,2013).

WhilemanystudieshaveshownvarietaldifferencesinhowmuchCH4isemitted,thesestudiesareallrelativelyoldandmanyofthevarietiesarenolongerwidelyused.Furtherresearchoncurrentvarietiesneedstobeconducted.

LimiteddataonnitrogenplacementsuggeststhatdeepplacementoffertilizerreducesCH4emissions,butmoreresearchisneededtoconfirmthefindings.

Side‐by‐sidecomparisonswithexperimentaldesignsareneededofwet‐anddry‐seededricetoevaluatetheirinfluenceonCH4andN2Oemissions.ThesearethetwomostcommonriceestablishmentpracticesintheUnitedStates.

SomestudiesfromChinasuggestthatmorecarbonissequesteredinricesystemsthaninupland(aerobic)systems,butthishasnotbeenevaluatedintheUnitedStates.

Agroforestry:Asufficientdatabasefordevelopingthemethodstoreadilymeasureand/ormodelthevariousGHGimpactsofagroforestryiscurrentlylacking.FullGHGmonitoringandaccountinginagroforestrywillrequireamixofmethodologiesfromamongtheGHGaccountingframeworksbecauseofthediversityinusesassociatedwithagroforestrysystems.Thefollowingresearchgapsarehighlighted.

Assessmentofapproachesforestimatingwoodybiomassinagroforestryplantings,whichincludescomparisonofexistingequationsandlookuptableswithagroforestry‐generatedvolumeandbiomassequationstodeterminebestapproachforestimatingcarboninthewoodybiomassofagroforestryplantings.

Developmentofeffectivestrategiesformeasuring/monitoringcarbonsequestrationandGHGemissionsinsoilandwoodycomponents.

EffectofdifferentspeciesmixturesandcombinationsofmanagementactivitiesonsoilcarbonsequestrationandminimizingtotalGHGemissions.

ImpactofmanagementoptionsandenvironmentinteractionsoncarbonsequestrationandtotalGHGemissionswithinagroforestrysystems.

Developmentoftoolsrelevanttotheinventory/measurement/estimationofthese“treesoutsideofforests.”Inaddition,testingthevalidityofcurrentcarbonaccountingtools(e.g.,DAYCENT,HOLOS)inprovidingaccurateestimatesofcarbonsequesteredinthewoodybiomassofagroforestryplantings.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-96

Understandingsoilcarbondynamicsinagroforestrysystems,alongwiththeimpactofsoilerosion,transportanddepositiononcarbonstocks.

Developinginventorymethodologies(suchastheuseofLightDetectionandRanging)toestablishacost‐effectivenationalagroforestryinventorycompatibleforinclusionwithcurrentinventoriescontributingtoregional/nationalGHGassessments.

Developingstandardizedexperimentalprocedures,measurement,andmonitoringprotocols,suchasthosebeingdevelopedthroughtheGreenhouseGasReductionthroughAgriculturalCarbonEnhancementnetwork(GRACEnet)11toagroforestrypracticeswiththestandardizedmeasurementandmonitoringforagriculturalN2Oemissions.

MethaneOxidationinSoils:SoilCH4oxidationisknowntodecreaseby~70percentuponconversionoflongstandingnaturalvegetationtocropandpastureland(seeSection3.5.5).CH4oxidationratesforsoilsundernaturalvegetationarenotwellknownforallclimatesandsoils,soadditionalmeasurementswouldbeuseful.AswithN2O,thefurtherdevelopmentandvalidationofquantitativesimulationmodelscapableofaccuratelypredictingCH4fluxeswouldalsobehelpfulforbettergeneralizingeffectsandforfutureinclusionoffactorsthatmaybediscoveredtorestoreoxidationincroppedsoils.ThereisalsolimitedresearchontheeffectofgrazinglandmanagementonCH4oxidationalthoughvariationinstockingrates,grazingmethods,andassociatedpracticesmayhaveaninfluenceonthisprocess.

InorganicSoilCarbon:TheeffectofmanagementonsoilinorganiccarbondynamicsandexchangeofCO2withtheatmosphereisalsoinneedoffurtherresearch.ThefollowinglistisabriefsummaryofsomeofthekeygapsidentifiedforquantificationofGHGemissions:

Wheninorganiccarbonisaddedtosoilasagriculturallimeorasabreakdownproductofurea,partoftheinorganiccarbonbecomesbicarbonate.ImprovedunderstandingofthefateofthisbicarbonateindifferentsoilsandlandscapeswouldhelptobettercharacterizethepresenceandstrengthoftheresultingbicarbonateCO2sink.

ImprovedquantificationofemissionsoruptakeofatmosphericCO2withadditionofcarbonatelimestosoilswillrequiremethodstodeterminethedominanceofweatheringduetocarbonicacid(H2CO3)vs.thestrongernitricacid(HNO3)incroplandandgrazinglandsoils.

Improvedmechanisticunderstandingandquantificationofinorganiccarbondynamicsareneededinirrigatedsystems,aswellasinnonirrigatedsystems—particularlyinaridandsemiaridregions.

11GRACEnetisaresearchprograminitiatedbyUSDAAgriculturalResearchServiceto“identifyandfurtherdevelopagriculturalpracticesthatwillenhancecarbonsequestrationinsoils,promotesustainability,andprovideasoundscientificbasisforcarboncreditsandtradingprograms”(USDAARS,2013).

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-97

Appendix3‐A:SoilN2OModelingFrameworkSpecifications

SoilN2Oemissionsareestimatedusingacombinationofprocess‐basedmodeling,empiricalscalarsbasedonexperimentaldata,andscalingfactorsforpracticesinfluencingtheN2Oemissionsasrepresentedinthebaseemissionrates(Section3.5.4.1,Equations3‐8and3‐9,andTextbox3‐1).Thisappendixprovidesmoreinformationabouttheprocess‐basedmodels,inadditiontothederivationofempiricalscalarsandthepractice‐basedscalingfactors.

DAYCENTandDNDCmodelswereusedtoestimateN2Oemissionsforthetypicalfertilizerrateanda0‐levelnitrogenfertilizationrateassociatedwithmajorcropsineachUSDALRR.CropssimulatedarelistedinTable3‐A.1;baseemissionratesforothercrops(e.g.,sugarcane,millet,rye)wereestimatedusingtheTier1emissionfactor(onepercentofnitrogeninputs).Toestimateemissionfactorsfromthemodeloutput,theN2Oemissionsatthe0‐leveladditionwassubtractedfromtheN2Oemissionforthetypicalfertilizationrate.Thedifferencewasthendividedbythesyntheticagronomicnitrogeninputtoestimatetheemissionfactoratthetypicalrateoffertilization.ScalarswereusedtoscaletheN2Oemissionsforfertilizationratesthatweregreaterthanthetypicalrate.Thescalarswerederivedfromempiricaldatabasedonthechangeinemissionfactorsacrossarangeoffertilizationrates.SeeTextbox3‐1formoreinformationabouthowtheresultingemissionfactorswereusedtoestimatebaseemissionratesforthedirectsoilN2Omethod.

Meta‐analyseswereusedtoderivepractice‐basedscalingfactorsfromexperimentaldata.ThescalingfactorswereusedtoadjustthebaseemissionratesforspecificpracticesthatinfluencesoilN2Oemissions.Thescalingfactorsincludedtheeffectofnitrificationinhibitors(Sinh),slow‐releasefertilizers(SSR),pasture/range/paddockmanure(SPRP),andtillage(Still).TheresultingscalingfactorsareusedinEquation3‐9toscalethebaseemissionratesforlandparcelsmanagedwiththesepractices.

Figure3‐A.1providesanoverviewofthedecisionsandstepsinvolvedinestimatingN2Oemissionsfrommineralsoils.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-98

Figure3‐A.1:DecisionTreeforEstimatingN2OEmissionsfromMineralSoils

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-99

3‐A.1DescriptionofProcess‐BasedModels

DAYCENT12isageneralterrestrialbiogeochemicalmodelthatsimulatescarbonandnitrogentransformationsinvolvedinprimaryproductivity,decompositionandnutrientdynamics(DelGrossoetal.,2000b;Partonetal.,2001).Themodelalsosimulatesheatandwaterfluxesverticallythroughthesoilprofile(one‐dimensional).Lateralflowofwaterisnotsimulatedexceptthatoverlandrunoffoccurswhenrainfalleventsofsufficientmagnitudeoccurgiventhepermeabilityofthesurfacesoillayer.Keysubmodelsincludeplantgrowthwithdynamiccarbonallocationamongplantcomponents,soilorganicmatterdecompositionandnutrientmineralization,andN2Oemissionsfromnitrificationanddenitrification.Plantgrowthiscontrolledbynutrientavailability,soilwaterandtemperature,andvegetationtypespecificparameterscontrollingmaximumplantgrowthrates,maximum/minimumC:Nratiosofbiomasscomponents,andphenology.Decompositionofsenescedplantmaterialandsoilorganicmatteriscontrolledbythequalityandquantityoflitterinputs,soiltexture,water,andtemperature.N2OemissionsarecontrolledbysoilNH4andNO3,watercontent,temperature,gasdiffusivity,andlabilecarbonavailability.Landmanagement/disturbanceeventssuchascultivation,waterandnutrientadditions,fire,andgrazing,canbereadilyimplementedinthemodel.ThemodelhasbeenappliedtosimulatesoilGHGfluxesatscalesrangingfromplotstoregionstotheglobe(DelGrossoetal.,2010;DelGrossoetal.,2005;DelGrossoetal.,2009).TheabilityofDAYCENTtosimulatecropyields,SOM,N2Oemissions,andNO3leachinghasbeentestedagainstavarietyoffieldexperimentsincroplandandgrasslandintheUnitedStates(DelGrossoetal.,2005;DelGrossoetal.,2008a;DelGrossoetal.,2008b).

DNDC13isaprocess‐basedbiogeochemicalmodelthatisusedtopredictplantgrowthandproduction,carbonandnitrogenbalance,andgenerationandemissionofsoil‐bornetracegasesby

12TheversionofDAYCENTcodedandparameterizedfortheU.S.NationalGHGinventory(U.S.EPA,2013)wasusedtoderiveexpectedbaseemissionrates.13DNDC9.5compiledonFeb.25,2013,wasusedtoderiveexpectedbaseemissionrates.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-100

meansofsimulatingcarbonandnitrogendynamicsinnaturalandagriculturalecosystems(Lietal.,2000;Miehleetal.,2006;Stangetal.,2000)andforestedwetlands(Zhangetal.,2002).Themodelintegratesdecomposition,nitrification‐denitrification,photosynthesisandhydrothermalbalancewiththeecosystem.Thesecomponentsaremainlydrivenbyenvironmentalfactors,includingclimate,soil,vegetation,andmanagementpractices.ThemodelhasbeentestedandusedforestimatingGHGemissionsfromforestedecosystemsinawiderangeofclimaticregions,includingboreal,temperate,subtropical,andtropical(Kesiketal.,2006;Kieseetal.,2005;Kurbatovaetal.,2008;Lietal.,2004;Stangetal.,2000;Zhangetal.,2002),andsimilarlyforgrasslandsandcultivatedwetlands(Giltrapetal.,2010;Rafiqueetal.,2011).

Modelinputs,forbothmodels,includetheweatherdata,14soilcharacteristics,andmanagementdataforthesesimulations.Atotalof1,200samplesweredrawnforcroplandsitesimulationsandanother1,200samplesforgrasslandsitesimulations.Thesamplenumberwasoriginallydeterminedfromaplantoselectthreesoiltypesfrom20countiesdominatedbyagricultureineachof20LRRs(3x20x20=1,200).Theemissionratesthatwereproducedbybothmodelswillbeavailableonlineinsupplementarymaterialfiles.Anexampleoftheratesforcorn,winterwheat,andgrassaregiveninFigure3‐A.2.

Figure3‐A.2:ExampleofMedianBaseEmissionRatesforCorn,WinterWheat,andGrassProductioninLandResourceRegionswithCoarse,Medium,andFineTexturedSoils

Table3‐A.1providesthe2.5,50,and97.5percentilebaseemissionratesforeachcrop,LRR,andsoiltexturecombination.EmissionratesarekgN2O‐Nperhawhencropsarefertilizedattypicalnitrogenrates.

14ThemodelsusedDAYMETweatherforthecentroidofgrassland/croplandineachcounty.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-101

Table3‐A.1BaseEmissionRate(kgN2O‐Nha‐1)PercentilesbyLandResourceRegion(LRR),Crop,andSoilTextureatTypicalNitrogenFertilizerRates

LRR Crop SoilGroupEmissionRate(25thPercentile)

EmissionRate(50thPercentile)

EmissionRate(97.5thPercentile)

A Grass Coarse 0.02 0.56 5.28A Grass Medium 0.41 1.20 3.86A Grass Fine 0.49 1.34 5.30A Tomato Coarse 0.04 1.08 4.83A Tomato Medium 0.28 1.69 8.31A Tomato Fine 0.49 2.09 15.73A Wheat,Spring Coarse 0.03 0.61 3.53A Wheat,Spring Medium 0.16 1.00 2.87A Wheat,Spring Fine 0.40 1.32 3.50A Wheat,Winter Coarse 0.05 0.55 4.00A Wheat,Winter Medium 0.19 0.91 2.99A Wheat,Winter Fine 0.35 1.21 2.77B Grass Coarse 0.01 0.40 5.25B Grass Medium 0.02 0.45 5.41B Grass Fine 0.05 0.74 8.20B Pea Coarse 0.00 0.36 2.43B Pea Medium 0.00 0.61 3.80B Pea Fine 0.02 0.53 3.02B Wheat,Spring Coarse 0.00 0.49 2.71B Wheat,Spring Medium 0.01 0.80 4.43B Wheat,Spring Fine 0.04 0.87 3.56B Wheat,Winter Coarse 0.00 0.40 2.05B Wheat,Winter Medium 0.01 0.54 3.58B Wheat,Winter Fine 0.04 0.75 3.72C Alfalfa Coarse 0.01 0.58 0.99C Alfalfa Medium 0.01 0.66 1.60C Alfalfa Fine 0.00 0.86 2.25C Corn Coarse 0.21 0.78 3.00C Corn Medium 0.27 0.93 8.23C Corn Fine 0.60 1.60 12.96C Grass Coarse 0.05 0.32 1.17C Grass Medium 0.08 0.36 1.37C Grass Fine 0.07 0.42 1.16C Rice Coarse 0.04 0.63 1.34C Rice Medium 0.03 0.70 2.19C Rice Fine 0.02 0.95 7.50C Safflower Coarse 0.17 0.89 2.86C Safflower Medium 0.38 1.15 7.46C Safflower Fine 0.56 2.09 12.92C Sunflower Coarse 0.07 0.58 2.13C Sunflower Medium 0.15 0.73 6.45C Sunflower Fine 0.29 1.37 9.16C Tomato Coarse 0.48 1.15 2.90C Tomato Medium 0.57 1.21 8.01C Tomato Fine 0.79 2.25 18.94C Wheat,Winter Coarse 0.05 0.86 1.81C Wheat,Winter Medium 0.06 0.96 3.30C Wheat,Winter Fine 0.15 1.47 5.08

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-102

LRR Crop SoilGroupEmissionRate(25thPercentile)

EmissionRate(50thPercentile)

EmissionRate(97.5thPercentile)

D Alfalfa Coarse 0.01 0.55 1.47D Alfalfa Medium 0.01 0.49 2.91D Alfalfa Fine 0.01 0.67 4.79D Corn Coarse 0.20 0.85 2.03D Corn Medium 0.26 0.87 3.28D Corn Fine 0.30 1.32 5.99D Cotton Coarse 0.01 1.04 2.53D Cotton Medium 0.02 0.97 3.37D Cotton Fine 0.09 1.63 5.68D Grass Coarse 0.02 0.39 3.14D Grass Medium 0.02 0.46 6.27D Grass Fine 0.05 0.55 6.91D Wheat,Winter Coarse 0.00 0.35 1.27D Wheat,Winter Medium 0.00 0.36 2.21D Wheat,Winter Fine 0.04 0.56 5.10E Grass Coarse 0.01 0.46 7.35E Grass Medium 0.02 0.63 8.00E Grass Fine 0.12 0.66 5.52E Wheat,Spring Coarse 0.02 0.59 2.46E Wheat,Spring Medium 0.05 0.70 4.67E Wheat,Spring Fine 0.07 0.87 2.92E Wheat,Winter Coarse 0.02 0.39 1.97E Wheat,Winter Medium 0.06 0.53 4.80E Wheat,Winter Fine 0.10 0.63 2.89F Corn Coarse 0.28 0.76 1.57F Corn Medium 0.36 0.92 2.92F Corn Fine 0.45 1.29 4.92F Grass Coarse 0.12 0.57 2.80F Grass Medium 0.15 0.66 2.69F Grass Fine 0.16 0.80 3.52F Soybean Coarse 0.20 0.95 3.26F Soybean Medium 0.26 1.05 3.23F Soybean Fine 0.29 1.48 4.40F Wheat,Spring Coarse 0.10 0.69 1.85F Wheat,Spring Medium 0.11 0.93 2.92F Wheat,Spring Fine 0.12 1.19 4.90F Wheat,Winter Coarse 0.14 0.85 3.17F Wheat,Winter Medium 0.19 1.03 6.43F Wheat,Winter Fine 0.18 1.41 11.05G Corn Coarse 0.11 0.69 1.88G Corn Medium 0.16 0.90 3.41G Corn Fine 0.23 1.62 6.59G Grass Coarse 0.09 0.55 1.85G Grass Medium 0.09 0.54 1.92G Grass Fine 0.18 0.91 3.67G Wheat,Winter Coarse 0.08 0.49 1.64G Wheat,Winter Medium 0.09 0.64 2.05G Wheat,Winter Fine 0.10 0.91 4.43H Corn Coarse 0.31 0.92 5.62H Corn Medium 0.62 1.49 11.03H Corn Fine 0.81 2.67 20.40

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-103

LRR Crop SoilGroupEmissionRate(25thPercentile)

EmissionRate(50thPercentile)

EmissionRate(97.5thPercentile)

H Cotton Coarse 0.14 0.70 2.28H Cotton Medium 0.18 1.17 4.38H Cotton Fine 0.41 1.55 8.88H Grass Coarse 0.30 0.88 2.53H Grass Medium 0.29 0.95 3.53H Grass Fine 0.57 1.64 4.34H Wheat,Winter Coarse 0.15 0.65 2.29H Wheat,Winter Medium 0.21 0.99 3.81H Wheat,Winter Fine 0.32 1.30 9.16I Cotton Coarse 0.25 0.63 4.38I Cotton Medium 0.23 0.63 8.15I Cotton Fine 0.34 1.27 8.70I Grass Coarse 0.36 1.02 4.24I Grass Medium 0.42 1.09 5.49I Grass Fine 0.56 1.90 5.27I Sorghum Coarse 0.34 0.78 5.69I Sorghum Medium 0.31 0.79 8.75I Sorghum Fine 0.43 1.60 9.35I Wheat,Spring Coarse 0.38 0.78 6.87I Wheat,Spring Medium 0.41 0.82 12.28I Wheat,Spring Fine 0.60 1.60 15.24I Wheat,Winter Coarse 0.19 0.43 4.66I Wheat,Winter Medium 0.20 0.58 6.57I Wheat,Winter Fine 0.22 1.06 7.75J Corn Coarse 0.48 1.10 4.33J Corn Medium 0.61 1.54 7.48J Corn Fine 0.71 2.63 17.71J Grass Coarse 0.48 1.41 3.95J Grass Medium 0.61 1.86 5.13J Grass Fine 0.69 2.41 5.77J Sorghum Coarse 0.35 0.90 3.81J Sorghum Medium 0.47 1.31 6.67J Sorghum Fine 0.52 1.96 14.66J Wheat,Spring Coarse 0.37 0.89 3.65J Wheat,Spring Medium 0.48 1.30 5.93J Wheat,Spring Fine 0.72 2.31 13.76J Wheat,Winter Coarse 0.24 0.80 3.30J Wheat,Winter Medium 0.33 1.02 5.63J Wheat,Winter Fine 0.32 1.13 11.65K Alfalfa Coarse 0.16 0.90 2.35K Alfalfa Medium 0.28 1.39 2.95K Alfalfa Fine 0.16 1.25 2.96K Corn Coarse 0.40 1.14 2.41K Corn Medium 0.72 1.75 4.57K Corn Fine 0.45 1.81 5.27K Grass Coarse 0.35 1.07 3.77K Grass Medium 0.56 1.45 4.17K Grass Fine 0.35 1.54 5.64K Soybean Coarse 0.26 0.94 2.07K Soybean Medium 0.57 1.37 2.80K Soybean Fine 0.37 1.43 3.35

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-104

LRR Crop SoilGroupEmissionRate(25thPercentile)

EmissionRate(50thPercentile)

EmissionRate(97.5thPercentile)

K Wheat,Spring Coarse 0.35 1.04 2.33K Wheat,Spring Medium 0.77 1.65 4.58K Wheat,Spring Fine 0.46 1.79 5.19L Corn Coarse 0.41 1.42 3.31L Corn Medium 0.63 1.97 5.92L Corn Fine 1.36 3.09 15.09L Grass Coarse 0.47 1.39 6.01L Grass Medium 0.56 1.82 7.02L Grass Fine 0.63 2.08 6.61L Soybean Coarse 0.31 1.29 2.45L Soybean Medium 0.45 1.66 3.10L Soybean Fine 0.95 2.31 6.22L Wheat,Winter Coarse 0.44 1.65 3.14L Wheat,Winter Medium 0.54 1.97 3.34L Wheat,Winter Fine 1.06 2.75 8.73M Corn Coarse 0.55 1.51 4.33M Corn Medium 0.87 2.28 11.87M Corn Fine 0.99 2.76 15.46M Grass Coarse 0.49 1.31 4.06M Grass Medium 0.68 1.91 4.97M Grass Fine 0.65 1.94 5.19M Soybean Coarse 0.41 1.29 2.66M Soybean Medium 0.71 1.86 5.03M Soybean Fine 0.78 2.08 7.52M Wheat,Winter Coarse 0.55 1.62 2.91M Wheat,Winter Medium 0.85 2.16 5.17M Wheat,Winter Fine 0.84 2.45 7.72N Corn Coarse 0.60 1.48 12.11N Corn Medium 0.76 2.11 19.17N Corn Fine 1.14 2.80 32.82N Grass Coarse 0.42 1.64 3.94N Grass Medium 0.57 2.08 5.03N Grass Fine 0.91 2.61 5.95N Soybean Coarse 0.58 1.31 4.04N Soybean Medium 0.73 1.80 5.24N Soybean Fine 1.00 2.07 11.18O Corn Coarse 0.60 1.55 4.52O Corn Medium 0.67 2.14 9.63O Corn Fine 1.07 3.08 24.03O Cotton Coarse 0.51 1.19 4.95O Cotton Medium 0.61 1.84 14.76O Cotton Fine 0.99 3.24 25.42O Grass Coarse 0.39 1.70 3.92O Grass Medium 0.44 2.24 7.03O Grass Fine 0.76 2.81 7.97O Rice Coarse 0.52 1.11 5.15O Rice Medium 0.73 1.29 9.18O Rice Fine 1.00 2.45 11.14O Soybean Coarse 0.53 1.22 3.73O Soybean Medium 0.55 1.66 6.67O Soybean Fine 0.86 2.18 14.83

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-105

LRR Crop SoilGroupEmissionRate(25thPercentile)

EmissionRate(50thPercentile)

EmissionRate(97.5thPercentile)

P Corn Coarse 0.43 0.93 4.56P Corn Medium 0.60 1.85 12.27P Corn Fine 0.76 2.23 27.80P Cotton Coarse 0.37 0.81 4.04P Cotton Medium 0.63 1.68 10.68P Cotton Fine 0.73 2.18 20.32P Grass Coarse 0.29 1.26 4.30P Grass Medium 0.41 1.95 5.44P Grass Fine 0.50 2.79 7.47P Soybean Coarse 0.36 0.80 2.98P Soybean Medium 0.56 1.65 5.62P Soybean Fine 0.67 1.72 12.55R Alfalfa Coarse 0.09 1.35 3.01R Alfalfa Medium 0.26 1.63 3.10R Alfalfa Fine 0.25 1.85 3.61R Corn Coarse 0.25 1.35 2.84R Corn Medium 0.51 1.81 4.92R Corn Fine 0.53 2.25 4.97R Grass Coarse 0.30 1.77 7.53R Grass Medium 0.49 1.96 7.25R Grass Fine 0.56 2.82 9.59R Soybean Coarse 0.20 1.24 2.69R Soybean Medium 0.45 1.62 3.06R Soybean Fine 0.41 1.95 3.80S Alfalfa Coarse 0.16 1.03 2.23S Alfalfa Medium 0.36 1.54 2.99S Alfalfa Fine 0.44 1.53 3.44S Corn Coarse 0.44 1.14 2.84S Corn Medium 0.86 1.81 6.89S Corn Fine 0.97 2.20 12.36S Grass Coarse 0.60 1.37 3.02S Grass Medium 0.77 1.85 4.99S Grass Fine 0.93 2.35 6.43S Soybean Coarse 0.39 1.04 1.66S Soybean Medium 0.77 1.59 3.48S Soybean Fine 0.89 1.78 4.72T Corn Coarse 0.45 0.92 5.78T Corn Medium 0.48 1.15 11.08T Corn Fine 0.63 2.76 24.52T Grass Coarse 0.33 1.05 4.89T Grass Medium 0.41 1.23 8.49T Grass Fine 0.50 2.32 9.65T Soybean Coarse 0.40 0.81 4.06T Soybean Medium 0.48 0.98 8.03T Soybean Fine 0.50 1.79 17.49T Wheat,Winter Coarse 0.33 0.81 4.89T Wheat,Winter Medium 0.36 1.10 8.05T Wheat,Winter Fine 0.46 2.72 17.87U Corn Coarse 0.36 0.64 2.64U Corn Medium 0.34 0.66 4.67U Corn Fine 0.47 1.18 14.76

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-106

LRR Crop SoilGroupEmissionRate(25thPercentile)

EmissionRate(50thPercentile)

EmissionRate(97.5thPercentile)

U Grass Coarse 0.33 0.99 4.74U Grass Medium 0.35 0.79 4.09U Grass Fine 0.39 1.72 5.90U Potato Coarse 0.57 0.82 2.53U Potato Medium 0.63 1.05 13.93U Potato Fine 0.79 1.53 13.88U Wheat,Spring Coarse 0.23 0.55 2.08U Wheat,Spring Medium 0.30 0.54 5.11U Wheat,Spring Fine 0.32 0.84 10.58

3‐A.2EmpiricalScalarsforBaseEmissionRates

AsdescribedinTextbox3‐1,thebaseemissionratemodeledbyDAYCENTandDNDCisusedtocalculateanemissionfactorforthetypicalfertilizercasethatisthenscaledtoreflecttheincreaseinemissionfactorwithincreasingnitrogeninputs(SEFinTextbox3‐1).TocalculateSEFameta‐analysiswasperformedusingdatafromallfieldstudiesintheliteraturewhereatleastthreedifferentlevelsofnitrogeninput,includingazeronitrogenrate,wereappliedtothesamecropatthesamesiteduringthesamegrowingseason.EmissionfactorswerecalculatedasthedifferencebetweentheN2Ofluxesat0NandatxNdividedbytheN2Ofluxat0N.Thenullhypothesiswasthatemissionfactorswillbeconstantacrossdifferentnitrogenrates.

Atotalof44datasetsthatmeetthebasecriteriawereidentified.Fromeachdataset,slopesforeachfertilizeradditionintervalwerecalculatedandcomparedtotheslopeofthefirstinterval(0Ntothefirstnitrogenadditionlevel).Thevalueoftheslopeisameasureofhowmuchtheemissionfactorchangesperadditionalunitofnitrogenfertilizerinput(kgNha‐1)foragivenstudysiteyear.Thus,theslopemeasuresthedegreeofnonlinearityoftheemissionfactor.Theslopeiszeroiftheemissionfactorisconstant,asassumedbytheIPCCTier1method.Apositiveslopeindicatesthatthetotalemissionfunctionisconvexwithrespecttototalnitrogeninput,i.e.,thattheunitoffluxincrease(theemissionfactor)isgreaterwitheachsuccessiveunitofnitrogeninput.Uncertaintywasquantifiedwithaconfidenceintervalobtainedbyperformingabootstrapanalysis(n=100,000)ontheoriginalslopes.

Thereweresufficientdatatoanalyzefivedifferentsub‐categories:corn,grassland,othercrops,clay‐texturedsoils,andother‐texturedsoils.Themeanslopewassignificantlygreaterthanzeroforallanalyzedcategoriesbutonlythegrasslandcategorywassignificantlydifferentfromtheothers.ThusintheERbequationinTextbox3‐1therearetwovaluesforSEF,oneforgrasslandsandanotherforallothercrops.

Thestudiesusedinthemeta‐analysisareprovidedbelow.

Breitenbeck,G.A.,andJ.M.Bremner.1986.Effectsofrateanddepthoffertilizerapplicationonemissionofnitrousoxidefromsoilfertilizedwithanhydrousammonia.Biologyandfertilityofsoils,2(4):201‐204.

Cardenas,L.M.,R.Thorman,N.Ashlee,M.Butler,etal.2010.QuantifyingannualN2Oemissionfluxesfromgrazedgrasslandunderarangeofinorganicfertilisernitrogeninputs.Agriculture,EcosystemsandEnvironment,136:218‐226.

Chang,C.,C.M.Cho,andD.H.Janzen.1998.Nitrousoxideemissionfromlong‐termmanuredsoils.SoilScienceSocietyAmericaJournal,62:677‐682.

Ding,W.,Y.Cai,X.Cai,K.Yagi,etal.2007.Nitrousoxideemissionsfromanintensivelycultivatedmaize‐wheatrotationinsoilintheNorthChinaPlain.ScienceandtheTotalEnvironment,373.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-107

Halvorson,A.D.,S.J.DelGrosso,andC.A.Reule.2008.Nitrogen,Tillage,andCropRotationEffectsonNitrousOxideEmissionsfromIrrigatedCroppingSystems.JournalofEnvironmentalQuality,37(4):1337‐1344.

Hoben,J.P.,R.J.Gehl,N.Millar,P.R.Grace,etal.2011.Nonlinearnitrousoxide(N2O)responsetonitrogenfertilizerinon‐farmcorncropsoftheUSMidwest.GlobalChangeBiology,17(2):1140‐1152.

Kaiser,E.A.,K.Kohrs,M.Kücke,E.Schnug,etal.1998.Nitrousoxidereleasefromarablesoil:importanceofN‐fertilization,cropsandtemporalvariation.SoilBiologyandBiochemistry,30:1553‐1563.

Kammann,C.,L.Grünhage,C.Müller,S.Jacobi,andH.‐J.Jäger.1998.SeasonalvariabilityandmitigationoptionsforN2Oemissionsfromdifferentlymanagedgrasslands.EnvironmentalPollution,102(S1):179‐186.

Kim,D.‐G.,G.Hernandez‐Ramirez,andD.Giltrap.2013.Linearandnonlineardependencyofdirectnitrousoxideemissionsonfertilizernitrogeninput:ameta‐analysis.Agriculture,EcosystemsandEnvironment,168:53‐65.

Letica,S.A.,C.A.M.deKlein,C.J.Hoogendoorn,R.W.Tillman,etal.2010.Short‐termmeasurementofN2Oemissionsfromsheep‐grazedpasturereceivingincreasingratesoffertilisernitrogeninOtago,NewZealand.AnimalProductionScience,50:17‐24.

Lin,S.,J.Iqbal,R.Hu,J.Wu,etal.2011.Nitrousoxideemissionsfromrapefieldasaffectedbynitrogenfertilizermanagement:acasestudyincentralChina.AtmosphericEnvironment,45:1775‐1779.

Ma,B.L.,T.Y.Wu,N.Tremblay,W.Deen,etal.2010.Nitrousoxidefluxesfromcornfields:on‐farmassessmentoftheamountandtimingofnitrogenfertilizer.GlobalChangeBiology,16(1):156‐170.

McSwiney,C.P.,andG.P.Robertson.2005.NonlinearresponseofN2Ofluxtoincrementalfertilizeradditioninacontinuousmaize(ZeamaysL.)croppingsystem.GlobalChangeBiology,11(10):1712‐1719.

Mosier,A.R.,A.D.Halvorson,C.A.Reule,andX.J.Liu.2006.NetglobalwarmingpotentialandgreenhousegasintensityinirrigatedcroppingsystemsinnortheasternColorado.JournalofEnvironmentalQuality,35(4):1584‐1598.

Signor,D.,C.E.P.Cerri,andR.Conant.2013.N2OemissionsduetonitrogenfertilizerapplicationsintworegionsofsugarcanecultivationinBrazil.EnvironmentalResearchLetters,8(1):015013.

Song,C.,andJ.Zhang.2009.Effectsofsoilmoisture,temperature,andnitrogenfertilizationonsoilrespirationandnitrousoxideemissionduringmaizegrowthperiodinnortheastChina.ActaAgriculturaeScandinavia,59:97‐106.

vanGroenigen,J.W.,G.J.Kasper,G.L.Velthof,A.vandenPol‐vanDasselar,etal.2004.Nitrousoxideemissionsfromsilagemaizefieldsunderdifferentmineralnitrogenfertilizerandslurryapplications.PlantandSoil,263.

Velthof,G.L.,O.Oenema,R.Postma,andM.L.VanBeusichem.1997.Effectsoftypeandamountofappliednitrogenfertilizeronnitrousoxidefluxesfromintensivelymanagedgrassland.NutrientCyclinginAgroecosystems,46:257‐267.

Zebarth,B.J.,P.Rochette,andD.L.Burton.2008.N2Oemissionsfromspringbarleyproductionasinfluencedbyfertilizernitrogenrate.CanadianJournalofSoilScience,88:197‐205.

Zhang,J.,andX.Han.2008.N2Oemissionfromthesemi‐aridecosystemundermineralfertilizer(ureaandsuperphosphate)andincreasedprecipitationinnorthernChina.AtmosphericEnvironment,42:291‐302.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-108

3‐A.3Practice‐BasedScalingFactors

Datawereanalyzedtoderivescalingfactorsforthefollowingpractices:nitrogenfertilizerplacement,nitrificationinhibitors,no‐tillmanagement,andslow‐releasefertilizers.PracticeswereincludediftherewassufficientevidencefromfieldexperimentstosuggestthatthepracticeinfluencedN2Oemissions,orforwhichapreviousmeta‐analysishadbeenconductedandshownthatthepracticehadaneffectonN2Oemissions(i.e.,no‐tillmanagement;vanKesseletal.,2012).AllpracticeswerefoundtohaveasignificanteffectonN2Oemissionwiththeexceptionofnitrogenplacement.ThescalingfactorsareprovidedinTable3‐9.

Documentationfortheno‐tillscalingfactorcanbefoundinvanKesseletal.Scalingfactorsfornitrificationinhibitorswerederivedusingalinearmixed‐effectmodelingapproach(PinheiroandBates,2000),similartothemethodusedbyOgleetal.(2005)toderivefactorsthatwereusedinthe2006IPCCGuidelines(IPCC,2006).Variancesassociatedwithindividualexperimentalresultswerenottakenintoconsiderationinthemeta‐analysesbecausemanystudiesdidnotprovidethisinformation.AgoalforfutureanalysessupportingtheUSDAmethodswillbetoincludevariances,undertheassumptionthatstudieswillreportthisinformationinfuturepublications.Covariateswereincludedintheanalysistodetermineifthepracticehadadifferenteffectdependingonthelanduse,climate,soiltype,watermanagement,tillagepractice,orcroptype.Covariateswereretainedinthemodelifthevariablewassignificantatanalphalevelof0.05.Forotherscalingfactors,therewereinsufficientdatatousethelinearmixed‐effectmodelingapproach,andsoaveragedifferencesbetweenthecontrolandtreatmentswereestimatedfromthestudiestoestimateascalingfactor.Theresultingestimateswereevaluatedforstatisticalsignificantfromavalueof0(ornoeffect)usinganalphalevelof0.05.A95percentconfidenceintervalwasderivedforeachscalingfactorandprovidedinTable3‐6asanupperandlowerboundontheestimatedfactor.

Thestudiesusedineachmeta‐analysisareprovidedbelow.

NitrogenFertilizerPlacement:Burton,D.L.,X.Li,andC.A.Grant.2008.Influenceoffertilizernitrogensourceandmanagement

practiceonN2OemissionsfromtwoBlackChernozemicsoils.CanadianJournalofSoilScience,88:219‐227.

Drury,C.F.,W.D.Reynolds,C.S.Tan,T.W.Welacky,etal.2006.EmissionsofNitrousOxideandCarbonDioxide.SoilScienceSocietyofAmericaJournal,70(2):570‐581.

Engel,R.,D.L.Liang,R.Wallander,andA.Bembenek.2010.InfluenceofUreaFertilizerPlacementonNitrousOxideProductionfromaSiltLoamSoil.JournalofEnvironmentalQuality,39(1):115‐125.

Halvorson,A.D.,andS.J.DelGrosso.2013.Nitrogenplacementandsourceeffectsonnitrousoxideemissionsandyieldsofirrigatedcorn.JournalofEnvironmentalQuality,42(Inpress).

Hou,A.X.,andH.Tsuruta.2003.NitrousoxideandnitricoxidefluxesfromanuplandfieldinJapan:effectofureatype,placement,andcropresidues.NutrientCyclinginAgroecosystems,65:191‐200.

Hultgreen,G.,andP.Leduc.2003.Theeffectofnitrogenfertilizerplacement,formulation,timing,andrateongreenhousegasemissionsandagronomicperformance:AgricultureAgri‐FoodCanada,PrairieAgriculturalMachineryInstitute.

Liu,X.J.,A.R.Mosier,A.D.Halvorson,andF.S.Zhang.2005.Tillageandnitrogenapplicationeffectsonnitrousandnitricoxideemissionsfromirrigatedcornfields.PlantandSoil,276:235‐249.

Maharjan,B.,andR.T.Venterea.Inreview.Nitritedynamicsexplainfertilizermanagementeffectsonnitrousoxideemissionsinmaize.SubmittedtoSoilBiologyandBiochemistry.

Zebarth,B.J.,P.Rochette,D.L.Burton,andM.Price.2008.EffectoffertilizernitrogenmanagementonN2Oemissionsincommercialcornfields.CanadianJournalofSoilScience,88:189‐195.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-109

NitrificationInhibitors:Akiyama,H.,H.Tsuruta,andT.Watanabe.2000.N2OandNoEmissionsfromSoilsafterthe

ApplicationofDifferentChemicalFertilizers.Chemosphere‐GlobalChangeScience,2(3):313‐320.

Ball,B.C.,K.C.Cameron,H.J.Di,andS.Moore.2012.EffectsofTramplingofaWetDairyPastureSoilonSoilPorosityandonMitigationofNitrousOxideEmissionsbyaNitrificationInhibitor,Dicyandiamide.SoilUseandManagement,28(2):194‐201.

Bremner,J.M.,G.A.Breitenbeck,andA.M.Blackmer.1981.EffectofNitrapyrinonEmissionofNitrousOxidefromSoilFertilizedwithAnhydrousAmmonia.GeophysicalResearchLetters,8(4):353‐356.

Bronson,K.F.,A.R.Mosier,andS.R.Bishnoi.1992.NitrousOxideEmissionsinIrrigatedCornasAffectedbyNitrificationInhibitors.SoilScienceSocietyofAmericaJournal,56(1):161‐165.

Cui,M.,X.C.Sun,C.X.Hu,H.J.Di,etal.2011.EffectiveMitigationofNitrateLeachingandNitrousOxideEmissionsinIntensiveVegetableProductionSystemsUsingaNitrificationInhibitor,Dicyandiamide.JournalofSoilsandSediments,11(5):722‐730.

deKlein,C.A.M.,K.C.Cameron,H.J.Di,G.Rys,etal.2011.RepeatedAnnualUseoftheNitrificationInhibitorDicyandiamide(Dcd)DoesNotAlterItsEffectivenessinReducingN2OEmissionsfromCowUrine.AnimalFeedScienceandTechnology,166‐167:480‐491.

Delgado,J.A.,andA.R.Mosier.1996.MitigationAlternativestoDecreaseNitrousOxidesEmissionsandUrea‐NitrogenLossandTheirEffectonMethaneFlux.JournalofEnvironmentalQuality,25(5):1105‐1111.

Dittert,K.,R.Bol,R.King,D.Chadwick,etal.2001.UseofanovelnitrificationinhibitortoreducenitrousoxideemissionfromN15‐labelleddairyslurryinjectedintosoil.RapidCommunicationsinMassSpectrometry,15:1291‐1296.

Dobbie,K.E.,andK.A.Smith.2003.ImpactofDifferentFormsofNFertilizeronN2OEmissionsfromIntensiveGrassland.NutrientCyclinginAgroecosystems,67(1):37‐46.

Ghosh,S.,D.Majumdar,andM.C.Jain.2003.MethaneandNitrousOxideEmissionsfromanIrrigatedRiceofNorthIndia.Chemosphere,51(3):181‐195.

Hadi,A.,O.Jumadi,K.Inubushi,andK.Yagi.2008.MitigationOptionsforN2OEmissionfromaCornFieldinKalimantan,Indonesia.Soilscienceandplantnutrition,54(4):644‐649.

Halvorson,A.D.,S.J.DelGrosso,andC.A.Reule.2008.Nitrogen,Tillage,andCropRotationEffectsonNitrousOxideEmissionsfromIrrigatedCroppingSystems.JournalofEnvironmentalQuality,37(4):1337‐1344.

Halvorson,A.D.,S.J.DelGrosso,andF.Alluvione.2010.TillageandInorganicNitrogenSourceEffectsonNitrousOxideEmissionsfromIrrigatedCroppingSystems.SoilScienceSocietyofAmericaJournal,74(2):436‐445.

Halvorson,A.D.,S.J.DelGrosso,andC.P.Jantalia.2011.NitrogenSourceEffectsonSoilNitrousOxideEmissionsfromStrip‐TillCorn.JournalofEnvironmentalQuality,40(6):1775‐1786.

Halvorson,A.D.,andS.J.D.Grosso.2012.NitrogenSourceandPlacementEffectsonSoilNitrousOxideEmissionsfromNo‐TillCorn.JournalofEnvironmentalQuality,41(5):1349‐1360.

Halvorson,A.D.,C.S.Snyder,A.D.Blaylock,andS.J.DelGrosso.Inreview.EnhancedEfficiencyNitrogenFertilizers:PotentialRoleinNitrousOxideEmissionMitigation.AgronomyJournal.

Jumadi,O.,Y.Hala,A.Muis,A.Ali,M.Palennari,K.Yagi,andK.Inubushi.2008.InfluencesofChemicalFertilizersandaNitrificationInhibitoronGreenhouseGasFluxesinaCorn(ZeaMaysL.)FieldinIndonesia.Microbesandenvironments,23(1):29‐34.

Kelly,K.B.,F.A.Phillips,andR.Baigent.2008.ImpactofdicyandiamideapplicationonnitrousoxideemissionsfromurinepatchesinnorthernVictoria,Australia.AustralianJournalofExperimentalAgriculture,48:156‐159.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-110

Kumar,U.,M.C.Jain,H.Pathak,S.Kumar,etal.2000.NitrousOxideEmissionfromDifferentFertilizersandItsMitigationbyNitrificationInhibitorsinIrrigatedRice.Biologyandfertilityofsoils,32(6):474‐478.

Linzmeier,W.,R.Gutser,andU.Schmidhalter.2001.NitrousOxideEmissionfromSoilandfromaNitrogen‐15‐LabelledFertilizerwiththeNewNitrificationInhibitor3,4‐DimethylpyrazolePhosphate(Dmpp).Biologyandfertilityofsoils,34(2):103‐108.

Macadam,X.M.B.,A.Prado,P.Merino,J.M.Estavillo,etal.2003.Dicyandiamideand3,4‐DimethylPyrazolePhosphateDecreaseN2OEmissionsfromGrasslandbutDicyandiamideProducesDeleteriousEffectsinClover.Journalofplantphysiology,160(12):1517‐1523.

Magalhaes,A.M.T.,P.M.Chalk,andW.M.Strong.1984.EffectofNitrapyrinonNitrousOxideEmissionfromFallowSoilsFertilizedwithAnhydrousAmmonia.NutrientCyclinginAgroecosystems,5(4):411‐421.

Majumdar,D.,S.Kumar,H.Pathak,M.C.Jain,etal.2000.ReducingNitrousOxideEmissionfromanIrrigatedRiceFieldofNorthIndiawithNitrificationInhibitors.Agriculture,ecosystems&environment,81(3):163‐169.

Majumdar,D.,H.Pathak,S.Kumar,andM.C.Jain.2002.NitrousOxideEmissionfromaSandyLoamInceptisolunderIrrigatedWheatinIndiaasInfluencedbyDifferentNitrificationInhibitors.Agriculture,ecosystems&environment,91(1):283‐293.

Malla,G.,A.Bhatia,H.Pathak,S.Prasad,etal.2005.MitigatingNitrousOxideandMethaneEmissionsfromSoilinRice‐WheatSystemoftheIndo‐GangeticPlainwithNitrificationandUreaseInhibitors.Chemosphere,58(2):141‐147.

McTaggart,I.P.,H.Clayton,J.Parker,L.Swan,etal.1997.NitrousOxideEmissionsfromGrasslandandSpringBarley,FollowingNFertiliserApplicationwithandwithoutNitrificationInhibitors.Biologyandfertilityofsoils,25(3):261‐268.

Menendez,S.,P.Merino,M.Pinto,C.González‐Murua,etal.2006.3,4‐DimethylpyrazolPhosphateEffectonNitrousOxide,NitricOxide,Ammonia,andCarbonDioxideEmissionsfromGrasslands.JournalofEnvironmentalQuality,35(4):973‐981.

Merino,P.,J.M.Estavillo,L.A.Graciolli,M.Pinto,etal.2002.MitigationofN2OEmissionsfromGrasslandbyNitrificationInhibitorandActilithF2AppliedwithFertilizerandCattleSlurry.SoilUseandManagement,18(2):135‐141.

Parkin,T.B.,andJ.L.Hatfield.2010.InfluenceofNitrapyrinonN2OLossesfromSoilReceivingFall‐AppliedAnhydrousAmmonia.Agriculture,ecosystems&environment,136(1):81‐86.

Pathak,H.,A.Bhatia,S.Prasad,S.Singh,etal.2002.EmissionofNitrousOxidefromRice‐WheatSystemsofIndo‐GangeticPlainsofIndia.Environmentalmonitoringandassessment,77(2):163‐178.

Sanz‐Cobena,A.,L.Sánchez‐Martín,L.García‐Torres,andA.Vallejo.2012.GaseousemissionsofN2OandNOandNO3‐leachingfromureaappliedwithureaseandnitrificationinhibitorstoamaize(Zeamays)crop.Agriculture,ecosystems&environment,149:64‐73.

Shoji,S.,J.Delgado,A.Mosier,andY.Miura.2001.UseofControlledReleaseFertilizersandNitrificationInhibitorstoIncreaseNitrogenUseEfficiencyandtoConserveAirAndwaterQuality.CommunicationsinSoilScienceandPlantAnalysis,32(7‐8):1051‐1070.

Smith,L.C.,C.A.M.deKlein,andW.D.Catto.2008.EffectofDicyandiamideAppliedinaGranularFormonNitrousOxideEmissionsfromaGrazedDairyPastureinSouthland,NewZealand.NewZealandJournalofAgriculturalResearch,51(4):387‐396.

Vallejo,A.,L.Garcia‐Torres,J.A.Diez,A.Arce,etal.2005.ComparisonofNlosses(NO3‐,N2O,NO)fromsurfaceapplied,injectedoramended(DCD)pigslurryofanirrigatedsoilinaMediterraneanclimate.PlantandSoil,272:313‐325.

Vallejo,A.,U.M.Skiba,L.Garcia‐Torres,A.Arce,etal.2006.Nitrogenoxidesemissionfromsoilsbearingapotatocropasinfluencedbyfertilizationwithtreatedpigslurriesandcomposts.SoilBiologyandBiochemistry,38:2782‐2793.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-111

Venterea,R.T.,B.Maharjan,andM.S.Dolan.2011.Fertilizersourceandtillageeffectsonyield‐scaledN2Oemissionsinacorncroppingsystem.JournalofEnvironmentalQuality.

Weiske,A.,G.Benckiser,andJ.C.G.Ottow.2001.EffectoftheNewNitrificationInhibitorDmppinComparisontoDcdonNitrousOxide(N2O)EmissionsandMethane(CH4)OxidationDuring3YearsofRepeatedApplicationsinFieldExperiments.NutrientCyclinginAgroecosystems,60(1):57‐64.

Zaman,M.,M.L.Nguyen,J.D.Blennerhassett,andB.F.Quin.2008.ReducingNH3,N2Oand‐NLossesfromaPastureSoilwithUreaseorNitrificationInhibitorsandElementalS‐AmendedNitrogenousFertilizers.Biologyandfertilityofsoils,44(5):693‐705.

Slow‐releaseFertilizers:Akiyama,H.,H.Tsuruta,andT.Watanabe.2000.N2OandNOEmissionsfromSoilsafterthe

ApplicationofDifferentChemicalFertilizers.Chemosphere‐GlobalChangeScience,2(3):313‐320.

Akiyama,H.,andH.Tsuruta.2002.EffectofchemicalfertilizerformonN2O,NOandNO2fluxesfromAndisolfield.NutrientCyclinginAgroecosystems,63:219‐230.

Ball,B.C.,K.C.Cameron,H.J.Di,andS.Moore.2012.EffectsofTramplingofaWetDairyPastureSoilonSoilPorosityandonMitigationofNitrousOxideEmissionsbyaNitrificationInhibitor,Dicyandiamide.SoilUseandManagement,28(2):194‐201.

Burton,D.L.,X.Li,andC.A.Grant.2008.InfluenceoffertilizernitrogensourceandmanagementpracticeonN2OemissionsfromtwoBlackChernozemicsoils.CanadianJournalofSoilScience,88:219‐227.

Cheng,W.,Y.Nakajima,S.Sudo,H.Akiyama,etal.2002.N2OandNOemissionsfromafieldofChinesecabbageasinfluencedbybandapplicationofureaorcontrolled‐releaseureafertilizers.NutrientCyclinginAgroecosystems,63:231‐238.

Chu,H.Y.,Y.Hosen,andK.Yagi.2007.NO,N2O,CH4andfluxesinwinterbarleyfieldofJapaneseAndisolasaffectedbyNfertilizermanagement.SoilBiology&Biochemistry,39:330‐339.

Delgado,J.A.,andA.R.Mosier.1996.MitigationAlternativestoDecreaseNitrousOxidesEmissionsandUrea‐NitrogenLossandTheirEffectonMethaneFlux.JournalofEnvironmentalQuality,25(5):1105‐1111.

Dobbie,K.E.,andK.A.Smith.2003.ImpactofDifferentFormsofNFertilizeronN2OEmissionsfromIntensiveGrassland.NutrientCyclinginAgroecosystems,67(1):37‐46.

Hadi,A.,O.Jumadi,K.Inubushi,andK.Yagi.2008.MitigationOptionsforN2OEmissionfromaCornFieldinKalimantan,Indonesia.Soilscienceandplantnutrition,54(4):644‐649.

Halvorson,A.D.,S.J.DelGrosso,andF.Alluvione.2010a.NitrogenSourceEffectsonNitrousOxideEmissionsfromIrrigatedNo‐TillCorn.JournalofEnvironmentalQuality,39(5):1554‐1562.

Halvorson,A.D.,S.J.DelGrosso,andF.Alluvione.2010b.TillageandInorganicNitrogenSourceEffectsonNitrousOxideEmissionsfromIrrigatedCroppingSystems.SoilScienceSocietyofAmericaJournal,74(2):436‐445.

Halvorson,A.D.,S.J.DelGrosso,andC.P.Jantalia.2011.NitrogenSourceEffectsonSoilNitrousOxideEmissionsfromStrip‐TillCorn.JournalofEnvironmentalQuality,40(6):1775‐1786.

Halvorson,A.D.,andS.J.D.Grosso.2012.NitrogenSourceandPlacementEffectsonSoilNitrousOxideEmissionsfromNo‐TillCorn.JournalofEnvironmentalQuality,41(5):1349‐1360.

Halvorson,A.D.,andS.J.DelGrosso.2013.Nitrogenplacementandsourceeffectsonnitrousoxideemissionsandyieldsofirrigatedcorn.JournalofEnvironmentalQuality,42(Inpress).

Hou,A.X.,andH.Tsuruta.2003.NitrousoxideandnitricoxidefluxesfromanuplandfieldinJapan:effectofureatype,placement,andcropresidues.NutrientCyclinginAgroecosystems,65:191‐200.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-112

Hyatt,C.R.,R.T.Venterea,C.J.Rosen,M.McNearney,etal.2010.Polymer‐CoatedUreaMaintainsPotatoYieldsandReducesNitrousOxideEmissionsinaMinnesotaLoamySand.SoilScienceSocietyofAmericaJournal,74(2):419‐428.

Ji,Y.,G.Liu,J.Ma,H.Xu,etal.2012.Effectofcontrolled‐releasefertilizeronnitrousoxideemissionfromawinterwheatfield.NutrientCyclinginAgroecosystems,94:111‐122.

Jiang,J.Y.,Z.H.Hu,W.J.Sun,andY.Huang.2010.NitrousoxideemissionsfromChinesecroplandfertilizedwitharangeofslow‐releasenitrogencompounds.AgricultureEcosystems&Environment,135:216‐225.

Jumadi,O.,Y.Hala,A.Muis,A.Ali,M.Palennari,K.Yagi,andK.Inubushi.2008.InfluencesofChemicalFertilizersandaNitrificationInhibitoronGreenhouseGasFluxesinaCorn(ZeaMaysL.)FieldinIndonesia.Microbesandenvironments,23(1):29‐34.

Maharjan,B.,R.T.Venterea,andC.Rosen.2013.FertilizerandIrrigationManagementEffectsonNitrousOxideEmissionsandNitrateLeaching.AgronomyJournal.

Maharjan,B.,andR.T.Venterea.Inreview.Nitritedynamicsexplainfertilizermanagementeffectsonnitrousoxideemissionsinmaize.SubmittedtoSoilBiologyandBiochemistry.

Nash,P.R.2010.Alternativetillageandnitrogenmanagementoptionstoincreasecropproductionandreducenitrousoxideemissionsfromclaypansoils:M.S.Thesis,UniversityofMissouri.

Shoji,S.,J.Delgado,A.Mosier,andY.Miura.2001.UseofControlledReleaseFertilizersandNitrificationInhibitorstoIncreaseNitrogenUseEfficiencyandtoConserveAirAndwaterQuality.CommunicationsinSoilScienceandPlantAnalysis,32(7‐8):1051‐1070.

Venterea,R.T.,B.Maharjan,andM.S.Dolan.2011.Fertilizersourceandtillageeffectsonyield‐scaledN2Oemissionsinacorncroppingsystem.JournalofEnvironmentalQuality.

Yan,X.Y.,Y.Hosen,andK.Yagi.2001.NitrousoxideandnitricoxideemissionsfrommaizefieldplotsasaffectedbyNfertilizertypeandapplicationmethod.Biologyandfertilityofsoils,34:297‐303.

Zebarth,B.J.,E.Snowdon,D.L.Burton,C.Goyer,etal.2012.Controlledreleasefertilizerproducteffectsonpotatocropresponseandnitrousoxideemissionsunderrain‐fedproductiononamedium‐texturedsoil.CanadianJournalofSoilScience,92:759‐769.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-113

Appendix3‐B:GuidanceforCropsNotIncludedintheDAYCENTModel

TheDAYCENTmodelisrecommendedforuseinestimatingSoilCarbonStockChanges(Section3.5.3),andwasused(alongwiththeDNDCmodel)togeneratebaseemissionratesforEquation3‐9(SeeAppendix3‐AforadiscussionofhowmodelswereusedtoestimateN2Oemissionsfrommineralsoils).Inaddition,nitrogenmineralizedfromsoilorganicmatter(Nmin);additionalnitrogeninputsfromachangeinsoilorganicmattermineralizationduetoaland‐usechangeortillagechange(Ndmin);nitrogenmineralizationfromorganicamendments(e.g.,manure,sewagesludge,compost);andnitrogenmineralizationfromcrop,grass,andcovercropresidues(Nresid)aregeneratedbytheDAYCENTmodel.

TheDAYCENTmodelisnotusedtogenerateestimatesforallcropsgrownintheUnitedStates.TheDAYCENTmodeliscurrentlyusedtoestimateSOCstocksforthefollowingcropsandsectors:agroforestry,almond,alfalfa,windbreak,woodlot,sorghum,springwheat,winterwheat,woodlot—softwoods,woodlot—hardwoods,clover,cotton,drylandbeans,corn,oats,millet,grass‐cloverpasture,grass,peas,potato,sugarbeets,sunflower,soybean,sugarcane,peanut,tobacco,uplandrice,windbreakthree‐row,andwalnut.Thesecropsrepresent90percentofthecropsgrownintheUnitedStates,andmorecropsaretestedandaddedtotheDAYCENTmodel‐basedassessmentonaregularbasis.

However,ifanentityismanagingacropthatisnotincludedintheDAYCENTlistofcrops,the2006IPCCGuidelinesmaybeusedtoestimateemissionsorsinksforthesourceslistedabove.ThisapproachisconsistentwiththeU.S.EnvironmentalProtectionAgencyNationalInventoryReport(U.S.EnvironmentalProtectionAgency,2013),andacompletediscussionofthisalternativemethodologyinprovidedinAnnex3(Section3.12)oftheNationalInventoryReport.15Specifically,theNationalInventoryReportusesacombinationofTier1,2,and3approachestoestimatedirectandindirectN2Oemissionsandsoilchangesinagriculturalsoils.ThisreportfollowsthesameapproachforthecropsnotincludedintheDAYCENTmodelwhenestimatingsoilcarbonstockchangesanddirectN2Oemissions(SeeTable3‐B‐1).

Table3‐B‐1AlternativeMethodologiesforCropsNotIncludedintheDAYCENTModel

Source Tier1 Tier2

SoilcarbonstockchangesIPCC2006Guidelines(SeeChapter5,Section5.2.3.3)

DirectN2OemissionsfrommineralsoilsforthecropsNOTestimatedbytheDAYCENTmodel

IPCC2006Guidelineswithmanagementbasedscalingfactors(SeeSection3.5.4)

Nsmin, Notestimated

Nitrogeninputsfromorganicamendments(NmanandNcomp)

IPCC2006Guidelines(SeeChapter11Section11.2.1.1)

Nresid Equation3‐B‐1Residuenitrogen(Seebelow)

15SeeU.S.EnvironmentalProtectionAgency,NationalGHGInventoryAnnex3:http://www.epa.gov/climatechange/Downloads/ghgemissions/US‐GHG‐Inventory‐2013‐Annex‐3‐Additional‐Source‐or‐Sink‐Categories.pdf

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-114

Defaultvaluesfordrymattercontent,root:shootratioandharvestindexareprovidedinTable3‐5inSection3.5.1.2.DefaultvaluesfromtheIPCCguidelinesvaluesareprovidedinTable3‐B‐2forthenitrogencontentofabovegroundandbelowgroundresiduesinmajorcroptypesandindividualcrops.

Equation3‐B‐1:ResidueN

ForCrops:

Nresid=[((Ydm/HI)–Ydm)x(1–Rr)xNa]+[(Ydm/HI)xR:SxNb]

ForGrazingForage:

Nresid=[Ydmx(1–Fr–Rr)xNa]+[YdmxR:SxNb]

Where:

Nresid =Nitrogeninresiduesaboveandbelowgroundontheparcelofland (metrictonsNyear‐1ha‐1)

Ydm =Cropharvestorforageyield,correctedformoisturecontent (metrictonsbiomassha‐1) =YxDM

Y =Cropharvestortotalforageyield(metrictonsbiomassha‐1)

DM =Drymattercontentofharvestedbiomass(dimensionless)

HI =HarvestIndex(dimensionless)

Fr =Proportionofliveforageremovedbygrazinganimals(dimensionless)

Rr =Proportionofcrop/forageresidueremovedduetoharvest,burningorgrazing(dimensionless)

Na =Nitrogenfractionofabovegroundresiduebiomassforthecroporforage(dimensionless)

Nb =Nitrogenfractionofbelowgroundresiduebiomassforthecroporforage(dimensionless)

R:S =Root‐shootratio(unitless)

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-115

Table3‐B‐2:NitrogenContentofAbovegroundandBelowgroundResiduesofMajorandIndividualCrops

CropNitrogenContentof

AbovegroundResidues(kgN(kgdm)‐1)

NitrogenContentofBelowgroundResidues

(kgN(kgdm)‐1)

Majorcroptypes

Grains 0.006 0.009Beansandpulses 0.008 0.008Grass‐clovermixtures 0.025 0.016Nitrogen‐fixingforages 0.027 0.022Non‐nitrogen‐fixingforages 0.015 0.012Perennialgrasses 0.015 0.012Rootcrops,other 0.016 0.014Tubers 0.019 0.014IndividualcropsAlfalfa 0.027 0.019Barley 0.007 0.014Drybean 0.01 0.01Maize 0.006 0.007Millet 0.007 NANon‐legumehay 0.015 0.012Oats 0.007 0.008Peanut(w/pod) 0.016 NAPotato 0.019 0.014Rice 0.007 NARye 0.005 0.011Sorghum 0.007 0.006Soybean 0.008 0.008Springwheat 0.006 0.009Wheat 0.006 0.009Winterwheat 0.006 0.009Source:deKlein(2006).

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-116

Chapter3References

Aalde,H.,P.Gonzalez,M.Gytarski,T.Krug,etal.2006.Chapter2:Genericmethodologiesapplicabletomultipleland‐usecategories.In2006IPCCGuidelinesforNationalGreenhouseGasInventories,S.Eggleston,L.Buendia,K.Miwa,T.NgaraandK.Tanabe(eds.).Japan:IGES.

Adviento‐Borbe,M.A.A.,M.L.Haddix,D.L.Binder,D.T.Walters,etal.2007.Soilgreenhousegasfluxesandglobalwarmingpotentialinfourhigh‐yieldingmaizesystems.GlobalChangeBiology,13(9):1972‐1988.

Akiyama,H.,H.Tsuruta,andT.Watanabe.2000.N2OandNOEmissionsfromSoilsaftertheApplicationofDifferentChemicalFertilizers.Chemosphere‐GlobalChangeScience,2(3):313‐320.

Akiyama,H.,andH.Tsuruta.2002.EffectofchemicalfertilizerformonN2O,NOandNO2fluxesfromAndisolfield.NutrientCyclinginAgroecosystems,63:219‐230.

Akiyama,H.,K.Yagi,andX.Yan.2005.DirectN2Oemissionsfromricepaddyfields:Summaryofavailabledata.GlobalBiogeochemicalCycles,19.

Akiyama,H.,X.Yan,andK.Yagi.2010.Evaluationofeffectivenessofenhanced‐efficiencyfertilizersasmitigationoptionsforN2OandNOemissionsfromagriculturalsoils:meta‐analysis.GlobalChangeBiology,16(6):1837‐1846.

Allard,V.,J.F.Soussana,R.Falcimagne,P.Berbigier,etal.2007.Theroleofgrazingmanagementforthenetbiomeproductivityandgreenhousegasbudget(CO2,N2OandCH4)ofsemi‐naturalgrassland.Agriculture,Ecosystems&Environment,121(1‐2):47‐58.

Allen,D.E.,D.S.Mendham,B.Singh,A.Cowie,etal.2009.Nitrousoxideandmethaneemissionsfromsoilarereducedfollowingaforestationofpasturelandsinthreecontrastingclimaticzones.AustralianJournalofSoilResearch,47:443‐458.

Allen,L.H.J.2007.CarbonbalanceofsugarcaneagricultureonhistosolsoftheEvergladesAgriculturalArea:review,analysis,andglobalenergyperspectives.SoilandCropScienceSocietyofFloridaProceedings,66:7‐14.

Allen,L.H.J.2012.GreenhousegasfluxesofdrainedorganicandfloodedmineralagriculturalsoilsintheUnitedStates.InManagingAgriculturalGreenhouseGases,M.A.Liebig,A.J.FranzluebbersandR.F.Follett(eds.).SanDiego,CA:AcademicPress.

Allen,S.,S.Jose,P.K.R.Nair,B.J.Brecke,etal.2004.Safetynetroleoftreeroots:experimentalevidencefromanalleycroppingsystem.ForEcolManage,192:395‐407.

Ambus,P.,andG.Robertson.2006.TheEffectofIncreasedNDepositiononNitrousOxide,MethaneandCarbonDioxideFluxesfromUnmanagedForestandGrasslandCommunitiesinMichigan.Biogeochemistry,79(3):315‐337.

Andraski,T.W.,andL.G.Bundy.2002.UsingthePresidedressSoilNitrateTestandOrganicNitrogenCreditingtoImproveCornNitrogenRecommendations.AgronomyJournal,94(6):1411‐1418.

Andreae,M.O.,andP.Merlet.2001.Emissionoftracegasesandaerosolsfrombiomassburning.GlobalBiogeochemicalCycles,15(4):955‐966.

Archer,D.W.,A.D.Halvorson,andC.A.Reule.2008.EconomicsofIrrigatedContinuousCornunderConventional‐TillandNo‐TillinNorthernColorado.AgronomyJournal,100(4):1166‐1172.

Armentano,T.V.,andE.S.Menges.1986.Patternsofchangeinthecarbonbalanceoforganicsoil.Atkinson,C.,J.Fitzgerald,andN.Hipps.2010.Potentialmechanismsforachievingagricultural

benefitsfrombiocharapplicationtotemperatesoils:areview.PlantandSoil,337(1):1‐18.Badarinath,K.V.S.,T.R.KiranChand,andV.KrishnaPrasad.2009.Emissionsfromgrassland

burninginKazirangaNationalPark,India‐AnalysisfromIRS‐P6AWiFSsatelliteremotesensingdatasets.GeocartoInternational,24(2):89‐97.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-117

Baker,J.M.,T.E.Ochsner,R.T.Venterea,andT.J.Griffis.2007.Tillageandsoilcarbonsequestration—Whatdowereallyknow?Agriculture,Ecosystems&Environment,118(1‐4):1‐5.

Ball,B.C.,K.C.Cameron,H.J.Di,andS.Moore.2012.EffectsofTramplingofaWetDairyPastureSoilonSoilPorosityandonMitigationofNitrousOxideEmissionsbyaNitrificationInhibitor,Dicyandiamide.SoilUseandManagement,28(2):194‐201.

Barton,L.,andL.A.Schipper.2001.RegulationofNitrousOxideEmissionsfromSoilsIrrigatedwithDairyFarmEffluentJournalofEnvironmentalQuality,30:1881‐1887.

Beaulieu,J.J.,J.L.Tank,S.K.Hamilton,W.M.Wollheim,etal.2011.Nitrousoxideemissionfromdenitrificationinstreamandrivernetworks.ProceedingsoftheNationalAcademyofSciences.

Beetz,A.E.,andL.Rhinehart.Rotationalgrazing.Retrievedfromwww.attra.ncat.org/attra‐pub/rotgraze.html.

Bellefontaine,R.,S.Petit,M.Pain‐Orcet,P.Deleporte,etal.2002.Treesoutsideforests:Towardsabetterawareness.Rome:CIRADandFAO.

Bement,R.E.1969.Astocking‐rateguideforbeefproductiononblue‐gramarange.JournalofRangeManagement,22:83‐86.

Bharati,K.,S.R.Mohanty,P.V.L.Padmavathi,V.R.Rao,etal.2000.InfluenceofSixNitrificationInhibitorsonMethaneProductioninaFloodedAlluvialSoil.NutrientCyclinginAgroecosystems,58(1):389‐394.

Bhat,R.,S.Sujatha,andD.Balasimha.2007.Impactofdripfertigationonproductivityofarecanut(ArecacatechuL.).AgriculturalWaterManagement,90:101‐111.

Biasi,C.,S.E.Lind,N.M.Pekkarinen,J.T.Huttunen,etal.2008.DirectexperimentalevidenceforthecontributionoflimetoCO2releasefrommanagedpeatsoil.SoilBiologyandBiochemistry,40(10):2660‐2669.

Bierman,P.,C.J.Rosen,R.T.Venterea,andJ.Lamb.2011.SurveyofnitrogenfertilizeruseoncorninMinnesota.AgriculturalSystems.

Bilotta,G.S.,R.E.Brazier,andP.M.Haygarth.2007.Theimpactsofgrazinganimalsonthequalityofsoils,vegetation,andsurfacewatersinintensivelymanagedgrasslands.AdvancesinAgronomy,94:237‐280.

Birdsey,R.A.1992.CarbonstorageandaccumulationinUnitedStatesforestecosystems.WashingtonDC:USDAForestService.

Blanco‐Canqui,H.,N.L.Klocke,A.J.Schlegel,L.R.Stone,etal.2010.ImpactsofDeficitIrrigationonCarbonSequestrationandSoilPhysicalPropertiesunderNo‐Till.SoilScienceSocietyofAmericaJournal,74(4):1301‐1309.

Blank,R.R.,andM.A.Fosberg.1989.CultivatedandAdjacentVirginSoilsinNorthcentralSouthDakota:I.ChemicalandPhysicalComparisonsII.MineralogicalandMicromorphologicalComparisons.SoilScienceSocietyofAmericaJournal,53:1484‐1490.

Boeckx,P.,X.Xu,andO.vanCleemput.2005.MitigationofN2OandCH4emissionfromriceandwheatcroppingsystemsusingdicyandiamideandhydroquinone.NutrientCyclinginAgroecosystems,72:41‐49.

Bossio,D.A.,W.R.Horwath,R.G.Mutters,andC.vanKessel.1999.Methanepoolandfluxdynamicsinaricefieldfollowingstrawincorporation.SoilBiologyandBiochemistry,31:1313‐1322.

Boutton,T.W.,J.D.Liao,T.R.Filley,andS.R.Archer.2009.Belowgroundcarbonstorageanddynamicsaccompanyingwoodyplantencroachmentinasubtropicalsavanna.InSoilcarbonsequestrationandthegreenhouseeffect,2ndedition,R.LalandR.F.Follett(eds.).Madison,WI:SSSASpecialPublication.

Boutton,T.W.,andJ.D.Liao.2010.Changesinsoilnitrogenstorageandδ15Nwithwoodyplantencroachmentinasubtropicalsavannaparklandlandscape.JournalofGeophysicalResearch,115.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-118

Bouwman,A.F.,L.J.M.Boumans,andN.H.Batjes.2002.EmissionsofN2OandNOfromfertilizedfields:Summaryofavailablemeasurementdata.GlobalBiogeochemicalCycles,16(4):1058.

Bowman,R.A.,andR.L.Anderson.2002.ConservationReserveProgram:EffectsonsoilorganiccarbonandpreservationwhenconvertingbacktocroplandinnortheasternColorado.JournalofSoilandWaterConservation,57(2):121‐126.

Brandle,J.,L.Hodges,J.Tyndall,andR.Sudmeyer.2009.Windbreakpractices.InNorthAmericanAgroforestry,anintegratedscienceandpractice,G.HE(ed.).Madison,WI:AmericanSocietyofAgronomy.

Brandle,J.R.,B.B.Johnson,andT.Akeson.1992.Fieldwindbreaks:Aretheyeconomical?JournalofProductionAgriculture,5:393‐398.

Brandt,L.,J.King,S.Hobbie,D.Milchunas,etal.2010.TheRoleofPhotodegradationinSurfaceLitterDecompositionAcrossaGrasslandEcosystemPrecipitationGradient.Ecosystems,13(5):765‐781.

Breitenbeck,G.A.,andJ.M.Bremner.1986a.Effectsofvariousnitrogenfertilizersonemissionofnitrousoxidefromsoils.BiologyandFertilityofSoils,2(4):195‐199.

Breitenbeck,G.A.,andJ.M.Bremner.1986b.Effectsofrateanddepthoffertilizerapplicationonemissionofnitrousoxidefromsoilfertilizedwithanhydrousammonia.BiologyandFertilityofSoils,2(4):201‐204.

Bremer,D.J.,andJ.M.Ham.2010.NetCarbonFluxesOverBurnedandUnburnedNativeTallgrassPrairie.RangelandEcology&Management,63(1):72‐81.

Bremner,J.M.,G.A.Breitenbeck,andA.M.Blackmer.1981.EffectofNitrapyrinonEmissionofNitrousOxidefromSoilFertilizedwithAnhydrousAmmonia.GeophysicalResearchLetters,8(4):353‐356.

Briske,D.D.,J.D.Derner,J.R.Brown,S.D.Fuhlendorf,etal.2008.RotationalGrazingonRangelands:ReconciliationofPerceptionandExperimentalEvidence.RangelandEcology&Management,61:3‐17.

Briske,D.D.,N.F.Sayre,L.Huntsinger,M.Fernandez‐Gimenez,etal.2011.Origin,persistence,andresolutionoftherotationalgrazingdebate:Integratinghumandimensionsintorangelandresearch.RangelandEcology&Management,64:325‐334.

Broadbent,F.E.1960.FactorsinfluencingthedecompositionoforganicsoilsoftheCaliforniadelta:UniversityofCalifornia.

Bronson,K.F.,A.R.Mosier,andS.R.Bishnoi.1992.NitrousOxideEmissionsinIrrigatedCornasAffectedbyNitrificationInhibitors.SoilScienceSocietyofAmericaJournal,56(1):161‐165.

Brown,J.,J.Angerer,S.W.Salley,R.Blaisdell,etal.2010.ImprovingestimatesofrangelandcarbonsequestrationpotentialintheUSSouthwest.RangelandEcology&Management,61(1):147‐154.

Brown,J.R.2010.EcologicalSites:TheirHistory,Status,andFuture.Rangelands,32(6):5‐8.Burford,J.R.,R.J.Dowdell,andR.Crees.1981.Emissionofnitrousoxidetotheatmospherefrom

direct‐drilledandploughedclaysoils.JournaloftheScienceofFoodandAgriculture,32(3):219‐223.

Burton,D.L.,X.Li,andC.A.Grant.2008a.InfluenceoffertilizernitrogensourceandmanagementpracticeonN2OemissionsfromtwoBlackChernozemicsoils.CanadianJournalofSoilScience,88:219‐227.

Burton,D.L.,B.J.Zebarth,K.M.Gillarn,andJ.A.MacLeod.2008b.EffectofsplitapplicationoffertilizernitrogenonN2Oemissionsfrompotatoes.CanadianJournalofSoilScience,88:229‐239.

Cairns,M.A.,S.Brown,E.H.Helmer,andG.A.Baumgardner.1997.Rootbiomassallocationintheworld'suplandforests.Oecologia,111(1).

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-119

Cardenas,L.M.,R.Thorman,N.Ashlee,M.Butler,etal.2010.QuantifyingannualN2Oemissionfluxesfromgrazedgrasslandunderarangeofinorganicfertilisernitrogeninputs.Agriculture,Ecosystems&Environment,136:218‐226.

Case,S.D.C.,N.McNamara,D.Reay,andJ.Whitaker.2013.CanbiocharreducesoilgreenhousegasemissionsfromaMiscanthusbioenergycrop?GCBBioenergy,6(1):76‐89.

CAST.2004.ClimateChangeandGreenhouseGasMitigation:ChallengesandOpportunitiesforAgriculture.Ames,Iowa:CouncilforAgriculturalScienceandTechnology.

CAST.2011.CarbonSequestrationandGreenhouseGasFluxesinAgriculture:ChallengesandOpportunities:CouncilforAgriculturalScienceandTechnology.

Cavigelli,M.,andT.Parkin.2012.CroplandManagementContributionstoGreenhouseGasFlux:CentralandEasternU.S.InManagingAgriculturalGreenhouseGasesM.Liebig,A.FranzluebbersandR.Follett(eds.).London,UK:AcademicPress.

Cayuela,M.L.,L.vanZweiten,B.P.Singh,S.Jeffrey,etal.2010.UnweatheredWoodBiocharImpactonNitrousOxideEmissionsfromaBovine‐Urine‐AmendedPastureSoil.SoilScienceSocietyofAmericaJournal,74:852‐860.

Chan,A.S.K.,andT.B.Parkin.2001.Effectoflanduseonmethanefluxfromsoil.JournalofEnvironmentalQuality,30(3):786‐797.

Chang,C.,C.M.Cho,andD.H.Janzen.1998.Nitrousoxideemissionfromlong‐termmanuredsoils.SoilScienceSocietyAmericaJournal,62:677‐682.

Chen‐Ching,C.1996.TheN2Oemissionfrompaddysoil:Effectsofinorganicnitrogenfertilizerandricevarieties.JournaloftheAgriculturalAssociationofChina,174:111‐133.

Chen,D.,Y.Li,P.R.Grace,andA.Mosier.2008.N2Oemissionsfromagriculturallands:asynthesisofsimulationapproachesPlantandSoil,309:169‐189.

Cheng,K.,S.M.Ogle,W.J.Parton,andG.Pan.2013.PredictingmethanogenesisfromricepaddiesusingtheDAYCENTecosystemmodel.EcologicalModeling,261‐262:19‐31.

Cheng,W.,Y.Nakajima,S.Sudo,H.Akiyama,etal.2002.N2OandNOemissionsfromafieldofChinesecabbageasinfluencedbybandapplicationofureaorcontrolled‐releaseureafertilizers.NutrientCyclinginAgroecosystems,63:231‐238.

Chu,H.Y.,Y.Hosen,andK.Yagi.2007.NO,N2O,CH4andfluxesinwinterbarleyfieldofJapaneseAndisolasaffectedbyNfertilizermanagement.SoilBiology&Biochemistry,39:330‐339.

Clark,J.T.,J.R.Russell,D.L.Karlen,P.L.Singleton,etal.2004.Soilsurfacepropertyandsoybeanyieldresponsetocornstovergrazing.AgronomyJournal,96:1364‐1371.

Clough,T.J.,J.E.Bertram,J.L.Ray,L.M.Condron,etal.2010.UnweatheredWoodBiocharImpactonNitrousOxideEmissionsfromaBovine‐Urine‐AmendedPastureSoil.SoilScienceSocietyofAmericaJournal,74(3):852‐860.

Conant,R.,J.Six,andK.Paustian.2003.LanduseeffectsonsoilcarbonfractionsinthesoutheasternUnitedStates.I.Management‐intensiveversusextensivegrazing.BiologyandFertilityofSoils,38(6):386‐392.

Conant,R.T.,K.Paustian,andE.T.Elliott.2001.Grasslandmanagementandconversionintograssland:Effectsonsoilcarbon.EcologicalApplications,11(2):343–355.

Conant,R.T.,M.Easter,K.Paustian,A.Swan,etal.2007.ImpactsofperiodictillageonsoilCstocks:Asynthesis.Soil&TillageResearch,95(1‐2):1‐10.

Conant,R.T.,M.G.Ryan,G.I.Ågren,H.E.Birge,etal.2011.Temperatureandsoilorganicmatterdecompositionrates–synthesisofcurrentknowledgeandawayforward.GlobalChangeBiology,17(11):3392‐3404.

Creamer,C.,T.R.Filley,I.Kantola,andT.W.Boutton.2011.Controlsonsoilcarbonaccumulationduringwoodyplantencroachmentintograsslands:Evidencefromphysicalfractionation,soilrespiration,andtheisotopiccompositionofrespiredCO2.SoilBiologyandBiochemistry,(inpress).

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-120

Cui,M.,X.C.Sun,C.X.Hu,H.J.Di,etal.2011.EffectiveMitigationofNitrateLeachingandNitrousOxideEmissionsinIntensiveVegetableProductionSystemsUsingaNitrificationInhibitor,Dicyandiamide.JournalofSoilsandSediments,11(5):722‐730.

Dahl,T.E.,andC.E.Johnson.1991.WetlandslossesintheUnitedStates,1780'sto1980's.ReporttotheCongress.Washington,DC:U.S.FishandWildlifeService.

Dai,X.,T.W.Ansley,M.Hailemichael,andK.E.Jessup.2006.Soilcarbonandnitrogenstorageinresponsetofireinatemperatemixed‐grasssavanna.JournalofEnvironmentalQuality,35:1620‐1628.

Daly,C.,M.Halbleib,J.I.Smith,W.P.Gibson,etal.2008.PhysiographicallysensitivemappingofclimatologicaltemperatureandprecipitationacrosstheconterminousUnitedStates.InternationalJournalofClimatology,28:2031‐2064.

Dao,T.H.,J.H.Stiegler,J.C.Banks,L.B.Boerngen,etal.2002.PostcontractlanduseeffectsonsoilcarbonandnitrogeninConservationReservegrasslands.AgronomyJournal,94:146‐152.

Davidson,E.,andI.Ackerman.1993.Changesinsoilcarboninventoriesfollowingcultivationofpreviouslyuntilledsoils.Biogeochemistry,20(3):161‐193.

Davidson,E.,M.Keller,H.E.Erickson,L.Verchot,etal.2000.Testingaconceptualmodelofsoilemissionsofnitrousandnitricoxide.Bioscience,50:667‐680.

Davidson,E.A.1991.Fluxesofnitrousoxideandnitricoxidefromterrestrialecosystems.InMicrobialProductionandConsumptionofGreenhouseGases:Methane,NitrousOxide,andHalomethanesD.E.RogersandW.B.Whitman(eds.).Washington:AmericanSocietyforMicrobiology.

Davidson,E.A.1992.Sourcesofnitricoxideandnitrousoxidefollowingwettingofdrysoil.SoilScienceSocietyofAmericaJournal,56:95‐102.

deKlein,C.,R.S.A.Novoa,S.Ogle,K.A.Smith,etal.2006.Chapter11:N2Oemissionsfrommanagedsoil,andCO2emissionsfromlimeandureaapplication.In2006IPCCguidlinesfornationalgreenhousegasinventories,Vol.4:Agriculture,forestryandotherlanduse,S.Eggleston,L.Buendia,K.Miwa,T.NgaraandK.Tanabe(eds.).Kanagawa,Japan:IGES.

deKlein,C.A.M.,R.R.Sherlock,K.C.Cameron,andT.J.vanderWeerden.2001.NitrousoxideemissionsfromagriculturalsoilsinNewZealand—Areviewofcurrentknowledgeanddirectionsforfutureresearch.JournaloftheRoyalSocietyofNewZealand,31(3):543‐574.

deKlein,C.A.M.,K.C.Cameron,H.J.Di,G.Rys,etal.2011.RepeatedAnnualUseoftheNitrificationInhibitorDicyandiamide(Dcd)DoesNotAlterItsEffectivenessinReducingN2OEmissionsfromCowUrine.AnimalFeedScienceandTechnology,166‐167:480‐491.

DelGrosso,S.,W.Parton,A.Mosier,D.S.Ojima,etal.2000a.GeneralCH4oxidationmodelandcomparisonsofCH4oxidationinnaturalandmanagedsystems.GlobalBiogeochemicalCycles,14:999‐1019.

DelGrosso,S.,S.Ogle,W.Parton,andF.J.Breidt.2010.EstimatinguncertaintyinN2OemissionsfromU.S.croplandsoils.GlobalBiogeochemicalCycles,24(1).

DelGrosso,S.J.,W.J.Parton,A.R.Mosier,D.S.Ojima,etal.2000b.GeneralmodelforN2OandN2gasemissionsfromsoilsduetodenitrification.GlobalBiogeochemicalCycles,14:1045‐1060.

DelGrosso,S.J.,A.R.Mosier,W.J.Parton,andD.S.Ojima.2005.DAYCENTmodelanalysisofpastandcontemporarysoilN2OandnetgreenhousegasfluxformajorcropsintheUSA.SoilTillageResearch,83:9‐24.

DelGrosso,S.J.,A.D.Halvorson,andW.J.Parton.2008a.TestingDAYCENTModelSimulationsofCornYieldsandNitrousOxideEmissionsinIrrigatedTillageSystemsinColorado.JournalofEnvironmentalQuality,37(4):1383‐1389.

DelGrosso,S.J.,T.Wirth,S.M.Ogle,andW.J.Parton.2008b.EstimatingAgriculturalNitrousOxideEmissions.EOS,Transactions,AmericanGeophysicalUnion,89(51):529‐540.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-121

DelGrosso,S.J.,D.S.Ojima,W.J.Parton,E.Stehfest,etal.2009.GlobalscaleDAYCENTmodelanalysisofgreenhousegasemissionsandmitigationstrategiesforcroppedsoils.GlobalandPlanetaryChange,67(1‐2):44‐50.

DelGrosso,S.J.,W.J.Parton,C.A.Keough,andM.Reyes‐Fox.2011.SpecialFeaturesoftheDayCentModelingPackageandAdditionalProceduresforParameterization,Calibration,Validation,andApplications.InMethodsofIntroducingSystemModelsintoAgriculturalResearch,L.R.AhujaandL.Ma(eds.).Madison,WI:SoilScienceSocietyofAmerica.

Delgado,J.A.,andA.R.Mosier.1996.MitigationAlternativestoDecreaseNitrousOxidesEmissionsandUrea‐NitrogenLossandTheirEffectonMethaneFlux.JournalofEnvironmentalQuality,25(5):1105‐1111.

Delgado,J.A.,A.R.Mosier,R.H.Follett,R.F.Follet,etal.1996.EffectsofNmanagementonN2OandCH4fluxesand15N.NutrientCyclinginAgroecosystems,46(2):127‐134.

DeLonge,M.S.,R.Ryals,andW.L.Silver.2013.ALifecycleModeltoEvaluateCarbonSequestrationPotentialandGreenhouseGasDynamicsofManagedGrasslands.EcosystemsandEnvironment,16:962‐979.

Dendooven,L.,E.Bonhomme,R.Merckx,andK.Vlassak.1998.Injectionofpigslurryanditseffectsondynamicsofnitrogenandcarboninaloamysoilunterlaboratoryconditions.BiologyandFertilityofSoils,27(1):5‐8.

Denef,K.,C.E.Stewart,J.Brenner,andK.Paustian.2008.Doeslong‐termcenter‐pivotirrigationincreasesoilcarbonstocksinsemi‐aridagro‐ecosystems?Geoderma,145(1‐2):121‐129.

Derner,J.D.,T.W.Boutton,andD.D.Brisk.2006.GrazingandecosystemcarbonstorageintheNorthAmericanGreatPlains.PlantSoil,280(77‐90).

Derner,J.D.,andG.E.Schuman.2007.Carbonsequestrationandrangelands:Asynthesisoflandmanagementandprecipitationeffects.JournalofSoilandWaterConservation,62(2):77–85.

Deverel,S.J.,andS.Rojstaczer.1996.SubsidenceofAgriculturalLandsintheSacramento‐SanJoaquinDelta,California:RoleofAqueousandGaseousCarbonFluxes.WaterResourcesResearch,32(8):2359‐2367.

Deverel,S.J.,B.Wang,andS.Rojstaczer.1998.Subsidenceoforganicsoils,Sacramento‐SanJoaquinDelta,California.InLandSubsidenceCaseStudiesandCurrentResearch,J.W.Borchers(ed.):AssociationofEngineeringGeologistSpecialPublicationNo.8.

Devito,K.J.,D.Fitzgerald,A.R.Hill,andR.Aravena.2000.Nitratedynamicsinrelationtolithologyandhydrologicflowpathinariverriparianzone.JournalofEnvironmentalQuality,29(4):1075‐1084.

Ding,W.,Y.Cai,X.Cai,K.Yagi,etal.2007.Nitrousoxideemissionsfromanintensivelycultivatedmaize‐wheatrotationinsoilintheNorthChinaPlain.ScienceandtheTotalEnvironment,373.

Dittert,K.,R.Bol,R.King,D.Chadwick,etal.2001.UseofanovelnitrificationinhibitortoreducenitrousoxideemissionfromN15‐labelleddairyslurryinjectedintosoil.RapidCommunicationsinMassSpectrometry,15:1291‐1296.

Dixon,R.K.,A.M.Solomon,S.Brown,R.A.Houghton,etal.1994.CarbonPoolsandFluxofGlobalForestEcosystems.Science,263(5144):185‐190.

Dobbie,K.E.,andK.A.Smith.2003.ImpactofDifferentFormsofNFertilizeronN2OEmissionsfromIntensiveGrassland.NutrientCyclinginAgroecosystems,67(1):37‐46.

Doran,J.W.,E.T.Elliott,andK.Paustian.1998.Soilmicrobialactivity,nitrogencycling,andlong‐termchangesinorganiccarbonpoolsasrelatedtofallowtillagemanagement.Soil&TillageResearch,49:3‐18.

Dorr,H.,L.Katru,andI.Levin.1993.Soiltextureparameterizationofthemethaneuptakeinaeratedsoils.Chemosphere,26(697‐713).

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-122

Dosskey,M.G.,P.Vidon,N.P.Gurwick,C.J.Allan,etal.2010.Theroleofriparianvegetationinprotectingandimprovingchemicalwaterqualityinstreams.JournaloftheAmericanWaterResourcesAssociation,46(2):261‐277.

Drury,C.F.,W.D.Reynolds,C.S.Tan,T.W.Welacky,etal.2006.EmissionsofNitrousOxideandCarbonDioxide.SoilScienceSocietyofAmericaJournal,70(2):570‐581.

Dunfield,P.,E.Topp,C.Archambault,andR.Knowles.1995.EffectofnitrogenfertilizersandmoisturecontentonCH4andN2Ofluxesinahumisol:Measurementsinthefieldandintactsoilcores.Biogeochemistry,29(3):199‐222.

Dunn,B.H.,A.J.Smart,R.N.Gates,P.S.Johnson,etal.2010.Long‐TermProductionandProfitabilityFromGrazingCattleintheNorthernMixedGrassPrairie.RangelandEcology&Management,63(2):233‐242.

Duxbury,J.M.,D.R.Bouldin,R.E.Terry,andR.L.Tate.1982.Emissionsofnitrousoxidefromsoils.Nature,298(5873):462‐464.

Eagle,A.J.,L.R.Henry,L.P.Olander,K.Haugen‐Kozyra,etal.2010.GreenhouseGasMitigationPotentialofAgriculturalLandManagementintheUnitedStates.ASynthesisoftheLiterature:NicholasInstituteEnvironmentalPolicySolutions.

Eghball,B.,L.N.Mielke,D.L.McCallister,andJ.W.Doran.1994.Distributionoforganiccarbonandinorganicnitrogeninasoilundervarioustillageandcropsequences.JournalofSoilandWaterConservation,49(2):201‐205.

Elgood,Z.,W.D.Robertson,S.L.Schiff,andR.Elgood.2010.Greenhousegasproductioninastreambedbioreactorfornitrateremoval.EcologicalEngineering,36:1575‐1580.

Elmi,A.,C.Madramootoo,C.Hamel,andA.Liu.2003.Denitrificationandnitrousoxidetonitrousoxideplusdinitrogenratiosinthesoilprofileunderthreetillagesystems.BiologyandFertilityofSoils,38(6):340‐348.

Emmerich,W.E.2003.Carbondioxidefluxesinasemiaridenvironmentwithhighcarbonatesoils.AgriculturalandForestMeteorology,116:91‐102.

Engel,R.,D.L.Liang,R.Wallander,andA.Bembenek.2010.InfluenceofUreaFertilizerPlacementonNitrousOxideProductionfromaSiltLoamSoil.JournalofEnvironmentalQuality,39(1):115‐125.

Entry,J.A.,R.E.Sojka,andG.E.Shewmaker.2002.Managementofirrigatedagriculturetoincreaseorganiccarbonstorageinsoil.SoilScienceSocietyofAmericaJournal,66:1957‐1964.

Entry,J.A.,R.E.Sojka,andG.E.Shewmaker.2004.Irrigationincreasesinorganiccarboninagriculturalsoils.EnvironmentalManagement,33:S309‐S317.

Errebhi,M.,C.J.Rosen,S.C.Gupta,andD.E.Birong.1998.PotatoYieldResponseandNitrateLeachingasInfluencedbyNitrogenManagement.AgronomyJournal,90(1):10‐15.

ERS.2011.U.S.FertilizerUseandPriceUSDAEconomicResearchService.RetrievedJune17fromhttp://www.ers.usda.gov/Data/FertilizerUse/.

Euliss,N.H.,Jr.,N.Bliss,S.Bristol,W.Dean,etal.2006.TheEfficacyofaNationalModeltoAssessandQuantifytheEcosystemServicesProvidedbyUSDAandUSDOIConservationPrograms:ThePrairiePotholeRegionasaRegionalPilot.Jamestown,ND:U.S.GeologicalSurvey,NorthernPrairieWildlifeResearchCenter.

Fargione,J.,J.Hill,D.Tilman,S.Polasky,etal.2008.LandClearingandtheBiofuelCarbonDebt.Science,319(5867):1235‐1238.

Feng,J.,C.Chen,Y.Zhang,Z.Song,etal.2013.Impactsofcroppingpracticesonyield‐scaledgreenhousegasemissionsfromricefieldsinChina:Ameta‐analysis.Agriculture.EcosystemsandEnvironment,164:220‐228.

Fertilizer101.DictionaryRetrievedfromhttp://www.fertilizer101.org/dictionary/.Fierer,N.,andJ.P.Schimel.2002.Effectsofdrying‐rewettingfrequencyonsoilcarbonandnitrogen

transformations.SoilBiologyandBiochemistry,34(6):777‐787.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-123

Firestone,M.,andE.Davidson.1989.MicrobiologicalbasisofNOandN2Oproductionandconsumptioninsoil.InExchangeoftracegasesbetweenterrestrialecosystemsandtheatmosphere,M.AndreaeandD.Schimel(eds.).Chichester,UK:JohnWiley&Sons.

Fitzgerald,G.J.,K.M.Scow,andJ.E.Hill.2000.FallowseasonstrawandwatermanagementeffectsonmethaneemissionsinCaliforniarice.GlobalBiogeochem.Cycles,14(3).

Fitzgerald,G.J.,Scow,K.M.,Hill,J.E.2000.FallowseasonstrawandwatermanagementeffectsonmethaneemissionsinCaliforniarice.GlobalBiogeochemicalCycles,14(3):767‐776.

Flechard,C.R.,P.Ambus,U.Skiba,R.M.Rees,etal.2007.EffectsofclimateandmanagementintensityonnitrousoxideemissionsingrasslandsystemsacrossEurope.Agriculture,Ecosystems&Environment,121(1‐2):135‐152.

Flessa,H.,andF.Beese.2000.Laboratoryestimatesoftracegasemissionsfollowingsurfaceapplicationandinjectionofcattleslurry.JournalofEnvironmentalQuality,29(1):262‐268.

Follett,R.F.2001.Soilmanagementconceptsandcarbonsequestrationincroplandsoils.Soil&TillageResearch,61(1‐2):77–92.

Follett,R.F.,J.M.Kimble,andR.Lal.2001.ThepotentialofU.S.grazinglandstosequestercarbonandmitigatethegreenhouseeffect.BocaRaton,FL:CRCPress.

Follett,R.F.,J.M.Kimble,E.G.Pruessner,S.Samson‐Liebig,etal.2009.SoilorganicCstockswithdepthandlanduseatvariousUSsites.Madison,WI:ASA‐CSSA‐SSSA.

Fornara,D.A.,S.Steinbeiss,N.P.McNamara,G.Gleixner,etal.2011.Increasesinsoilorganiccarbonsequestrationcanreducetheglobalwarmingpotentialoflong‐termlimingtopermanentgrassland.GlobalChangeBiology,17(5):1925‐1934.

Franzluebbers,A.J.,J.A.Stuedemann,H.H.Schomberg,andS.R.Wilkinson.2000.SoilorganicCandNpoolsunderlong‐termpasturemanagementintheSouthernPiedmontUSA.SoilBiologyandBiochemistry,32(4):469‐478.

Franzluebbers,A.J.,andJ.L.Steiner.2002.Climaticinfluencesonsoilorganiccarbonstoragewithnotillage.InAgriculturalPracticesandPoliciesforCarbonSequestrationinSoil,J.M.Kimble,R.LalandR.F.Follett(eds.).BocaRaton,FL:CRCPress.

Franzluebbers,A.J.2005.SoilorganiccarbonsequestrationandagriculturalgreenhousegasemissionsinthesoutheasternUSA.Soil&TillageResearch,83(1):120–147.

Franzluebbers,A.J.,andJ.A.Stuedemann.2009.Soil‐profileorganiccarbonandtotalnitrogenduring12yearsofpasturemanagementintheSouthernPiedmontUSA.Agriculture,Ecosystems&Environment,129(1‐3):28‐36.

Franzluebbers,A.J.2010a.AchievingsoilorganiccarbonsequestrationwithconservationagriculturalsystemsinthesoutheasternUnitedStates.SoilScienceSocietyofAmericaJournal,74(2):347–357.

Franzluebbers,A.J.2010b.SoilorganiccarboninmanagedpasturesofthesoutheasternUnitedStatesofAmerica.InGrasslandcarbonsequestration:Management,policyandeconomics,M.Abberton,R.T.ConantandC.Batello(eds.).Rome,Italy:FAO,Integr.CropManage.

Franzluebbers,A.J.,L.B.Owens,G.C.Sigua,C.A.Cambardella,etal.2012.Soilorganiccarbonunderpasturemanagement.InManagingagriculturalGHGs:CoordinatedagriculturalresearchthroughGRACEnettoaddressourchangingclimate.SanDiego,CA:AcademicPress.

Fujinuma,R.,R.T.Venterea,andC.J.Rosen.2011.BroadcastureareducesN2OemissionsbutincreasesNOemissionscomparedwithconventionalandshallow‐appliedanhydrousammoniainacoarse‐texturedsoil.SubmittedtoJournalofEnvironmentalQuality.

Gagnon,B.,andN.Ziadi.2010.Graincornandsoilnitrogenresponsestosidedressnitrogensourcesandapplication.AgronomyJournal,102:1014‐1022.

Gagnon,B.,N.Ziadi,P.Rochette,M.H.Chantigny,etal.2011.FertilizerSourceInfluencedNitrousOxideEmissionsfromaClaySoilunderCorn.SoilScienceSocietyofAmericaJournal,75(2):595‐604.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-124

Garrett,H.E.2009.NorthAmericanAgroforestry:AnIntegratedScienceandPractice,2nded.Madison,WI:AmericanSocietyofAgronomy,Inc.

Gebhart,D.L.,H.B.Johnson,H.S.Mayeux,andH.W.Polley.1994.TheCRPincreasessoilorganiccarbon.JournalofSoilandWaterConservation,49(5):488‐492.

Gehl,R.J.,J.P.Schmidt,L.R.Stone,A.J.Schlegel,etal.2005.Insitumeasurementsofnitrateleachingimplicatepoornitrogenandirrigationmanagementonsandysoils.JournalofEnvironmentalQuality,34:2243‐2254.

Gelfand,I.,T.Zenone,P.Jasrotia,J.Chen,etal.2011.CarbondebtofConservationReserveProgram(CRP)grasslandsconvertedtobioenergyproduction.ProceedingsoftheNationalAcademyofSciences,108(33):13864‐13869.

Ghosh,S.,D.Majumdar,andM.C.Jain.2003.MethaneandNitrousOxideEmissionsfromanIrrigatedRiceofNorthIndia.Chemosphere,51(3):181‐195.

Gill,R.A.,I.C.Burke,W.K.Lauenroth,andD.Milchunas.2002.Longevityandturnoverofrootsintheshortgrasssteppe:influenceofdiameteranddepth..PlantEcology,159:241‐251.

Gilley,J.E.,J.W.Doran,D.L.Karlen,andT.C.Kaspar.1997.Runoff,erosion,andsoilqualitycharacteristicsofaformerConservationReserveProgramsite.JournalofSoilandWaterConservation,52(3):189‐193.

Giltrap,D.,C.Li,andS.Saggar.2010.DNDC:Aprocess‐basedmodelforgreenhousegasfluxesfromagriculturalsoils.Agriculture,EcosystemsandEnvironment,136:292‐300.

Gleason,R.,N.H.Euliss,Jr.,B.A.Tangen,M.Laubhan,etal.2009.USDAConservationProgramandPracticeEffectsonWetlandEcosystemServicesinthePrairiePotholeRegion.EcologicalApplications,21(3):S65‐S81.

Gold,M.A.,andH.E.Garrett.2009.Agroforestrynomenclature,conceptsandpractices.Madison,WI:AmericanSocietyofAgronomy.

Grace,P.R.,D.Rowlings,I.Rochester,R.Kiese,etal.2010.NitrousoxideemissionsfromirrigatedcottonsoilsofnorthernAustralia.InSoilSolutionsforaChangingWorld:Proceedingsofthe19thWorldCongressofSoilScience,1‐6August2010,R.GilkesandN.Prakongkep(eds.).Brisbane,Australia.

Grandy,A.S.,T.D.Loecke,S.Parr,andG.P.Robertson.2006.Long‐TermTrendsinNitrousOxideEmissions,SoilNitrogen,andCropYieldsofTillandNo‐TillCroppingSystems.JournalofEnvironmentalQuality,35(4):1487‐1495.

Greenwood,K.L.,andB.M.McKenzie.2001.Grazingeffectsonsoilphysicalpropertiesandtheconsequencesforpastures:areview.AustralianJournalofExperimentalAgriculture,41(8):1231‐1250.

Gregg,J.S.,andR.C.Izaurralde.2010.Effectofcropresidueharvestonlong‐termcropyield,soilerosionandnutrientbalance:trade‐offsforasustainablebioenergyfeedstock.Biofuels,1(1):69‐83.

Griggs,B.R.,R.J.Norman,C.E.Wilson,andN.A.Slaton.2007.AmmoniaVolatilizationandNitrogenUptakeforConventionalandConservationTilledDry‐Seeded,Delayed‐FloodRice.SoilScienceSocietyofAmericaJournal,71(3):745‐751.

Groffman,P.M.1985.NitrificationandDenitrificationinConventionalandNo‐TillageSoils.SoilScienceSocietyofAmericaJournal,49(2):329‐334.

Hadi,A.,O.Jumadi,K.Inubushi,andK.Yagi.2008.MitigationOptionsforN2OEmissionfromaCornFieldinKalimantan,Indonesia.Soilscienceandplantnutrition,54(4):644‐649.

Haile,S.G.,V.D.Nair,andP.K.R.Nair.2010.ContributionoftreestocarbonstorageinsoilsofsilvopastoralsystemsinFlorida,USA.GlobalChangeBiology,16(1):427‐438.

Halvorson,A.D.,S.J.DelGrosso,andC.A.Reule.2008.Nitrogen,Tillage,andCropRotationEffectsonNitrousOxideEmissionsfromIrrigatedCroppingSystems.JournalofEnvironmentalQuality,37(4):1337‐1344.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-125

Halvorson,A.D.,S.J.DelGrosso,andF.Alluvione.2010a.NitrogenSourceEffectsonNitrousOxideEmissionsfromIrrigatedNo‐TillCorn.JournalofEnvironmentalQuality,39(5):1554‐1562.

Halvorson,A.D.,S.J.DelGrosso,andF.Alluvione.2010b.TillageandInorganicNitrogenSourceEffectsonNitrousOxideEmissionsfromIrrigatedCroppingSystems.SoilScienceSocietyofAmericaJournal,74(2):436‐445.

Halvorson,A.D.,S.J.DelGrosso,andC.P.Jantalia.2011.NitrogenSourceEffectsonSoilNitrousOxideEmissionsfromStrip‐TillCorn.JournalofEnvironmentalQuality,40(6):1775‐1786.

Halvorson,A.D.,andS.J.D.Grosso.2012.NitrogenSourceandPlacementEffectsonSoilNitrousOxideEmissionsfromNo‐TillCorn.JournalofEnvironmentalQuality,41(5):1349‐1360.

Halvorson,A.D.,andS.J.DelGrosso.2013.Nitrogenplacementandsourceeffectsonnitrousoxideemissionsandyieldsofirrigatedcorn.JournalofEnvironmentalQuality,42(Inpress).

Halvorson,A.D.,C.S.Snyder,A.D.Blaylock,andS.J.DelGrosso.Inreview.EnhancedEfficiencyNitrogenFertilizers:PotentialRoleinNitrousOxideEmissionMitigation.AgronomyJournal.

Hamilton,S.K.,A.L.Kurzman,C.Arango,L.Jin,etal.2007.Evidenceforcarbonsequestrationbyagriculturalliming.GlobalBiogeochemicalCycles,21(2):GB2021.

Hao,X.,C.Chang,J.M.Carefoot,H.H.Janzen,etal.2001.Nitrousoxideemissionsfromanirrigatedsoilasaffectedbyfertilizerandstrawmanagement.NutrientCyclinginAgroecosystems,60(1):1‐8.

Harden,J.W.,J.M.Sharpe,W.J.Parton,D.S.Ojima,etal.1999.Dynamicreplacementandlossofsoilcarbononerodingcropland.GlobalBiogeochemicalCycles,13:885‐901.

Harden,J.W.,A.A.Berhe,M.Torn,J.Harte,etal.2008.Soilerosion:datasayCsink.Science,320(5873):178‐179.

Harmoney,K.R.,K.J.Moore,J.R.George,E.C.Brummer,etal.1997.Determinationofpasturebiomassusingfourindirectmethods.AgronomyJournal,89:665‐672.

Hartz,T.K.,andP.R.Johnstone.2006.Nitrogenavailablefromhigh‐nitrogen‐containingorganicfertilizers.HortTechnology,16:39‐42.

Heitschmidt,R.K.,andC.A.J.Taylor.1991.Livestockproduction.InGrazingManagement:AnEcologicalPerspective,R.K.H.a.J.W.Stuth(ed.).Portland,OR:TimberPress.

Hénault,C.,A.Grossel,B.Mary,M.Roussel,etal.2012.Nitrousoxideemissionbyagriculturalsoils:areviewofspatialandtemporalvariabilityformitigation.Pedosphere,22:426‐433.

Hoben,J.P.,R.J.Gehl,N.Millar,P.R.Grace,etal.2011.Nonlinearnitrousoxide(N2O)responsetonitrogenfertilizerinon‐farmcorncropsoftheUSMidwest.GlobalChangeBiology,17(2):1140‐1152.

Hollister,E.B.,C.W.Schadt,A.V.Palumbo,R.JamesAnsley,etal.2010.StructuralandfunctionaldiversityofsoilbacterialandfungalcommunitiesfollowingwoodyplantencroachmentinthesouthernGreatPlains.SoilBiologyandBiochemistry,42(10):1816‐1824.

Hosen,Y.,K.Paisancharoen,andH.Tsuruta.2002.EffectsofdeepapplicationofureaonNOandN2OemissionsfromanAndisol.NutrientCyclinginAgroecosystems,63(2):197‐206.

Hou,A.X.,andH.Tsuruta.2003.NitrousoxideandnitricoxidefluxesfromanuplandfieldinJapan:effectofureatype,placement,andcropresidues.NutrientCyclinginAgroecosystems,65:191‐200.

Houghton,R.A.,J.L.Hackler,andK.T.Lawrence.1999.TheU.S.CarbonBudget:ContributionsfromLand‐UseChange.Science,285(5427):574‐578.

Huang,Y.,R.L.Sass,andF.M.F.Jr.1997.MethaneemissionfromTexasricepaddysoils.1.Quantitativemulti‐yeardependenceofCH4emissiononsoil,cultivarandgrainyield.GlobalChangeBiology,3:479‐489.

Hue,N.V.OrganicFertilizersinSustainableAgricultureRetrievedfromhttp://www.ctahr.hawaii.edu/huen/hue_organic.htm.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-126

Hultgreen,G.,andP.Leduc.2003.Theeffectofnitrogenfertilizerplacement,formulation,timing,andrateongreenhousegasemissionsandagronomicperformance:AgricultureAgri‐FoodCanada,PrairieAgriculturalMachineryInstitute.

Hyatt,C.R.,R.T.Venterea,C.J.Rosen,M.McNearney,etal.2010.Polymer‐CoatedUreaMaintainsPotatoYieldsandReducesNitrousOxideEmissionsinaMinnesotaLoamySand.SoilScienceSocietyofAmericaJournal,74(2):419‐428.

Ingram,L.J.,P.D.Stahl,G.E.Schuman,J.S.Buyer,etal.2008.GrazingImpactsOnSoilCarbonAndMicrobialCommunitiesInAMixed‐grassEcosystem.SoilScienceSocietyofAmericaJournal,72(4):939‐948.

IPCC.1997.Revised1996IPCCGuidelinesforNationalGreenhouseGasInventories,PreparedbytheNationalGreenhouseGasInventoriesProgramme.Bracknell,UK:IntergovernmentalPanelonClimateChange.http://www.ipcc‐nggip.iges.or.jp/public/2006gl/vol4.html.

IPCC.2000.LandUse,Land‐UseChange,andForestry.UK:IntergovernmentalPanelonClimateChange.

IPCC.2001.ClimateChange2001:TheScientificBasis.ContributionforWorkingGroupItotheThirdAssessmentReportoftheIntergovernmentalPanelonClimateChange.NewYork,NY.

IPCC.2006.IPCCGuidelinesforNationalGreenhouseGasInventories.Japan:IGES.IPCC.2007.ContributionofWorkingGroupsI,IIandIIItotheFourthAssessmentReportofthe

IntergovernmentalPanelonClimateChangeCoreWritingTeam.Geneva,Switzerland:IntergovernmentalPanelonClimateChange.

Izaurralde,R.C.,W.B.McGill,J.A.Robertson,N.G.Juma,etal.2001.CarbonBalanceoftheBretonClassicalPlotsoverHalfaCentury.SoilScienceSocietyofAmericaJournal,65:431‐441.

Izaurralde,R.C.,J.R.Williams,W.M.Post,A.Thomson,etal.2007.Long‐termmodelingofsoilCerosionandsequestrationatthesmallwatershedscale.ClimaticChange,80:73‐90.

Jaffé,R.,Y.Ding,J.Niggemann,A.V.Vähätalo,etal.2013.GlobalCharcoalMobilizationfromSoilsviaDissolutionandRiverineTransporttotheOceans.Science,340(6130):345‐347.

Jambert,C.,R.Delmas,D.Serça,L.Thouron,etal.1997.N2OandCH4emissionsfromfertilizedagriculturalsoilsinsouthwestFrance.NutrientCyclinginAgroecosystems,48(1):105‐114.

Jelinski,N.A.,andC.J.Kucharik.2009.Land‐useEffectsonSoilCarbonandNitrogenonaU.S.MidwesternFloodplain.SoilScienceSocietyofAmericaJournal,73(1):217‐225.

Jenkins,J.C.,D.C.Chojnacky,L.S.Heath,andR.A.Birdsey.2003.National‐scalebiomassestimatorsforUnitedStatestreespecies.ForestScience,49(1):12‐35.

Jenkins,J.C.,D.C.Chojnacky,L.S.Heath,andR.A.Birdsey.2004.Comprehensivedatabaseofdiameter‐basedbiomassregressionsforNorthAmericantreespecies.NewtownSquare,PA:U.S.DepartmentofAgriculture,ForestService,NorthernResearchStation.

Ji,Y.,G.Liu,J.Ma,H.Xu,etal.2012.Effectofcontrolled‐releasefertilizeronnitrousoxideemissionfromawinterwheatfield.NutrientCyclinginAgroecosystems,94:111‐122.

Jiang,J.Y.,Z.H.Hu,W.J.Sun,andY.Huang.2010.NitrousoxideemissionsfromChinesecroplandfertilizedwitharangeofslow‐releasenitrogencompounds.Agriculture,Ecosystems&Environment,135:216‐225.

Jongedyk,H.A.,R.B.Hickok,I.D.Mayer,andN.K.Ellis.1950.SubsidenceofmucksoilsinnorthernIndiana.Indiana:PurdueUniversityAgriculturalExperimentStation.

Jumadi,O.,Y.Hala,A.Muis,A.Ali,etal.2008.InfluencesofChemicalFertilizersandaNitrificationInhibitoronGreenhouseGasFluxesinaCorn(ZeaMaysL.)FieldinIndonesia.Microbesandenvironments,23(1):29‐34.

Kaewpradit,W.,B.Toomsan,P.Vityakon,V.Limpinuntana,etal.2008.RegulatingmineralNreleaseandgreenhousegasemissionsbymixinggroundnutresiduesandricestrawunderfieldconditions.EuropeanJournalofSoilScience,59(4):640‐652.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-127

Kaiser,E.‐A.,andR.Ruser.2000.NitrousoxideemissionsfromarablesoilsinGermany—Anevaluationofsixlong‐termfieldexperiments.JournalofPlantNutritionandSoilScience,163(3):249‐259.

Kaiser,E.A.,K.Kohrs,M.Kücke,E.Schnug,etal.1998.Nitrousoxidereleasefromarablesoil:importanceofN‐fertilization,cropsandtemporalvariation.SoilBiologyandBiochemistry,30:1553‐1563.

Kallenbach,C.M.,D.E.Rolston,andW.R.Horwath.2010.CovercroppingaffectssoilN2OandCO2emissionsdifferentlydependingontypeofirrigation.Agriculture,Ecosystems&Environment,137(3‐4):251‐260.

Kammann,C.,L.Grünhage,C.Müller,S.Jacobi,andH.‐J.Jäger.1998.SeasonalvariabilityandmitigationoptionsforN2Oemissionsfromdifferentlymanagedgrasslands.EnvironmentalPollution,102(S1):179‐186.

Karki,U.,M.S.Goodman,andS.S.Sladden.2009.Nitrogensourceinfluencesonforageandsoilinyoungsouthern‐pinesilvopasture.Agriculture,Ecosystems&Environment,131(70‐76).

Karlen,D.L.,M.J.Rosek,J.C.Gardner,D.L.Allan,etal.1999.ConservationReserveProgrameffectsonsoilqualityindicators.JournalofSoilandWaterConservation,54(1):439‐444.

Kasimir‐Klemedtsson,Å.,L.Klemedtsson,K.Berglund,P.Martikainen,etal.1997.Greenhousegasemissionsfromfarmedorganicsoils:areview.SoilUseandManagement,13:245‐250.

Katayanagi,N.,Y.Furukawa,T.Fumoto,andY.Hosen.2012.ValidationoftheDNDC‐RicemodelbyusingCH4andN2Ofluxdatafromricecultivatedinpotsunderalternatewettinganddryingirrigationmanagement.Soilscienceandplantnutrition,58:360‐372.

Keeney,D.R.,andK.L.Sahrawat.1986.Nitrogentransformationsinfloodedsoils.FertilizerResearch,9:15‐38.

Keerthisinghe,D.G.,L.Xin‐Jian,L.Qi‐xiang,andA.R.Mosier.1995.EffectofencapsulatedcalciumcarbideandureaapplicationmethodsondenitrificationandNlossfromfloodedrice.NutrientCyclinginAgroecosystems,45(1):31‐36.

Kelly,K.B.,F.A.Phillips,andR.Baigent.2008.ImpactofdicyandiamideapplicationonnitrousoxideemissionsfromurinepatchesinnorthernVictoria,Australia.AustralianJournalofExperimentalAgriculture,48:156‐159.

Kennedy,T.L.,E.Suddick,andJ.Six.2013.ReducednitrousoxideemissionsandincreasedyieldsinCaliforniatomatocroppingsystemsunderdripirrigationandfertigation.Agriculture,Ecosystems&Environment,170:16‐27.

Kesik,M.,N.Brüggemann,R.Forkel,R.Kiese,etal.2006.FuturescenariosofN2OandNOemissionsfromEuropeanforestsoils.J.Geophys.Res.,111:2018‐2022.

Kessavalou,A.,R.A.Drijber,A.R.Mosier,J.W.Doran,etal.1998.Fluxesofcarbondioxide,nitrousoxide,andmethaneingrasssodandwinterwheat‐fallowtillagemanagement.JournalofEnvironmentalQuality,27(5):1094‐1104.

Kiese,R.,C.Li,D.W.Hilbert,H.Papen,etal.2005.RegionalapplicationofPnET‐DNDCforestimatingtheN2OsourcetrengthoftropicrainforestsintheWetTropicsofAustralia.GlobalChangeBiology,11:128‐144.

Kim,D.‐G.2008.Nitrousoxideandmethanefluxesinriparianbuffersandadjacentcropfields:IowaStateUniversity.

Kim,D.‐G.,T.M.Isenhart,T.B.Parkin,R.C.Schultz,etal.2010.MethaneFluxInCroplandAndAdjacentRiparianBuffersWithDifferentVegetationCovers.JournalofEnvironmentalQuality,39(1):97‐105.

Kim,D.‐G.,G.Hernandez‐Ramirez,andD.Giltrap.2013.Linearandnonlineardependencyofdirectnitrousoxideemissionsonfertilizernitrogeninput:ameta‐analysis.Agriculture,Ecosystems&Environment,168:53‐65.

Kimetu,J.M.,andJ.Lehmann.2010.Stabilityandstabilisationofbiocharandgreenmanureinsoilwithdifferentorganiccarboncontents.AustralianJournalofSoilRes.,48:577‐585.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-128

Kong,A.Y.,J.Six,D.C.Bryant,R.F.Denison,etal.2005.Therelationshipbetweencarboninput,aggregation,andsoilorganiccarbonstabilizationinsustainablecroppingsystems.SoilScienceSocietyofAmericaJournal,69:1078‐1085.

Kong,A.Y.,andJ.Six.2010.Tracingcovercroprootversusresiduecarbonintosoilsfromconventional,low‐Input,andorganiccroppingsystems.SoilScienceSocietyofAmericaJournal,74:1201‐1210.

Kool,D.M.,J.Dolfing,N.Wrage,andJ.W.VanGroenigen.2011.Nitrifierdenitrificationasadistinctandsignificantsourceofnitrousoxidefromsoil.SoilBiologyandBiochemistry,43(1):174‐178.

Kravchenko,A.N.,andG.P.Robertson.2011.Whole‐profilesoilcarbonstocks:Thedangerofassumingtoomuchfromanalysesoftoolittle.SoilScienceSocietyofAmericaJournal,75:235‐240.

Kucharik,C.J.2007.Impactofprairieageandsoilorderoncarbonandnitrogensequestration.SoilScienceSocietyofAmericaJournal,71:430‐441.

Kumar,B.M.,andP.K.R.Nair.2011.CarbonSequestrationPotentialofAgroforestrySystems:OpportunitiesandChallenges.AdvancesinAgronomy,8.

Kumar,U.,M.C.Jain,H.Pathak,S.Kumar,etal.2000.NitrousOxideEmissionfromDifferentFertilizersandItsMitigationbyNitrificationInhibitorsinIrrigatedRice.BiologyandFertilityofSoils,32(6):474‐478.

Kurbatova,J.,C.Li,A.Varlagin,X.Xiao,etal.2008.ModelingcarbondynamicsintwoadjacentspruceforestswithdifferentsoilconditionsinRussia.Biogeosciences,5:969‐980.

Ladha,J.K.,C.K.Reddy,A.T.Padre,andC.v.Kessel.2011.RoleofNitrogenFertilizationinSustainingOrganicMatterinCultivatedSoils.JournalofEnvironmentalQuality,40:1756‐1766.

Laird,D.A.,P.Fleming,D.D.Davis,R.Horton,etal.2010.ImpactofbiocharamendmentsonthequalityofatypicalMidwesternagriculturalsoil.Geoderma,158(3–4):443–449.

Lal,R.,J.M.Kimble,R.F.Follett,andC.Cole.1998.ThepotentialofUScroplandtosequesterCandmitigatethegreenhouseeffect.Chelsea,MI:AnnArborSciencePublishers.

Lal,R.2003.Soilerosionandtheglobalcarbonbudget.EnvironmentInternational,29(4):437‐450.Lal,R.,M.Griffin,J.Apt,L.Lave,etal.2004.ManagingSoilCarbon.Science,304(5669):393.Lal,R.,andD.Pimentel.2008.Soilerosion:acarbonsinkorsource?Science,319(5866):1040‐1042.Lasco,R.D.,S.Ogle,J.Raison,L.Verchot,etal.2006.Chapter5:Cropland.In2006IPCCGuidelinesfor

NationalGreenhouseGasInventories,S.Eggleston,L.Buendia,K.Miwa,T.NgaraandK.Tanabe(eds.).Japan:IGES,IPCCNationalGreenhouseGasInventoriesProgram.

Lehmann,J.2007a.Ahandfulofcarbon.Nature,447:143‐144.Lehmann,J.2007b.Bio‐energyintheblack.FrontiersinEcologyandtheEnvironment,5(7):381‐387.Lemke,R.L.,R.C.Izaurralde,andM.Nyborg.1998.Seasonaldistributionofnitrousoxideemissions

fromsoilsintheParklandregion.SoilScienceSocietyofAmericaJournal,62(5):1320‐1326.Lessard,V.C.2000.UpdatingIndianaannualforestinventoryandanalysisplotdatausingeastern

broadleafforestdiametergrowthmodels.ProceedingsoftheProceedingsoftheSecondAnnualForestInventoryandAnalysisSymposium,October17‐18,2000,SaltLakeCity,UT.

Lessard,V.C.,R.E.McRoberts,andM.R.Holdaway.2001.DiametergrowthmodelsusingMinnesotaforestinventoryandanalysisdata.ForestScience,47:301‐310.

Letica,S.A.,C.A.M.deKlein,C.J.Hoogendoorn,R.W.Tillman,etal.2010.Short‐termmeasurementofN2Oemissionsfromsheep‐grazedpasturereceivingincreasingratesoffertilisernitrogeninOtago,NewZealand.AnimalProductionScience,50:17‐24.

Levine,U.,K.Teal,G.Robertson,andT.M.Schmidt.2011.Agriculture’simpactonmicrobialdiversityandassociatedfluxesofcarbondioxideandmethane.InternationalSocietyforMicrobialEcology.

Li,C.,S.Frolking,andT.A.Frolking.1992.AModelofNitrousOxideEvolutionFromSoilDrivenbyRainfallEvents:2.ModelApplications.JournalofGeophysicalResearch,97(D9):9777‐9783.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-129

Li,C.,J.Aber,F.Stange,K.Butterbach‐Bahl,etal.2000.Aprocess‐orientedmodelofN2OandNOemissionsfromforestsoils:1.ModeldevelopmentJ.Geophys.Res.,105(D4):4369–4384.

Li,C.,J.Cui,G.Sun,andC.Trettin.2004.ModelingImpactsofManagementonCarbonSequestrationandTraceGasEmissionsinForestedWetlandEcosystems.EnvironmentalManagement,33:S176‐S186.

Liao,J.D.,T.W.Boutton,andJ.D.Jastrow.2006.Storageanddynamicsofcarbonandnitrogeninsoilphysicalfractionsfollowingwoodyplantinvasionofgrassland.SoilBiologyandBiochemistry,38(11):3184‐3196.

Liao,J.D.,andT.W.Boutton.2008.Soilmicrobialbiomassresponsetowoodyplantinvasionofgrassland.SoilBiologyandBiochemistry,40(5):1207‐1216.

Liebig,M.A.,J.A.Morgan,J.D.Reeder,B.H.Ellert,etal.2005.GreenhousegascontributionsandmitigationpotentialofagriculturalpracticesinnorthwesternUSAandwesternCanada.Soil&TillageResearch,83(1):25‐52.

Liebig,M.A.,J.R.Gross,S.L.Kronberg,J.D.Hanson,etal.2006.Soilresponsetolong‐termgrazinginthenorthernGreatPlainsofNorthAmerica.Agriculture,Ecosystems&Environment,115(1‐4):270‐276.

Liebig,M.A.,J.R.Gross,S.L.Kronberg,R.L.Phillips,etal.2010.Grazingmanagementcontributionstonetglobalwarmingpotential:along‐termevaluationintheNorthernGreatPlains.JournalofEnvironmentalQuality,39(3):799‐809.

Liebig,M.A.,X.Dong,J.E.T.McLain,andC.J.Dell.2012.GreenhousegasfluxfrommanagedgrasslandsintheU.S.,Chapter3.3.InManagingagriculturalGHGs:CoordinatedagriculturalresearchthroughGRACEnettoaddressourchangingclimate.SanDiego,CA:AcademicPress.

Lin,S.,J.Iqbal,R.Hu,J.Wu,etal.2011.Nitrousoxideemissionsfromrapefieldasaffectedbynitrogenfertilizermanagement:acasestudyincentralChina.AtmosphericEnvironment,45:1775‐1779.

Lindau,C.W.,P.K.Bollich,andR.D.DeLaune.1995.EffectofricevarietyonmethaneemissionfromLouisianarice.Agriculture,Ecosystems&Environment,54(1‐2):109‐114.

Lindau,C.W.,P.Wickersham,R.D.DeLaune,J.W.Collins,etal.1998.Methaneandnitrousoxideevolutionand15Nand226RauptakeasaffectedbyapplicationofgypsumandphosphogypsumtoLouisianarice.Agriculture,Ecosystems&Environment,68(1–2):165‐173.

Linquist,B.,K.J.vanGroenigen,M.A.Adviento‐Borbe,C.Pittelkow,etal.2011.Anagronomicassessmentofgreenhousegasemissionsfrommajorcerealcrops.GlobalChangeBiology:n/a‐n/a.

Linquist,B.A.,J.E.Hill,R.G.Mutters,C.A.Greer,etal.2009.AssessingtheNecessityofSurface‐AppliedPreplantNitrogenFertilizerinRiceSystems.AgronomyJournal,101(4):906‐915.

Linquist,B.A.,M.A.Adviento‐Borbe,C.M.Pittelkow,C.v.Kessel,etal.2012.Fertilizermanagementpracticesandgreenhousegasemissionsfromricesystems:Aquantitativereviewandanalysis.FieldCropsResearch,135:10‐21.

Linzmeier,W.,R.Gutser,andU.Schmidhalter.2001.NitrousOxideEmissionfromSoilandfromaNitrogen‐15‐LabelledFertilizerwiththeNewNitrificationInhibitor3,4‐DimethylpyrazolePhosphate(Dmpp).BiologyandFertilityofSoils,34(2):103‐108.

Liu,F.,X.BenWu,E.Bai,T.W.Boutton,etal.2010.SpatialscalingofecosystemCandNinasubtropicalsavannalandscape.GlobalChangeBiology,16(8):2213‐2223.

Liu,X.,A.Mosier,A.Halvorson,andF.Zhang.2006.TheImpactofNitrogenPlacementandTillageonNO,N2O,CH4;andCO2;FluxesfromaClayLoamSoil.PlantandSoil,280(1):177‐188.

Liu,X.J.,A.R.Mosier,A.D.Halvorson,andF.S.Zhang.2005.Tillageandnitrogenapplicationeffectsonnitrousandnitricoxideemissionsfromirrigatedcornfields.PlantandSoil,276:235‐249.

Livesley,S.,B.Dougherty,A.Smith,D.Navaud,etal.2010.Soil‐atmosphereexchangeofcarbondioxide,methaneandnitrousoxideinurbangardensystems:impactofirrigation,fertiliserandmulch.UrbanEcosystems,13(3):273‐293.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-130

Lobell,D.B.,andC.Bonfils.2008.TheEffectofIrrigationonRegionalTemperatures:ASpatialandTemporalAnalysisofTrendsinCalifornia,1934–2002.JournalofClimate,21(10):2063‐2071.

Lopez‐Diaz,M.L.,V.Rolo,andG.Moreno.2011.Trees'RoleinNitrogenLeachingafterOrganic,MineralFertilization:AGreenhouseExperiment.JournalofEnvironmentalQuality,40(3):853‐859.

Luo,J.,C.A.M.deKlein,S.F.Ledgard,andS.Saggar.2010.Managementoptionstoreducenitrousoxideemissionsfromintensivelygrazedpastures:Areview.Agriculture,Ecosystems&Environment,136(3‐4):282‐291.

Ma,B.L.,T.Y.Wu,N.Tremblay,W.Deen,etal.2010.Nitrousoxidefluxesfromcornfields:on‐farmassessmentoftheamountandtimingofnitrogenfertilizer.GlobalChangeBiology,16(1):156‐170.

Macadam,X.M.B.,A.Prado,P.Merino,J.M.Estavillo,etal.2003.Dicyandiamideand3,4‐DimethylPyrazolePhosphateDecreaseN2OEmissionsfromGrasslandbutDicyandiamideProducesDeleteriousEffectsinClover.Journalofplantphysiology,160(12):1517‐1523.

Magalhaes,A.M.T.,P.M.Chalk,andW.M.Strong.1984.EffectofNitrapyrinonNitrousOxideEmissionfromFallowSoilsFertilizedwithAnhydrousAmmonia.NutrientCyclinginAgroecosystems,5(4):411‐421.

Maharjan,B.,R.T.Venterea,andC.Rosen.2013.FertilizerandIrrigationManagementEffectsonNitrousOxideEmissionsandNitrateLeaching.AgronomyJournal.

Maharjan,B.,andR.T.Venterea.Inreview.Nitritedynamicsexplainfertilizermanagementeffectsonnitrousoxideemissionsinmaize.SubmittedtoSoilBiologyandBiochemistry.

Mahmood,T.,R.Ali,J.Iqbal,andU.Robab.2008.Nitrousoxideemissionfromanirrigatedcottonfieldundersemiaridsubtropicalconditions.BiologyandFertilityofSoils,44(5):773‐781.

Majumdar,D.,S.Kumar,H.Pathak,M.C.Jain,etal.2000.ReducingNitrousOxideEmissionfromanIrrigatedRiceFieldofNorthIndiawithNitrificationInhibitors.Agriculture,Ecosystems&Environment,81(3):163‐169.

Majumdar,D.,H.Pathak,S.Kumar,andM.C.Jain.2002.NitrousOxideEmissionfromaSandyLoamInceptisolunderIrrigatedWheatinIndiaasInfluencedbyDifferentNitrificationInhibitors.Agriculture,Ecosystems&Environment,91(1):283‐293.

Majumdar,D.2003.Methaneandnitrousoxideemissionfromirrigatedricefields:Proposedmitigationstrategies.CurrentScience,84:1317‐1326.

Malghani,S.,G.Gleixner,andS.Trumbore.2013.Charsproducedbyslowpyrolysisandhydrothermalcarbonizationvaryincarbonsequestrationpotentialandgreenhousegasesemissions.SoilBiologyandBiochemistry,62:137‐146.

Malhi,S.S.,andM.Nyborg.1985.Methodsofplacementforincreasingtheefficiencyofnitrogenfertilizersappliedinthefall.AgronomyJournal,77:27‐32.

Malhi,S.S.,R.Lemke,Z.H.Wang,andB.S.Chhabra.2006.Tillage,nitrogenandcropresidueeffectsoncropyield,nutrientuptake,soilquality,andgreenhousegasemissions.Soil&TillageResearch,90(1‐2):171‐183.

Malla,G.,A.Bhatia,H.Pathak,S.Prasad,etal.2005.MitigatingNitrousOxideandMethaneEmissionsfromSoilinRice‐WheatSystemoftheIndo‐GangeticPlainwithNitrificationandUreaseInhibitors.Chemosphere,58(2):141‐147.

Mamo,M.,G.L.Malzer,D.J.Mulla,D.R.Huggins,etal.2003.Spatialandtemporalvariationineconomicallyoptimumnitrogenrateforcorn.AgronomyJournal,95:958‐964.

Manley,J.T.,G.E.Schuman,J.D.Reeder,andR.H.Hart.1995.Rangelandsoilcarbonandnitrogenresponsestograzing.JournalofSoilandWaterConservation,50(3):294‐298.

Mann,L.K.1986.Changesinsoilcarbonstorageaftercultivation.SoilScience,142(5):279‐288.Matson,P.A.,R.Naylor,andI.Ortiz‐Monasterio.1998.IntegrationofEnvironmental,Agronomic,

andEconomicAspectsofFertilizerManagement.Science,280(5360):112‐115.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-131

McCarty,G.W.,andJ.C.Ritchie.2002.Impactofsoilmovementoncarbonsequestrationinagriculturalecosystems.EnvironmentalPollution,116(3):423‐430.

McClaran,M.P.,J.Moore‐Kucera,D.A.Martens,J.vanHaren,etal.2008.Soilcarbonandnitrogeninrelationtoshrubsizeanddeathinasemi‐aridgrassland.Geoderma,145(1‐2):60‐68.

McLain,J.E.T.,andD.A.Martens.2006.Moisturecontrolsontracegasfluxesinsemiaridripariansoils.SoilScienceSocietyofAmericaJournal,70:367‐377.

McLain,J.E.T.,D.A.Martens,andM.P.McClaran.2008.Soilcyclingoftracegasesinresponsetomesquitemanagementinasemiaridgrassland.JournalofAridEnvironments,72:1654‐1665.

McSwiney,C.P.,andG.P.Robertson.2005.NonlinearresponseofN2Ofluxtoincrementalfertilizeradditioninacontinuousmaize(ZeamaysL.)croppingsystem.GlobalChangeBiology,11(10):1712‐1719.

McTaggart,I.P.,H.Clayton,J.Parker,L.Swan,etal.1997.NitrousOxideEmissionsfromGrasslandandSpringBarley,FollowingNFertiliserApplicationwithandwithoutNitrificationInhibitors.BiologyandFertilityofSoils,25(3):261‐268.

Melson,S.L.,M.E.Harmon,J.S.Fried,andJ.B.Domingo.2011.Estimatesoflive‐treecarbonstoresinthePacificNorthwestaresensitivetomodelselection.CarbonBalanceandManagement,6(1).

Menendez,S.,P.Merino,M.Pinto,C.González‐Murua,etal.2006.3,4‐DimethylpyrazolPhosphateEffectonNitrousOxide,NitricOxide,Ammonia,andCarbonDioxideEmissionsfromGrasslands.JournalofEnvironmentalQuality,35(4):973‐981.

Merino,P.,J.M.Estavillo,L.A.Graciolli,M.Pinto,etal.2002.MitigationofN2OEmissionsfromGrasslandbyNitrificationInhibitorandActilithF2AppliedwithFertilizerandCattleSlurry.SoilUseandManagement,18(2):135‐141.

Merwin,M.L.,andL.R.Townsend.2007.Onlinetoolforestimatingcarbonstorageinagroforestrypractices.EditedbyA.OliverandS.Campeau,WhenTreesandCropsGetTogether:EconomicOpportunitiesandEnvironmentalBenefitsfromAgroforestry:Proc.10thNorthAmericanAgroforestryConf.QuebecCity,Canada,June10‐13,2007:UniversitéLaval,Québec,Canada.

Merwin,M.L.,M.Easter,L.R.Townsend,R.C.Vining,etal.2009.Estimatingcarbonstockchangeinagroforestryandfamilyforestrypractices.InAgroforestryComesofAge:PuttingScienceintoPractice:Proc.11thNorthAmericanAgroforestryConf,M.A.GoldandM.M.Hall(eds.).Columbia,MO,May31‐June3,2009.

Miehle,P.,S.J.Livesley,P.M.Feikema,C.Li,etal.2006.AssessingproductivityandcarbonsequestrationcapabilityofEucalyptusglobulusplantationsusingtheprocessmodelForest‐DNDC:Calibrationandvalidation.EcologicalModelling,192:83‐94.

Millar,N.,G.P.Robertson,P.R.Grace,R.J.Gehl,etal.2010.Nitrogenfertilizermanagementfornitrousoxide(N2O)mitigationinintensivecorn(Maize)production:anemissionsreductionprotocolforU.S.Midwestagriculture.MitigationandAdaptionStrategiesforGlobalChange,15(2):185‐204.

Mize,C.W.,J.R.Brandle,M.M.Schoeneberger,andG.Bentrup.2008.EcologicaldevelopmentandfunctionofshelterbeltsintemperateNorthAmerica.InTowardAgroforestryDesign‐AnEcologicalApproach.AdvancesinAgroforestryVol4,S.JoseandA.M.Gorden(eds.):Springer.

Morgan,J.A.,R.F.Follett,L.H.Allen,S.DelGrosso,etal.2010.CarbonsequestrationinagriculturallandsoftheUnitedStates.JournalofSoilandWaterConservation,65(1):6A‐13A.

Morris,D.R.,B.Glaz,andS.H.Daroub.2004.Organicsoiloxidationpotentialduetoperiodicfloodanddrainagedepthundersugarcane.SoilScience,169:600‐608.

Mosier,A.,D.Schimel,D.Valentine,K.Bronson,etal.1991.Methaneandnitrousoxidefluxesinnative,fertilizedandcultivatedgrasslands.Nature,350(6316):330‐332.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-132

Mosier,A.,R.Wassmann,L.Verchot,J.King,etal.2004.Methaneandnitrogenoxidefluxesintropicalagriculturalsoils:sources,sinksandmechanisms.Environment,DevelopmentandSustainability,6(11‐49).

Mosier,A.R.,J.M.Duxbury,J.R.Freney,O.Heinemeyer,etal.1998.AssessingandMitigatingN2OEmissionsfromAgriculturalSoils.ClimaticChange,40(1):7‐38.

Mosier,A.R.,A.D.Halvorson,G.A.Peterson,G.P.Robertson,etal.2005.MeasurementofNetGlobalWarmingPotentialinThreeAgroecosystems.NutrientCyclinginAgroecosystems,72(1):67‐76.

Mosier,A.R.,A.D.Halvorson,C.A.Reule,andX.J.Liu.2006.NetglobalwarmingpotentialandgreenhousegasintensityinirrigatedcroppingsystemsinnortheasternColorado.JournalofEnvironmentalQuality,35(4):1584‐1598.

Munoz,F.,R.S.Mylavarapu,andC.M.Hutchinson.2005.Environmentallyresponsiblepotatoproductionsystems:Areview.JournalofPlantNutrition,28:1287‐1309.

Nair,P.K.R.,V.D.Nair,B.M.Kumar,andJ.M.Showalter,(eds.).2010.Carbonsequestrationinagroforestrysystems.EditedbyD.Sparks.Vol.108,AdvancesinAgronomy.SanDiego,CA:AcademicPress.

Nair,V.D.,P.K.R.Nair,R.S.Kalmbacher,andI.V.Ezenwa.2007.Reducingnutrientlossfromfarmsthroughsilvopastoralpracticesincoarse‐texturedsoilsofFlorida,USA.EcologicalEngineering,29(2):192‐199.

Nash,P.R.2010.Alternativetillageandnitrogenmanagementoptionstoincreasecropproductionandreducenitrousoxideemissionsfromclaypansoils:M.S.Thesis,UniversityofMissouri.

Neff,J.C.,N.N.Barger,W.T.Baisden,D.P.Fernandez,etal.2009.Soilcarbonstorageresponsestoexpandingpinyon‐juniperpopulationsinsouthernUtah.EcologicalApplications,19(6):1405‐1416.

Nelson,S.D.,andR.E.Terry.1996.TheEffectsofSoilPhysicalPropertiesandIrrigationMethodonDenitrification.SoilScience,161(4):242‐249.

Nguyen,B.T.,J.Lehmann,J.Kinyangi,R.Smernik,etal.2008.Long‐termblackcarbondynamicsincultivatedsoil.Biogeochemistry,89(3):295‐308.

Nui,X.,andS.W.Duiker.2006.CarbonsequestrationpotentialbyafforestationofmarginalagriculturallandinthemidwesternU.S..ForEcolManage,223:415‐427.

Oelbermann,M.,andR.P.Voroney.2011.AnevaluationoftheCenturymodeltopredictsoilorganiccarbonintropicalandtemperateagroforestrysystems.AgroforestrySystems,81:37‐45.

Ogle,S.M.,F.JayBreidt,M.D.Eve,andK.Paustian.2003.UncertaintyinestimatinglanduseandmanagementimpactsonsoilorganiccarbonstorageforUSagriculturallandsbetween1982and1997.GlobalChangeBiology,9(11):1521‐1542.

Ogle,S.M.,F.J.Breidt,andK.Paustian.2005.Agriculturalmanagementimpactsonsoilorganiccarbonstorageundermoistanddryclimaticconditionsoftemperateandtropicalregions.Biogeochemistry,72(1):87–121.

Ogle,S.M.,F.J.Breidt,M.Easter,S.Williams,etal.2007.Anempiricallybasedapproachforestimatinguncertaintyassociatedwithmodellingcarbonsequestrationinsoils.EcologicalModelling,205:453‐463.

Ogle,S.M.,F.J.Breidt,M.Easter,S.Williams,etal.2010.ScaleanduncertaintyinmodeledsoilorganiccarbonstockchangesforUScroplandsusingaprocess‐basedmodel.GlobalChangeBiology,16(2):810‐822.

Ogle,S.M.,A.Swan,andK.Paustian.2012.No‐tillmanagementimpactsoncropproductivity,carboninputandsoilcarbonsequestration.Agriculture,Ecosystems&Environment,149:37‐49.

Oh,N.H.,andP.A.Raymond.2006.ContributionofagriculturallimingtoriverinebicarbonateexportandCO2sequestrationintheOhioRiverbasin.GlobalBiogeochemicalCycles,20(3):GB3012.

Olson,K.R.,J.M.Lang,andS.A.Ebelhar.2005.Soilorganiccarbonchangesafter12yearsofno‐tillageandtillageofGrantsburgsoilsinsouthernIllinois.Soil&TillageResearch,81(2):217‐225.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-133

Olson,R.,M.Schoeneberger,andS.Aschmann.2000.Anecologicalfoundationfortemperateagroforestry.InNorthAmericanAgroforestry:AnIntegratedScienceandPractice,H.E.Garrett,W.J.RietveldandR.F.Fisher(eds.).Madison,WI:ASASpecialPublication.

Page,K.L.,D.E.Allen,R.C.Dalal,andW.Slattery.2009.ProcessesandmagnitudeofCO2,CH4,andN2OfluxesfromlimingofAustralianacidicsoils:areview.SoilResearch,47(8):747‐762.

Pan,G.,X.Xu,P.Smith,W.Pan,etal.2010.AnincreaseintopsoilSOCstockofChina'scroplandsbetween1985and2006revealedbysoilmonitoring.Agriculture,Ecosystems&Environment,136(1‐2):133‐138.

Parkin,T.B.,andJ.L.Hatfield.2010a.InfluenceofnitrapyrinonN2Olossesfromsoilreceivingfall‐appliedanhydrousammonia.Agriculture,Ecosystems&Environment,136(1‐2):81‐86.

Parkin,T.B.,andJ.L.Hatfield.2010b.InfluenceofNitrapyrinonN2OLossesfromSoilReceivingFall‐AppliedAnhydrousAmmonia.Agriculture,Ecosystems&Environment,136(1):81‐86.

Parton,W.J.,D.S.Schimel,C.V.Cole,andD.S.Ojima.1987.AnalysisoffactorscontrollingsoilorganicmatterlevelsinGreatPlainsgrasslands.SoilScienceSocietyofAmericaJournal,51:1173‐1179.

Parton,W.J.,J.M.O.Scurlock,D.S.Ojima,T.G.Gilmanov,etal.1993.Observationsandmodelingofbiomassandsoilorganicmatterdynamicsforgrasslandbiomesworldwide.GlobalBiogeochemicalCycles,7:785‐809.

Parton,W.J.,E.A.Holland,S.J.DelGrosso,M.D.Hartman,etal.2001.GeneralizedmodelforNOxandN2Oemissionsfromsoils.JournalofGeophysicalResearch,106(D15):17403‐17420.

Parton,W.J.,M.D.Hartman,D.S.Ojima,andD.S.Schimel1998.DAYCENT:ItsLandSurfaceSubmodel:DescriptionandTesting.GlobalandPlanetaryChange,19:35‐48.

Pathak,H.,A.Bhatia,S.Prasad,S.Singh,etal.2002.EmissionofNitrousOxidefromRice‐WheatSystemsofIndo‐GangeticPlainsofIndia.Environmentalmonitoringandassessment,77(2):163‐178.

Paul,E.A.,S.J.Morris,J.Six,K.Paustian,etal.2003.InterpretationofSoilCarbonandNitrogenDynamicsinAgriculturalandAfforestedSoils.SoilScienceSocietyofAmericaJournal,67(5):1620‐1628.

Paustian,K.,O.Andrén,H.H.Janzen,R.Lal,etal.1997.AgriculturalsoilsasasinktomitigateCO2emissions.SoilUseandManagement,13:230‐244.

Paustian,K.,J.Six,E.T.Elliott,andH.W.Hunt.2000.ManagementoptionsforreducingCO2emissionsfromagriculturalsoils.Biogeochemistry,48(1):147‐163.

Peichl,M.,N.V.Thevathasan,A.M.Gordon,J.Huss,etal.2006.Carbonsequestrationpotentialsintemperatetree‐basedintercroppingsystems,southernOntario,Canada.AgroforestrySystems,66:243‐257.

Perry,C.H.,C.W.Woodall,andM.M.Schoeneberger.2005.InventoryingTreesinAgriculturalLandscapes:TowardsanAccountingofWorkingTrees.InMovingAgroforestryintheMainstream,K.N.BrooksandP.F.Folliott(eds.).St.Paul,MN:DepartmentofForestResources,UniversityofMinnesota,St.Paul.

Petersen,S.O.1999.NitrousOxideEmissionsfromManureandInorganicFertilizersAppliedtoSpringBarley.JournalofEnvironmentalQuality,28(5):1610‐1618.

Phillips,R.L.,andO.Beeri.2008.Scaling‐upknowledgeofgrowing‐seasonnetecosystemexchangeforlong‐termassessmentofNorthDakotagrasslandsundertheConservationReserveProgram.GlobalChangeBiology,14(5):1008‐1017.

Phillips,R.L.,D.L.Tanaka,D.W.Archer,andJ.D.Hanson.2009.FertilizerApplicationTimingInfluencesGreenhouseGasFluxesOveraGrowingSeason.JournalofEnvironmentalQuality,38(4):1569‐1579.

Pielke,R.A.,J.Adegoke,A.Beltran‐Przekurat,C.A.Hiemstra,etal.2007.Anoverviewofregionalland‐useandland‐coverimpactsonrainfall.TellusB,59(3):587‐601.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-134

Pineiro,G.,E.Jobbagy,J.Baker,B.Murray,etal.2009.Set‐asidescanbebetterclimateinvestmentthancornethanol.EcologicalApplications,19(2):277‐282.

Pineiro,G.,J.Paruelo,M.Oesterheld,andE.Jobbagy.2010.PathwaysofGrazingEffectsonSoilOrganicCarbonandNitrogen.RangelandEcology&Management,63(1):109‐119.

Pinheiro,J.C.,andD.M.Bates.2000.Mixed‐effectsmodelsinSandS‐Plus.NewYork,NY:Springer.Pittelkow,C.M.,M.A.Adviento‐Borbe,J.E.Hill,J.Six,etal.2013.Yield‐scaledglobalwarming

potentialofannualnitrousoxideandmethaneemissionsfromcontinuouslyfloodedricesystemsinresponsetonitrogeninput.Agriculture,Ecosystems&Environment,177:10‐20.

Plante,A.F.,R.T.Conant,C.E.Stewart,K.Paustian,etal.2006.Impactofsoiltextureonthedistributionofsoilorganicmatterinphysicalandchemicalfractions.SoilScienceSocietyofAmericaJournal,70:287‐296.

Polprasert,C.2007.OrganicWasteRecycling:TechnologyandManagement:IWAPublishing.Post,W.M.,andK.C.Kwon.2000.SoilCarbonSequestrationandLand‐UseChange:Processesand

Potential.GlobalChangeBiology,6:317‐327.Rafique,R.,D.Henessy,andG.Kiely.2011.Evaluatingmanagementeffectsonnitrousoxide

emissionsfromgrasslandsusingtheprocess‐basedDeNitrificationDeComposition(DNDC)model.Atmospheric,Environment,45:6029‐6039.

Rau,B.M.,R.Tausch,A.Reiner,D.W.Johnson,etal.2010.Influenceofprescribedfireonecosystembiomass,carbon,andnitrogeninapinyonjuniperwoodland.RangelandEcology&Management,63:197‐202.

Raymond,P.A.,N.‐H.Oh,R.E.Turner,andW.Broussard.2008.AnthropogenicallyenhancedfluxesofwaterandcarbonfromtheMississippiRiver.Nature,451(7177):449‐452.

Reeder,J.D.,G.E.Schuman,andR.A.Bowman.1998.SoilCandNchangesonConservationReserveProgramlandsintheCentralGreatPlains.Soil&TillageResearch,47(3‐4):339‐349.

Ribaudo,M.,J.Delgado,L.T.Hansen,M.J.Livingston,etal.2011.NitrogeninAgriculturalSystems:ImplicationsforConservationPolicy:U.S.DepartmentofAgriculture,EconomicResearchService.

Roberts,K.G.,B.A.Gloy,S.Joseph,N.R.Scott,etal.2010.Lifecycleassessmentofbiocharsystems:Estimatingtheenergetic,economic,andclimatechangepotential.EnvironmentalScienceandTechnology,44:827‐833.

Robertson,G.,S.K.Hamilton,W.Parton,andS.DelGrosso.2011.Thebiogeochemistryofbioenergylandscapes:Carbon,nitrogen,andwaterconsiderations.EcologicalApplications,(inpress).

Robertson,G.P.,E.A.Paul,andR.R.Harwood.2000.GreenhouseGasesinIntensiveAgriculture:ContributionsofIndividualGasestotheRadiativeForcingoftheAtmosphere.Science,289(5486):1922‐1925.

Robertson,G.P.,andP.M.Vitousek.2009.NitrogeninAgriculture:BalancingtheCostofanEssentialResource.AnnualReviewofEnvironmentandResources,34(1):97‐125.

Robertson,G.P.,T.W.Bruulsema,R.J.Gehl,D.Kanter,D.L.Mauzerall,C.A.Rotz,andC.O.Williams.2013.Nitrogen‐climateinteractionsinU.S.agriculture.Biogeochemistry,114:41‐70.

Rochette,P.2008.No‐tillonlyincreasesN2Oemissionsinpoorly‐aeratedsoils.Soil&TillageResearch,101(1‐2):97‐100.

Rojstaczer,S.,andS.J.Deverel.1995.LandsubsidenceindrainedhistosolsandhighlyorganicmineralsoilsoftheSacramento‐SanJoaquinDelta.SoilScienceSocietyofAmericaJournal,59:1162‐1167.

Ryals,R.,M.Kaisser,M.S.Torn,A.A.Berhe,etal.2014.Impactsoforganicmatteramendmentsoncarbonandnitrogendynamicsingrasslandsoils.SoilBiology&Biochemistry,68:52‐61.

Ryskowski,L.,andA.Kedziora.2007.Modificationofwaterflowsandnitrogenfluxesbyshelterbelts.EcologicalEngineering,29:388‐400.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-135

Sanz‐Cobena,A.,L.Sánchez‐Martín,L.García‐Torres,andA.Vallejo.2012.GaseousemissionsofN2OandNOandNO3‐leachingfromureaappliedwithureaseandnitrificationinhibitorstoamaize(Zeamays)crop.Agriculture,Ecosystems&Environment,149:64‐73.

Sass,R.L.,F.M.Fisher,S.T.Lewis,M.J.Jund,etal.1994.Methaneemissionsfromricefields:Effectofsoilproperties.GlobalBiogeochemicalCycles,8:135‐140.

Sauer,T.J.,C.A.Cambardella,andJ.R.Brandle.2007.Soilcarbonandtreelitterdynamicsinaredcedar‐scotchpineshelterbeltAgroforestrySystems,71:163‐174.

Sauer,T.J.,S.R.Compston,C.P.West,G.Hernandez‐Ramirez,etal.2009.Nitrousoxideemissionsfromabermudagrasspasture:Interseededwinterryeandpoultrylitter.SoilBiologyandBiochemistry,41(7):1417‐1424.

Sawyer,J.E.,E.D.Nafziger,G.W.Randall,L.G.Bundy,etal.2006.Conceptsandrationaleforregionalnitrogenrateguidelinesforcorn.Ames,Iowa.

Scharf,P.C.,N.R.Kitchen,K.A.Sudduth,J.G.Davis,etal.2005.Field‐scalevariabilityinoptimalnitrogenfertilizerrateforcorn.AgronomyJournal,97:452‐461.

Scheaffer,C.C.,D.L.Wyse,andN.J.Ehlke.2009.PalatabilityandNutritiveValueofNativeLegumes.NativePlantsJournal,10(3):224‐231.

Scheer,C.,P.Grace,D.Rowlings,S.Kimber,etal.2011.Effectofbiocharamendmentonthesoil‐atmosphereexchangeofgreenhousegasesfromanintensivesubtropicalpastureinnorthernNewSouthWales,Australia.InPlantandSoil.

Schlesinger,W.H.2000.Carbonsequestrationinsoils:Somecautionamidstoptimism.Agriculture,Ecosystems&Environment,82:121‐127.

Schoeneberger,M.M.,G.Bentrup,andC.A.Francis.2001.Ecobelts:reconnectingagricultureandcommunities.InInteractionsbetweenAgroecosystemsandRuralHumanCommunities,C.Flora(ed.).BocaRaton,FL:CRCPress.

Schoeneberger,M.M.,G.Bentrup,D.Current,B.Wight,etal.2008.Buildingbiggerbetterbuffersforbioenergy.WaterResourcesImpact,10:22‐26.

Schuman,G.E.,J.D.Reeder,J.T.Manley,R.H.Hart,etal.1999.Impactofgrazingmanagementonthecarbonandnitrogenbalanceofamixed‐grassrangeland.EcologicalApplications,9(1):65‐71.

Sehy,U.,R.Ruser,andJ.C.Munch.2003.Nitrousoxidefluxesfrommaizefields:relationshiptoyield,site‐specificfertilization,andsoilconditions.Agriculture,Ecosystems&Environment,99(1‐3):97‐111.

Sharrow,S.H.,andS.Ismail.2004.Carbonandnitrogenstorageinagroforests,treeplantations,andpasturesinwesternOregon,USA.AgroforestrySystems,60(2):123‐130.

Shcherbak,I.,N.Millar,andG.P.Robertson.inpress.Aglobalmeta‐analysisofthenonlinearresponseofsoilnitrousoxide(N2O)emissionstofertilizernitrogen.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,inpress.

Sherrod,L.,G.A.Peterson,D.G.Westfall,andL.R.Ahuja.2003.Croppingintensityenhancessoilorganiccarbonandnitrogeninano‐tillagroecosystem.SoilScienceSocietyofAmericaJournal,67:1533‐1543.

Sherrod,L.,G.A.Peterson,D.G.Westfall,andL.R.Ahuja.2005.SoilOrganicCarbonPoolsAfter12YearsinNo‐TillDrylandAgroecosystems.SoilScienceSocietyofAmericaJournal,69(1600‐1608).

Shih,S.F.,B.Glaz,andR.E.J.Barnes.1998.Subsidenceoforganicsoilsintheevergladesagriculturalareaduringthepast19years.SoilandCropScienceSocietyofFloridaProceedings,57:20‐29.

Shoji,S.,J.Delgado,A.Mosier,andY.Miura.2001.UseofControlledReleaseFertilizersandNitrificationInhibitorstoIncreaseNitrogenUseEfficiencyandtoConserveAirandWaterQuality.CommunicationsinSoilScienceandPlantAnalysis,32(7‐8):1051‐1070.

Signor,D.,C.E.P.Cerri,andR.Conant.2013.N2OemissionsduetonitrogenfertilizerapplicationsintworegionsofsugarcanecultivationinBrazil.EnvironmentalResearchLetters,8(1):015013.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-136

Singer,J.W.,A.J.Franzluebbers,andD.L.Karlen.2009.Grass‐basedFarmingSystems:SoilConservationandEnvironmentalQuality.Madison,WI:AmericanSocietyofAgronomy,CropScienceSocietyofAmerica,SoilSocietyofAmerica.

Six,J.,E.T.Elliott,andK.Paustian.2000.Soilmacroaggregateturnoverandmicroaggregateformation:amechanismforCsequestrationunderno‐tillageagriculture.SoilBiologyandBiochemistry,32(14):2099‐2103.

Six,J.,S.M.Ogle,F.J.Breidt,R.T.Conant,etal.2004.Thepotentialtomitigateglobalwarmingwithno‐tillagemanagementisonlyrealizedwhenpractisedinthelongterm.GlobalChangeBiology,10(2):155–160.

Skjemstad,J.O.,D.C.Reicosky,A.R.Wilts,andJ.A.McGowan.2002.CharcoalcarboninU.S.agriculturalsoils.SoilScienceSocietyofAmericaJournal,66:1249‐1255.

Smith,K.A.,K.E.Dobbie,B.C.Ball,L.R.Bakken,etal.2000.OxidationofatmosphericmethaneinNorthernEuropeansoils,comparisonwithotherecosystems,anduncertaintiesintheglobalterrestrialsink.GlobalChangeBiology,6(7):791‐803.

Smith,L.C.,C.A.M.D.Klein,andW.D.Catto.2008a.EffectofDicyandiamideAppliedinaGranularFormonNitrousOxideEmissionsfromaGrazedDairyPastureinSouthland,NewZealand.NewZealandJournalofAgriculturalResearch,51(4):387‐396.

Smith,P.,D.Martino,Z.Cai,D.Gwary,etal.2008b.Greenhousegasmitigationinagriculture.PhilosophicalTransactionsoftheRoyalSocietyB:BiologicalSciences,363(1492):789‐813.

Snyder,C.S.,andN.A.Slaton.2001.RiceproductionintheUnitedStates‐anoverview.BetterCrops,85(3):3‐7.

Snyder,C.S.,T.W.Bruulsema,T.L.Jensen,andP.E.Fixen.2009.Reviewofgreenhousegasemissionsfromcropproductionsystemsandfertilizermanagementeffects.Agriculture,Ecosystems&Environment,133(3‐4):247‐266.

SoilSurveyStaff.2011.SoilSurveyGeographic(SSURGO)Database:U.S.DepartmentofAgriculture,NaturalResourcesConservationService.

Song,C.,andJ.Zhang.2009.Effectsofsoilmoisture,temperature,andnitrogenfertilizationonsoilrespirationandnitrousoxideemissionduringmaizegrowthperiodinnortheastChina.ActaAgriculturaeScandinavia,59:97‐106.

Sonon,L.,D.Kissel,andU.Saha.2012.Mineralizationofhigh‐Norganicfertilizers:ClemsonUniversity.

Spalding,R.F.,D.G.Watts,J.S.Schepers,M.E.Burbach,etal.2001.Controllingnitrateleachinginirrigatedagriculture.JournalofEnvironmentalQuality,30:1184‐1194.

Spencer,S.,S.M.Ogle,F.J.Breidt,J.Goebel,etal.2011.Designinganationalsoilcarbonmonitoringnetworktosupportclimatechangepolicy:acaseexampleforUSagriculturallands.GreenhouseGasManagement&Measurement,1:167‐178.

Spokas,K.A.2010.Reviewofthestabilityofbiocharinsoils:predictabilityofO:Cmolarratios.CarbonManagement,1:289‐303.

Spokas,K.A.2013.Impactofbiocharfieldagingonlaboratorygreenhousegasproductionpotentials.GCBBioenergy,5:165‐176.

SRM.1998.Aglossaryoftermsusedinrangemanagement.Lakewood,CO:SocietyforRangeManagement.

Stallard,R.F.1998.Terrestrialsedimentationandthecarboncycle:couplingweatheringanderosiontocarbonburial.GlobalBiogeochemicalCycles,12:231‐257.

Stanford,G.1973.Rationaleforoptimumnitrogenfertilizationincornproduction.JournalofEnvironmentalQuality,2:159‐166.

Stang,F.,K.Butterbach‐Bahl,andH.Papen.2000.Aprocess‐orientedmodelofN2OandNOemissionsfromforestsoils.2.Sensitivityanalysisandvalidation.J.Geophys.Res.,105:4385‐4398.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-137

Stehfest,E.,andL.Bouwman.2006.N2OandNOemissionfromagriculturalfieldsandsoilsundernaturalvegetation:summarizingavailablemeasurementdataandmodelingofglobalannualemissions.NutrientCyclinginAgroecosystems,74(3):207‐228.

Stephens,J.C.,L.H.AllenJr.,andE.Chen.1984.Organicsoilsubsidence.InReviewsinEngineeringGeology,vol.VI,T.L.Holzer(ed.).Boulder,CO:GeologicalSocietyofAmerica.

Steudler,P.A.,R.D.Bowden,J.M.Melillo,andJ.D.Aber.1989.Influenceofnitrogenfertilizationonmethaneuptakeintemperateforestsoils.Nature,341(6240):314‐316.

Stewart,C.E.,J.Zheng,J.Botte,andM.F.Cotrufo.2013.Co‐generatedfastpyrolysisbiocharmitigatesgreenhousegasemissionsandincreasescarobnsequestrationintemperatesoils.GCBBioenergy,5:153‐164.

Street,J.E.,andP.K.Bollich.2003.Riceprodcution.InRice:Origins,History,Technology,andProduction,C.W.SmithandR.H.Dilday(eds.).Hoboken,NJ:JohnWiley&Sons.

Sudmeyer,R.A.,andP.R.Scott.2002.CharacterisationofawindbreaksystemonthesouthcoastofWesternAustralia.AustralianJournalofExperimentalAgriculture,42:703‐727.

Suwanwaree,P.,andG.Robertson.2005.Methaneoxidationinforest,successional,andno‐tillagriculturalecosystems:Effectsofnitrogenandsoildisturbance.SoilScienceSocietyofAmericaJournal,69:1722‐1729.

Svejcar,T.,R.Angell,J.A.Bradford,W.Dugas,etal.2008.CarbonfluxesonNorthAmericanrangelands.RangelandEcology&Management,61:465‐474.

Syswerda,S.P.,A.T.Corbin,D.L.Mokma,A.N.Kravchenko,etal.2011.Agriculturalmanagementandsoilcarbonstorageinsurfacevs.deeplayers.SoilScienceSocietyofAmericaJournal,75:92‐101.

Teague,W.R.,S.L.Dowhower,S.A.Baker,R.J.Ansley,etal.2010.Soilandherbaceousplantresponsestosummerpatchburnsundercontinuousandrotationalgrazing.Agriculture,Ecosystems&Environment,137:113‐123.

Thevathasan,N.V.,andA.M.Gordon.2004.EcologyoftreeintercroppingsystemsintheNorthtemperateregion:ExperiencesfromsouthernOntario,Canada.AgroforestrySystems,61‐62(1):257‐268.

Thornton,F.C.,B.R.Bock,andD.D.Tyler.1996.SoilEmissionsofNitricOxideandNitrousOxidefromInjectedAnhydrousAmmoniumandUrea.JournalofEnvironmentalQuality,25(6):1378‐1384.

Tonitto,C.,M.B.David,andL.E.Drinkwater.2006.Replacingbarefallowswithcovercropsinfertilizer‐intensivecroppingsystems:Ameta‐analysisofcropyieldandNdynamics.Agriculture,Ecosystems&Environment,112:58‐72.

Toombs,T.P.,J.D.Derner,D.J.Augustine,B.Krueger,etal.2010.Managingforbiodiversityandlivestock−Ascale‐dependentapproachforpromotingvegetationheterogeneityinwesternGreatPlainsgrasslands.Rangelands,32:10‐15.

Tunney,H.,L.Kirwan,W.Fu,N.Culleton,etal.2010.Long‐termphosphorusgrasslandexperimentforbeefproduction–impactsonsoilphosphoruslevelsandliveweightgains.SoilUseandManagement,26(3):237‐244.

U.S.EPA.2009.InventoryofU.S.GreenhouseGasEmissionsandSinks:1990‐2007.Washington,DC:U.S.EnvironmentalProtectionAgency.

U.S.EPA.2010.InventoryofU.S.GreenhouseGasEmissionsandSinks:1990‐2008.Washington,DC:U.S.EnvironmentalProtectionAgency.

U.S.EPA.2011.InventoryofU.S.greenhousegasemissionsandsinks:1990‐2009.Washington,D.C.:EnvironmentalProtectionAgency.

U.S.EPA.2013.InventoryofU.S.greenhousegasemissionsandsinks:1990‐2011.Washington,D.C.:EnvironmentalProtectionAgency.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-138

Udawatta,R.P.,R.J.Kremer,H.E.Garrett,andS.H.Anderson.2009.Soilenzymeactivitiesandphysicalpropertiesinawatershedmanagedunderagroforestryandrow‐cropsystems.Agriculture,Ecosystems&Environment,131:98‐104.

USDA.1992.AgriculturalWasteCharacteristics.Chapter4.InAnimalWasteManagementFieldHandbook:NaturalResourcesConservationService,UnitedStatesDepartmentofAgriculture.

USDA.2003.User’sGuide‐RevisedUniversalSoilLossEquationVersion2,RUSL2.WashingtonDC:UnitedStatesDepartmentofAgriculture,AgriculturalResearchService.

USDA.2004.TheWindErosionPredictionSystem‐WEPS1.0.UserManual.WashingtonDC:UnitedStatesDepartmentofAgriculture,AgriculturalResearchService.

USDA.2009.SummaryReport:2007NationalResourcesInventory.Washington,DC:U.S.DepartmentofAgriculture,NaturalResourcesConservationService.

USDA.2011.U.S.AgricultureandForestGreenhouseGasInventory:1990‐2008.Washington,DC:U.S.DepartmentofAgriculture.

USDA.2012.CarbonManagementTool:AgroforestrySamplingMethods.RetrievedJune11fromhttp://www.comet2.colostate.edu/agroforestry/samplingMethods.asp.

USDAARS.2013.NationalProgram212:ClimateChange,Soils,andEmissionsandNP214:Agricultural&IndustrialByproductsU.S.DepartmentofAgriculture,AgriculturalResearchService.http://www.ars.usda.gov/research/programs/programs.htm?np_code=212&docid=21223.

USDANRCS.2004.NationalForestryHandbook,Title190:U.S.DepartmentofAgriculture,NaturalResourcesConservationService.ftp://ftp‐fc.sc.egov.usda.gov/NSSC/National_Forestry_Handbook/nfh_2004.pdf.

USDANRCS.2008.SoilTillageIntensityRating(STIR).Pennsylvania.http://www.pa.nrcs.usda.gov/technical/Fact_Sheets/STIR_May08.pdf.

USDANRCS.2012.NationalConservationPracticeStandards.UnitedStatesDepartmentofAgriculture.RetrievedJune11fromhttp://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/alphabetical/ncps.

Vallejo,A.,L.Garcia‐Torres,J.A.Diez,A.Arce,etal.2005.ComparisonofNlosses(NO3‐,N2O,NO)fromsurfaceapplied,injectedoramended(DCD)pigslurryofanirrigatedsoilinaMediterraneanclimate.PlantandSoil,272:313‐325.

Vallejo,A.,U.M.Skiba,L.Garcia‐Torres,A.Arce,etal.2006.Nitrogenoxidesemissionfromsoilsbearingapotatocropasinfluencedbyfertilizationwithtreatedpigslurriesandcomposts.SoilBiologyandBiochemistry,38:2782‐2793.

vanGroenigen,J.W.,G.J.Kasper,G.L.Velthof,A.vandenPol‐vanDasselar,etal.2004.Nitrousoxideemissionsfromsilagemaizefieldsunderdifferentmineralnitrogenfertilizerandslurryapplications.PlantandSoil,263.

VanGroenigen,J.W.,G.L.Velthof,O.Oenema,K.J.VanGroenigen,etal.2010.TowardsanagronomicassessmentofN2Oemissions:acasestudyforarablecrops.EuropeanJournalofSoilScience,61(6):903‐913.

vanKessel,C.,R.Venterea,J.Six,M.A.Adviento‐Borbe,etal.2012.Climate,duration,andNplacementdetermineN2Oemissionsinreducedtillagesystems:ameta‐analysis.GlobalChangeBiology,19(1):33‐44.

VanOost,K.,T.A.Quine,G.Govers,S.DeGryze,etal.2007.TheImpactofAgriculturalSoilErosionontheGlobalCarbonCycle.Science,318(5850):626‐629.

Velthof,G.L.,O.Oenema,R.Postma,andM.L.VanBeusichem.1997.Effectsoftypeandamountofappliednitrogenfertilizeronnitrousoxidefluxesfromintensivelymanagedgrassland.NutrientCyclinginAgroecosystems,46:257‐267.

Venterea,R.,andA.J.Stanenas.2008.Profileanalysisandmodelingofreducedtillageeffectsonsoilnitrousoxideflux.JournalofEnvironmentalQuality,37:1360‐1367.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-139

Venterea,R.T.,M.Burger,andK.A.Spokas.2005.NitrogenOxideandMethaneEmissionsunderVaryingTillageandFertilizerManagement.JournalofEnvironmentalQuality,34(5):1467‐1477.

Venterea,R.T.,J.M.Baker,M.S.Dolan,andK.A.Spokas.2006.CarbonandNitrogenStorageareGreaterunderBiennialTillageinaMinnesotaCorn–SoybeanRotation.SoilScienceSocietyofAmericaJournal,70(5):1752‐1762.

Venterea,R.T.2007.Nitrite‐drivennitrousoxideproductionunderaerobicsoilconditions:kineticsandbiochemicalcontrols.GlobalChangeBiology,13(8):1798‐1809.

Venterea,R.T.,M.Bijesh,andM.S.Dolan.2011a.FertilizerSourceandTillageEffectsonYield‐ScaledNitrousOxideEmissionsinaCornCroppingSystem.JournalofEnvironmentalQuality,40(5):1521‐1531.

Venterea,R.T.,B.Maharjan,andM.S.Dolan.2011b.Fertilizersourceandtillageeffectsonyield‐scaledN2Oemissionsinacorncroppingsystem.JournalofEnvironmentalQuality.

Verchot,L.,T.Krug,R.D.Lasco,S.Ogle,etal.2006.Chapter5:Grassland.In2006IPCCGuidelinesforNationalGreenhouseGasInventories,S.Eggleston,L.Buendia,K.Miwa,T.NgaraandD.L.Tanaka(eds.).Japan:IGES.

Verchot,L.,M.VanNoordwijk,S.Kandji,T.Tomich,etal.2007.Climatechange:linkingadaptationandmitigationthroughagroforestry.MitigationandAdaptationStrategiesforGlobalChange,12(5):901‐918.

Vermeire,L.T.,A.C.Ganguli,andR.L.Gillen.2002.Arobustmodelforestimatingstandingcropacrossvegetationtypes.JournalofRangeManagement,55:494‐497.

Wang,Y.T.,H.D.Gabbard,andP.C.Pai.1991.Inhibitionofacetatemethanogenesisbyphenols.JournalofEnvironmentalEngineeringASCE,117:487‐500.

Wassmann,R.,andM.S.Aulakh.2000.Theroleofriceplantsinregulatingmechanismsofmethanemissions.BiologyandFertilityofSoils,31(1):20‐29.

Wassmann,R.,R.S.Lantin,H.U.Neue,L.V.Buendia,etal.2000.CharacterizationofMethaneEmissionsfromRiceFieldsinAsia.III.MitigationOptionsandFutureResearchNeeds.NutrientCyclinginAgroecosystems,58(1):23‐36.

Wassmann,R.,andH.Pathak.2007.Introducinggreenhousegasmitigationasadevelopmentobjectiveinrice‐basedagriculture:II.Cost–benefitassessmentfordifferenttechnologies,regionsandscales.AgriculturalSystems,94(3):826‐840.

Weir,W.W.1950.SubsidenceofpeatlandsoftheSacramento‐SanJoaquinDelta,California.Weiske,A.,G.Benckiser,andJ.C.G.Ottow.2001.EffectoftheNewNitrificationInhibitorDMPPin

ComparisontoDCDonNitrousOxide(N2O)EmissionsandMethane(CH4)OxidationDuring3YearsofRepeatedApplicationsinFieldExperiments.NutrientCyclinginAgroecosystems,60(1):57‐64.

West,T.,andJ.Six.2007.Consideringtheinfluenceofsequestrationdurationandcarbonsaturationonestimatesofsoilcarboncapacity.ClimaticChange,80(1):25‐41.

West,T.O.,andG.Marland.2002.Asynthesisofcarbonsequestration,carbonemissions,andnetcarbonfluxinagriculture:comparingtillagepracticesintheUnitedStates.Agriculture,Ecosystems&Environment,91(1–3):217‐232.

West,T.O.,G.Marland,A.W.King,W.M.Post,etal.2004.Carbonmanagementresponsecurves:estimatesoftemporalsoilcarbondynamics.EnvironmentalManagement,33:507‐518.

West,T.O.,andA.C.McBride.2005.ThecontributionofagriculturallimetocarbondioxideemissionsintheUnitedStates:dissolution,transport,andnetemissions.Agriculture,Ecosystems&Environment,108(2):145‐154.

West,T.O.,C.C.Brandt,L.M.Baskaran,C.M.Hellwinckel,etal.2010.CroplandcarbonfluxesintheUnitedStates:increasinggeospatialresolutionofinventory‐basedcarbonaccounting.EcologicalApplications,20:1074‐1086.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-140

West,T.O.,V.Bandaru,C.C.Brandt,A.E.Schuh,etal.2011.RegionaluptakeandreleaseofcropCintheUnitedStates.Biogeosciences,8:2037‐2046.

Wilhelm,W.W.,J.M.F.Johnson,D.L.Karlen,andD.T.Lightle.2007.Cornstovertosustainsoilorganiccarbonfurtherconstrainsbiomasssupply.AgronomyJournal,99:1665‐1667.

Wolf,B.,X.Zheng,N.Bruggemann,W.Chen,etal.2010.Grazing‐inducedreductionofnaturalnitrousoxidereleasefromcontinentalsteppe.Nature,464(7290):881‐884.

Woolf,D.,andJ.Lehmann.2012.Modellingthelong‐termresponsetopositiveandnegativeprimingofsoilorganiccarbonbyblackcarbon.Biogeochemistry,111:83‐95.

Wu,J.2011.CarbonaccumulationinpaddyecosystemsinsubtropicalChina:evidencefromlandscapestudies.EuropeanJournalofSoilScience,62(1):29‐34.

Wulf,S.,M.Maeting,andJ.Clemens.2002.ApplicationTechniqueandSlurryCo‐FermentationEffectsonAmmonia,NitrousOxide,andMethaneEmissionsafterSpreading.JournalofEnvironmentalQuality,31(6):1795‐1801.

Xu,J.Z.,S.Z.Peng,H.J.Hou,S.H.Yang,etal.2012.Gaseouslossesofnitrogenbyammoniavolatilizationandnitrousoxideemissionsfromricepaddieswithdifferentirrigationmanagement.IrrigationScience,August.

Yadvinder‐Singh,Y.‐S.,S.S.Malhi,M.Nyborg,andE.G.Beauchamp.1994.Largegranules,nestsorbands:Methodsofincreasingefficiencyoffall‐appliedureaforsmallcerealgrainsinNorthAmerica.NutrientCyclinginAgroecosystems,38(1):61‐87.

Yagi,K.,H.Tsuruta,andK.Minami.1997.Possibleoptionsformitigatingmethaneemissionfromricecultivation.NutrientCyclinginAgroecosystems,49(1‐3):213‐220.

Yan,X.,K.Yagi,H.Akiyama,andH.Akimoto.2005.Statisticalanalysisofthemajorvariablescontrollingmethaneemissionfromricefields.GlobalChangeBiology,11(7):1131‐1141.

Yan,X.Y.,Y.Hosen,andK.Yagi.2001.NitrousoxideandnitricoxideemissionsfrommaizefieldplotsasaffectedbyNfertilizertypeandapplicationmethod.BiologyandFertilityofSoils,34:297‐303.

Yates,T.T.,B.C.Si,R.E.Farrell,andD.J.Pennock.2006.Probabilitydistributionandspatialdependenceofnitrousoxideemission:temporalchangeinhummockyterrain.SoilScienceSocietyofAmericaJournal,70:753‐762.

Yu,L.,J.Tang,R.Zhang,Q.Wu,etal.2013.Effectsofbiocharapplicationonsoilmethaneemissionatdifferentsoilmoisturelevels.BiologyandFertilityofSoils,49:119‐128.

Zaman,M.,M.L.Nguyen,J.D.Blennerhassett,andB.F.Quin.2008.ReducingNH3,N2Oand‐NLossesfromaPastureSoilwithUreaseorNitrificationInhibitorsandElementalS‐AmendedNitrogenousFertilizers.BiologyandFertilityofSoils,44(5):693‐705.

Zebarth,B.J.,P.Rochette,andD.L.Burton.2008a.N2Oemissionsfromspringbarleyproductionasinfluencedbyfertilizernitrogenrate.CanadianJournalofSoilScience,88:197‐205.

Zebarth,B.J.,P.Rochette,D.L.Burton,andM.Price.2008b.EffectoffertilizernitrogenmanagementonN2Oemissionsincommercialcornfields.CanadianJournalofSoilScience,88:189‐195.

Zebarth,B.J.,E.Snowdon,D.L.Burton,C.Goyer,etal.2012.Controlledreleasefertilizerproducteffectsonpotatocropresponseandnitrousoxideemissionsunderrain‐fedproductiononamedium‐texturedsoil.CanadianJournalofSoilScience,92:759‐769.

Zhang,J.,andX.Han.2008.N2Oemissionfromthesemi‐aridecosystemundermineralfertilizer(ureaandsuperphosphate)andincreasedprecipitationinnorthernChina.AtmosphericEnvironment,42:291‐302.

Zhang,Y.,C.Li,C.C.Trettin,andG.Sun.2002.Anintegratedmodelofsoil,hydrologyandvegetationforcarbondynamicsinwetlandecosystems.GlobalBiogeochemicalCycles,16:1‐17.

Zhang,Y.,Y.Y.Wang,S.L.Su,andC.S.Li.2011.QuantifyingmethaneemissionsfromricepaddiesinNortheeastChinabyintegratingremotesensingwithbiogeochemicalmode.Biogeosciences,8:1225‐1235.

Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems

3-141

Zhou,X.,J.R.Brandle,T.Awada,M.M.Schoeneberger,etal.2011.Theuseofforest‐derivedspecificgravityfortheconversionofvolumetobiomassforopen‐growntreesonagriculturalland.BiomassBioenergy,35(5):1721‐1731.

Zhou,X.,M.M.Schoeneberger,J.R.Brandle,T.N.Awada,etal.inreview.Analyzingtheuncertaintiesinuseofforest‐derivedbiomassequationsforopen‐growntreesinagriculturalland.ForestScience.

Zhou,X.H.1999.Onthethree‐dimensionalaerodynamicstructureofshelterbelts.PhDThesis,UniversityofNebraska,Lincoln,NE.

Zou,J.,Y.Huang,J.Jiang,X.Zheng,etal.2005.A3‐yearfieldmeasurementofmethaneandnitrousoxideemissionsfromricepaddiesinChina:Effectsofwaterregime,cropresidue,andfertilizerapplication.GlobalBiogeochemicalCycles,19:doi:10.1029/2004GB002401.