P. Pfeiffer* L. Perret** N. Schuhler ***

Post on 29-Jan-2016

52 views 0 download

Tags:

description

Instrumentation Procédés Photoniques. European Southern Observatory. Absolute distance metrology: - sweeping wavelength - frequency comb referenced 2 l interferometric system. P. Pfeiffer* L. Perret** N. Schuhler ***. * Université de Strasbourg ** Université de Strasbourg Sagem - PowerPoint PPT Presentation

Transcript of P. Pfeiffer* L. Perret** N. Schuhler ***

1

Absolute distance metrology:- sweeping wavelength

- frequency comb referenced 2 interferometric system

P. Pfeiffer* L. Perret** N. Schuhler***

* Université de Strasbourg** Université de Strasbourg Sagem*** Europeen Southern Observatory

European Southern ObservatoryInstrumentation Procédés Photoniques

2

■ Wavelength sweeping Absolute Distance Metrology ● Signal processing● Tunable laser source● Non-linearities of the tuning speed

Outline

3

■ Distance : 0 - 30m

■ 2 or more targets simultaneously

■ Accuracy, resolution: some ppm

■ Portable

■ 10 maesurements per second

■ Cost

ADM with wavelength sweeping

N. Pfeiffer L. Perret UdS

4

Tunable Laser

PDmeasPDref

Reference Interferometer

Object Interferometer Target A

ISO

Target B

SC

Experimental Setup

ref

obj

b

b

ref

obj

f

f

L

L

2 i

b

Lf

i

sweeping speed

5

Tunable wavelength laser

External Cavity Laser Diode

Coherence length >> 1kmCentral wavelength ~ 1.5µmContinuous tuning range up to ~ 5nmSweeping speed up to 40nm/s Large ranges and high sweeping

speeds without mode hopping to reduce error magnifications.

N. Pfeiffer L. Perret UdS

6

Tunable laser source

External cavity laser diode:– Littman Metcalf configuration – Littman Shoshan configuration

-500 -400 -300 -200 -100 0 100 200 300 400 5000

1

2

3

4

5

6

7

8

9

10

xt [µm]

Tai

lle d

e l'a

ccor

d co

ntin

u [n

m]

N. Pfeiffer L. Perret UdS

Lentille

Réseau

Miroir

M'

na

xt

xl

Diode Laser

7

Autoregressive method

Frequency resolution for N samples: N- 3/2

AR Burg method Sensitive to non-

linearities of the the sweeping speed

Fourier Transform technique

Eliminates low frequencies like drifts

Fringe processing

N. Pfeiffer L. Perret UdS

8

Fringe processing

Spectral filtering Gaussian filter

Blackman

window

Fast Fourier Transform

I(t) = a(t)+b(t) cos(I(t) = a(t)+b(t) cos((t)(t)))I(t) = a(t)+1/2[b(t) e I(t) = a(t)+1/2[b(t) e ii(t)(t)+ b+ b**(t) e (t) e -i-i(t)(t)]]

A(f)A(f)BB**(-(f+f(-(f+fss)))) B(f-fB(f-fss))

Inverse Fourier Transform

1/2[b(t) e 1/2[b(t) e ii(t)(t)] ]

Extraction of the instantaneous frequency

dt

tdtfb

)(

2

1)(

1

N. Pfeiffer L. Perret UdS

2

3 4

5

99

Target A at 2.2m Target B at 8m

6 records/pos.

sweeping speed 20nm/s.

1000 1050 1100 1150 1200

0.187444

0.187446

0.187448

0.18745

0.187452

0.187454

0.187456

0.187458

0.18746

Target A increment from 2.2m [µm]

Fre

quen

cies

rat

io

Relative Uncertainty at 1 : 1.2e-006

FTT results for 1017 samples

10

Non-linearities in wavelength sweeping

Results in an overlap of spectral peaks in the multi-target configuration.

8140 8160 8180 8200 8220 8240 8260 8280 8300-2000

-1000

0

1000

2000Object (red) & Reference (blue) signals

Sample number

Am

plit

ud

e (

raw

da

ta)

0 1 2 3 4 5 6 7

x 104

0

0.5

1

1.5

2

x 108 Object Spectrum

Frequency (Hz)

PS

D

Variations in fringes size

Spectral modulation

11

Extracted instantaneous beat frequency

dt

tdtfb

)(

2

1)(

0.07 0.08 0.09 0.1 0.11 0.12 0.133.5

4

4.5

5

5.5

6

x 104

Time [s]

Inst

anta

neou

s be

at fr

eque

ncy

[Hz]

Sweeping speed

0 0.02 0.04 0.06 0.08 0.1 0.12 0.1412

14

16

18

20

22

24

26

28

30

Time (s)S

wee

pin

g s

pee

d (

nm

/s)

12

Quasi-periodical variation of the beat frequency.

FFT analysis and reconstruction through sinusoidal signals.

ttt nl 00

iiif tfmAmt 2sin0

Modeling parameters:

mf : modulation rate

Ai : component’s weight (normalized)

fmi : component’s frequency

φi : component’s dephasage

13

Periodical non-linear influence

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

1

2

3

4

5

6

7

8

9x 10

-6

Err

or b

etw

een

sim

ulat

ed a

nd th

eore

tical

rat

ios

Distance increment from 2m (mm)

Simulation of different wavelength sweeps

Linear sweep

10nm/s model (5 components)

+ Single sinusoid : mf=2.2e-4fm=94.5Hz

Single sinusoid : mf /2fm /2

Single sinusoid : mf x2fm x2

Optimal sinusoidal modulation

14

• Reduces by a factor 20 the mean error (increases precision)

• Reduces by a factor 1000 the error dispersion (increases resolution)

… compared to a linear sweep.

Averaging of the instantaneous frequency ratio minimizes errors due to FFT limited resolution.

However, modulation still introduces peak overlapping in a multi-target configuration…

N. Pfeiffer L. Perret UdS

15

Frequency comb referenced two wavelength interferometry

N. Schuhler

ADM Laser system form the VLT at Paranal

European Southern Observatory

16

Frequency comb stabilized 2 wavelength laser interferometry for ADM● Absolute frequency stabilization of PRIMET Nd:YAG

laser● Two wavelength laser source● Calibration of the system

Outline

17

Phased Reference Imaging and Micro-arcsecond Astrometry

facility

LASBOPD

2 objects generate 2 fringe patterns related through:

where:

B is the baseline;

S the angular separation of the two objects;

A noise due to the atmosphere;

phase which depends on the nature of the object (0 for a point like source);

L instrumental noise (vibrations, internal turbulence). OPD

OPD

LASBOPD

N. Schuhler ESO

18

Specifications

The detection of Exo-planet with PRIMA in astrometric mode requires 10 as accuracy over several years.

Observable: differential optical path difference between to Michelson interferometers, OPD Propagation distance: <500 m OPL for an interferometer: <250 m Maximum OPD: 60 mm Accuracy: 5 nm (relative accuracy ~ 10-8) Resolution: 1 nm Measurement:time <30 min Sampling frequency: >8 kHz

N. Schuhler ESO

Proposed solution

Incremental interferometry for the ultimate resolution

2 wavelength interferometry for increasing the NAR

19

20

Architecture

Two heterodyne interferometers : Nd:YAG laser at = 1.319 m; Frequency shifting by Acousto-Optic Modulators; Electronic differential phase measurement (superheterodyne

phasemeter) (IMP Neuchatel)

21

Error and Non Ambiguity Range

m: fringe order

M: fringe number

f(m): fractional part: phase (-<<)

222

)(2

MmfMmOPD

N. Schuhler ESO

OPDOPD

22

Error on OPD due to the wavelength uncertainty:

Differential OPD measured:

22

refscrefsc OPDOPDOPD

88 101060

5

mm

nm

OPD

OPD

Non Ambiguity Range:

22

Stabilization of the Nd:YAG

P(49)6-6

Nd:YAGI2EOM

PPLN Lock-in

Amplifier

CANPICNA

T Pz 25%

75%To the interferometers

Pound-Drever-Hall method applied to a frequency doubled Nd:YAG, the frequency reference is an I2 transition at 659.5nm

+PICNA

N. Schuhler ESO

23

Residual error in closed loop

N. Schuhler ESO

24

Measurements with an optical frequency comb

• Self-referenced optical frequency comb based on a fibered fs pulsed laser at the• Max Planck Institute for Quantum Optics (MPQ Munich, Germany)• Provides thousand of modes separated by 100 MHz over one octave (1m -2m)• Reference radio frequency signal (10 MHz) derived from a cesium atomic clock • Relative inaccuracy on the frequency of one mode of the comb < 10-12

• Frequency of Nd:YAG is deduced from the beat signal with one mode of the comb

nr

0

nr +0

I()

0

Nd:YAG

N. Schuhler ESO

rep

2(nr

25

Peak-to-valley = 1.45 MHz Standard deviation = 226 kHz

Measurements with an optical frequency comb (3)

The discrepancy is due to: the error in the calibration of the error signal; detection noise.

N. Schuhler ESO

26

Absolute frequency stabilization of PRIMET Nd:YAG laser

ConclusionUse of the temperature of the laser cavity to enable long-term (weeks) locking; Full automation of the laser frequency stabilization; Accurate characterization of the system performance by the use of a self-referenced optical frequency comb (with the help of MPQ) as an independent sensor :

locking frequency 0 = 227 257 330 623 020 Hz ± 94 kHz; frequency noise (rms) over bandwidth 5 mHz- 8 kHz : <2.27

MHz (PRIMET specifications); Demonstration that the system performance are limited by detection noise; Demonstration that the laser frequency cannot be calibrated with an accuracy better than 10-8 by comparison with a commercial HP interferometer

The system will be tested in Paranal with a self-referenced frequency comb from Menlo Systems.

N. Schuhler ESO

27

Principle of two-wavelength interferometry

Multiple-wavelength interferometry (Benoit 1895) with the excess fraction method Synthetic wavelength technique for two-wavelength laser interferometry (Wyant in 1971)

A Michelson interferometer is used with two wavelength simultaneously:

2211

OPD

is the synthetic wavelength

The NAR of the system is /2

≈ 90 µm ↔ ≈ 20 nm

2222

OPD

222

1

2

21

21

21

OPD

N. Schuhler ESO

28

Architecture of the source

Comb modes

1=c/1 2=c/2

rep

=c/=2-1=Nrep

to the interferometer

Absolute frequency

stabilization System1

fs laser (with stabilized repetition rate)

Beat detection + PLL

to the interferometer

Beat detection + PLL

2

ECLD tunable

Two lasers can be stabilized on different modes of the comb to generate a custom and highly stable synthetic wavelength: m < L < md/ < reference radio signal (10-12 GPS based clock)

N. Schuhler ESO

29

Architecture of the prototype

10 MHz source with accuracy < 10-11

Fs-laser

TC 1500 Menlo Systems

AOM

+40.65MHz

AOM

+40.45MHz

AOM

-40MHz

1

2

2 + 650 kHz1 + 450 kHz

Nd:YAG

Lightwave 125

1.319 m

ECLD

Thorlabs Intun 1300

1.300 m

1319 ± 2.5 nm

BD

PLL

1

2

BDPLL1300 ± 2.5 nm

gratings

N. Schuhler ESO

30

Performances of the prototype

10-1135 Hz~3.3 THzECLD-Nd:YAG

0.5×10-71 Hz20 MHzBeat signalECLD/Comb

0.5×10-1010 mHz20 MHzBeat signalNd:YAG/comb

10-111 mHz100 MHzRepetition rate

Relative instability

Instability (peak-to-valley)

Mean frequencySignal

Nd:YAG ECLDrep=100MHz

=N×rep~3.3THz

fb=20MHz

fb=20MHz

The relative stability of the synthetic wavelength in vacuum is 10-11.

N. Schuhler ESO

31

Set-up for the calibration of in air

2-wavelength

Light source

Reference

Interferometer

Phasemeter

BS

PBS

probe

reference

2~1.30 m

1=1.319 m

LP

ref=0.633 m Translation stage

corner cube

N. Schuhler ESO

32

Result of the calibration of

Slope=139.541582 rad/mm=90.054666 mTaking into account the dispersion:=3.32899949 ±0.00000067 Thz 33290 modes of the comb

Residuals:=22 mrad=2/285

OPD

=160 nm<1/2

N. Schuhler ESO

Merci de votre attention

33