Inference for the mean vector. Univariate Inference Let x 1, x 2, …, x n denote a sample of n from...

Post on 06-Jan-2018

224 views 0 download

description

The multivariate Test Let denote a sample of n from the p-variate normal distribution with mean vector  and covariance matrix . Suppose we want to test

Transcript of Inference for the mean vector. Univariate Inference Let x 1, x 2, …, x n denote a sample of n from...

Inference for the mean vector

Univariate InferenceLet x1, x2, … , xn denote a sample of n from the normal distribution with mean and variance 2.Suppose we want to test

H0: = 0 vsHA: ≠ 0

The appropriate test is the t test:The test statistic:

Reject H0 if |t| > t/2

0xt ns

The multivariate TestLet denote a sample of n from the p-variate normal distribution with mean vector and covariance matrix .Suppose we want to test

1 2, , , nx x x

0 0

0

: vs:A

HH

Roy’s Union- Intersection PrincipleThis is a general procedure for developing a multivariate test from the corresponding univariate test.

1

i.e. observation vector

p

XX

X

1. Convert the multivariate problem to a univariate problem by considering an arbitrary linear combination of the observation vector.

1 1 p pU a X a X a X

arbitrary linear combination of the observations

2. Perform the test for the arbitrary linear combination of the observation vector.

3. Repeat this for all possible choices of

1

p

aa

a

4. Reject the multivariate hypothesis if H0 is rejected for any one of the choices for

5. Accept the multivariate hypothesis if H0 is accepted for all of the choices for

6. Set the type I error rate for the individual tests so that the type I error rate for the multivariate test is .

.a

.a

Let denote a sample of n from the p-variate normal distribution with mean vector and covariance matrix .Suppose we want to test

1 2, , , nx x x

0 0

0

: vs:A

HH

Application of Roy’s principle to the following situation

1 1Let i i i p piu a x a x a x

Then u1, …. un is a sample of n from the normal distribution with mean and variance .a a aΣ

to test

0 0

0

: vs

:

a

aA

H a a

H a a

we would use the test statistic:

0a

u

u at ns

1 1

1 1Now n n

i ii i

u u a xn n

1 1

1 1n n

i ii i

a x a x a xn n

and

222

1 1

1 11 1

n n

u i ii i

s u u a x a xn n

2

1

11

n

ii

a x xn

1

11

n

i ii

a x x x x an

1

11

n

i ii

a x x x x a a an

S

Thus

00

a a x a nt n a xa aa a

SS

We will reject 0 0:aH a a

if 0 / 2a nt a x t

a a

S

2

2 0 2/ 2

or an a x

t ta a

S

We will reject

0 0 0: in favour of :AH H

Using Roy’s Union- Intersection principle:

2

2 0 2/ 2

if for at least one an a x

t t aa a

S

We accept 0 0:H

2

2 0 2/ 2

if for all an a x

t t aa a

S

We reject

0 0:H

i.e.

2

0 2/ 2

if max a

n a xt

a a

S

We accept 0 0:H

2

0 2/ 2

if maxa

n a xt

a a

S

Consider the problem of finding:

2

0max max

a a

n a xh a

a a

S

where

2

0 0 0n a x a x x ah a n

a a a a

S S

0 0 0 0

2

2 20

a a x x a a x x a ah an

a a a

S S

S

0 0or a a x a x a S S

thus 2

0max

opt

aopt opt

n a xh a

a a

S

1 10 0

0

or opta aa x k x a

a x

S S S

21

0 0

2 1 10 0

n k x x

k x x

S

S SS

10 0n x x S

We reject 0 0:H Thus Roy’s Union- Intersection principle states:

1 20 0 / 2

if n x x t

S

We accept 0 0:H

1 20 0 / 2

if n x x t

S

2 10 0The statistic T n x x S

is called Hotelling’s T2 statistic

We reject 0 0:H Choosing the critical value for Hotelling’s T2 statistic

2 1 20 0 / 2

if T n x x t

S

2/ 2

To determine t , we need to find the sampling

distribution of T2 when H0 is true.

It turns out that if H0 is true than

2 1

0 0 1 1

n p nn pF T x xp n p n

S

has an F distribution with 1 = p and 2 = n - p

We reject 0 0:H

ThusHotelling’s T2 test

2 1 20 0

1, a

p nT n x x F p n p T

n p

S

2 ,1

n pF T F p n pp n

or if

f x

Another derivation of Hotelling’s T2 statistic

Another method of developing statistical tests is the Likelihood ratio method.

Suppose that the data vector, , has joint densityx

Suppose that the parameter vector, , belongs to the set . Let denote a subset of .

Finally we want to test 0 : vs

:A

H

H

ˆ̂max max

ˆmaxmax

Lf x L

Lf x L

The Likelihood ratio test rejects H0 if

ˆwhere the MLE of

0

ˆ̂and the MLE of when is true.H

The situationLet denote a sample of n from the p-variate normal distribution with mean vector and covariance matrix .Suppose we want to test

1 2, , , nx x x

0 0

0

: vs:A

HH

The Likelihood function is:

1

1

12

/ 2 / 2

1, e 2

n

i ii

x x

np nL

and the Log-likelihood function is:

, ln , l L

1

1

1ln 2 ln 2 2 2

n

i ii

np n x x

and

the Maximum Likelihood estimators of

are

1

1ˆ n

ii

x xn

and

1

1 1ˆ n

i ii

nx x x x Sn n

and the Maximum Likelihood estimators of

when H 0 is true are:

0ˆ̂ ˆ

and

0 01

1ˆ̂ n

i ii

x xn

The Likelihood function is:

1

1

12

/ 2 / 2

1, e 2

n

i ii

x x

np nL

now

11 1

1 1

ˆ ˆˆ n n

ni i i in

i i

x x x x S x x

11

1

n

ni in

i

tr x x S x x

11

1

n

ni in

i

tr S x x x x

11

1

n

ni in

i

tr S x x x x

1 11 = 1 = n nn ntr n I n p np

Thus 2

/ 2/ 2 1

1ˆ ˆ, 2

np

nnp nn

L eS

similarly

2/ 2

/ 2

1ˆ ˆˆ ˆ, ˆ̂2

np

nnp

L e

and

/ 2 / 21 1

/ 2 / 2

0 01

ˆ ˆˆ ˆ,

ˆ ˆ ˆ, 1ˆ

n nn nn n

n nn

i ii

L S S

Lx x

n

/ 2

/ 2

0 01

1

n

nn

i ii

n S

x x

Note:11 12

21 22

A A u wA

A A w V

Let

111 22 21 11 12

122 11 12 22 21

A A A A AA

A A A A A

1

1u V wwu

V u w V w

11Thus u V ww V u w V wu

and1

1

1V ww

w V wuV u

/ 2

/ 2

0 01

1

n

nn

i ii

n S

x x

Now

and

2/

0 01

1 n

n

i ii

n S

x x

Also

0 0 0 01 1

= n n

i i i ii i

x x x x x x x x

01 1

=n n

i i ii i

x x x x x x x

0 0 01

n

ii

x x x n x x

0 01

=n

i ii

x x x x n x x

0 01

=n

i ii

x x x x n x x

0 0= 1n S n x x

Thus

2/

0 01

1 n

n

i ii

n S

x x

0 0

1

1

n S

n S n x x

0 0

1

SnS x x

n

Thus 0 02/ 1 n

nS x xn

S

using 11

1V ww

w V wuV u

0

1, and

u nV S

w n x

Then 10 02/ 1

1n

n x S x

n

Thus to reject H0 if < 2/i.e. n n

2/or n n

10 0and 1

1n

n x S x

n

10 0or 1 -1 nn x S x n

This is the same as Hotelling’s T2 test if

2/ 11 -1 , n p n

n T F p n pn p

Example

For n = 10 students we measure scores on – Math proficiency test (x1),

– Science proficiency test (x2),

– English proficiency test (x3) and

– French proficiency test (x4)

The average score for each of the tests in previous years was 60. Has this changed?

The data

Student Math Science Eng French1 81 89 73 742 73 79 73 743 61 86 81 814 55 70 76 735 61 71 61 666 52 70 56 587 56 74 56 568 65 87 73 699 54 76 69 72

10 48 71 62 63

Summary Statistics60.677.368.068.6

x

S

102.044 56.689 41.222 39.48956.689 56.456 42.000 35.35641.222 42.000 75.778 65.11139.489 35.356 65.111 61.378

0.0245 -0.0255 0.0195 -0.0218-0.0255 0.0567 -0.0405 0.02670.0195 -0.0405 0.1782 -0.1783-0.0218 0.0267 -0.1783 0.2040

1

: S

Note

2 10 0 151.135T n x S x

0.05 0.05 0.05

1 4 9 4 9, 4,6 = 4.53 27.18

6 6p n

T F p n p Fn p

0

60606060

Simultaneous Inference for means

Recall

2 1T n x S x

2

21max max

a a

n a x at a

a S a

(Using Roy’s Union Intersection Principle)

Now 2 1P T T P n x S x T

2

1maxa

n a x aP T

a S a

2

1 for all n a x a

P T aa S a

12

for all a S aP a x a T an

1

Thus1 1

for all a S a a S aP a x T a a x T an n

1

and the set of intervals

1 1

to a S a a S aa x T a x Tn n

Form a set of (1 – )100 % simultaneous confidence intervals for a

Recall

,-1= p n pn p

T Fn p

1,-1

p n pn pa S aa x Fn n p

Thus the set of (1 – )100 % simultaneous confidence intervals for a

1,-1

to p n pn pa S aa x Fn n p

The two sample problem

Univariate InferenceLet x1, x2, … , xn denote a sample of n from the normal distribution with mean x and variance 2.

Let y1, y2, … , ym denote a sample of n from the normal distribution with mean y and variance 2.

Suppose we want to testH0: x = y vs

HA: x ≠ y

The appropriate test is the t test:

The test statistic:

Reject H0 if |t| > t/2 d.f. = n + m -2

1 1pooled

x yts

n m

2 21 12

x ypooled

n s m ss

n m

The multivariate TestLet denote a sample of n from the p-variate normal distribution with mean vector and covariance matrix .

1 2, , , nx x x

x

0 : vs

:x y

A x y

H

H

Suppose we want to test

Let denote a sample of m from the p-variate normal distribution with mean vector and covariance matrix .

1 2, , , my y y

y

Hotelling’s T2 statistic for the two sample problem

2 111 1 pooledT x y x y

n m

S

if H0 is true than

21

2n m pF Tp n m

has an F distribution with 1 = p and

2 = n +m – p - 1

1 12 2pooled x y

n mn m n m

S S S

We reject 0 : x yH

ThusHotelling’s T2 test

21if , 12

n m pF T F p n m pp n m

2 11with 1 1 pooledT x y x y

n m

S

1 12 2pooled x y

n mn m n m

S S S

Simultaneous inference for the two-sample problem

• Hotelling’s T2 statistic can be shown to have been derived by Roy’s Union-Intersection principle

2 11namely 1 1 pooledT x y x y

n m

S

2

2max max1 1a a

pooled

a x yt a

a an m

S

where x y

Thus

211 , 12

n m pP F T F p n m pp n m

2 2, 1

1p n m

P T F p n m pn m p

2P T T

2where , 1

1p n m

T F p n m pn m p

Thus

2

max 11 1a

pooled

a x yP T

a an m

S

2

or for all 11 1

pooled

a x yP T a

a an m

S

Thus

2 1 1 for all 1pooledP a x y T a a an m

S

Hence

1 1pooled x yP a x y T a a a

n m

S

1 1 for all 1pooleda x y T a a an m

S

Thus

form 1 – simultaneous confidence intervals for

1 1pooleda x y T a a

n m S

x ya

Example Annual financial data are collected for firms approximately 2 years prior to bankruptcy and for financially sound firms at about the same point in time. The data on the four variables

• x1 = CF/TD = (cash flow)/(total debt), • x2 = NI/TA = (net income)/(Total assets), • x3 = CA/CL = (current assets)/(current liabilties, and • x4 = CA/NS = (current assets)/(net sales) are given in

the following table.

The data are given in the following table: Bankrupt Firms Nonbankrupt Firms x1 x2 x3 x4 x1 x2 x3 x4 Firm CF/TD NI/TA CA/CL CA/NS Firm CF/TD NI/TA CA/CL CA/NS 1 -0.4485 -0.4106 1.0865 0.4526 1 0.5135 0.1001 2.4871 0.5368 2 -0.5633 -0.3114 1.5314 0.1642 2 0.0769 0.0195 2.0069 0.5304 3 0.0643 0.0156 1.0077 0.3978 3 0.3776 0.1075 3.2651 0.3548 4 -0.0721 -0.0930 1.4544 0.2589 4 0.1933 0.0473 2.2506 0.3309 5 -0.1002 -0.0917 1.5644 0.6683 5 0.3248 0.0718 4.2401 0.6279 6 -0.1421 -0.0651 0.7066 0.2794 6 0.3132 0.0511 4.4500 0.6852 7 0.0351 0.0147 1.5046 0.7080 7 0.1184 0.0499 2.5210 0.6925 8 -0.6530 -0.0566 1.3737 0.4032 8 -0.0173 0.0233 2.0538 0.3484 9 0.0724 -0.0076 1.3723 0.3361 9 0.2169 0.0779 2.3489 0.3970 10 -0.1353 -0.1433 1.4196 0.4347 10 0.1703 0.0695 1.7973 0.5174 11 -0.2298 -0.2961 0.3310 0.1824 11 0.1460 0.0518 2.1692 0.5500 12 0.0713 0.0205 1.3124 0.2497 12 -0.0985 -0.0123 2.5029 0.5778 13 0.0109 0.0011 2.1495 0.6969 13 0.1398 -0.0312 0.4611 0.2643 14 -0.2777 -0.2316 1.1918 0.6601 14 0.1379 0.0728 2.6123 0.5151 15 0.1454 0.0500 1.8762 0.2723 15 0.1486 0.0564 2.2347 0.5563 16 0.3703 0.1098 1.9914 0.3828 16 0.1633 0.0486 2.3080 0.1978 17 -0.0757 -0.0821 1.5077 0.4215 17 0.2907 0.0597 1.8381 0.3786 18 0.0451 0.0263 1.6756 0.9494 18 0.5383 0.1064 2.3293 0.4835 19 0.0115 -0.0032 1.2602 0.6038 19 -0.3330 -0.0854 3.0124 0.4730 20 0.1227 0.1055 1.1434 0.1655 20 0.4875 0.0910 1.2444 0.1847 21 -0.2843 -0.2703 1.2722 0.5128 21 0.5603 0.1112 4.2918 0.4443 22 0.2029 0.0792 1.9936 0.3018 23 0.4746 0.1380 2.9166 0.4487 24 0.1661 0.0351 2.4527 0.1370 25 0.5808 0.0371 5.0594 0.1268

Hotelling’s T2 test

A graphical explanation

Hotelling’s T2 statistic for the two sample problem

2 111 1 pooledT x y x y

n m

S

1 1where 2 2pooled x y

n mn m n m

S S S

2

2 2max max1 1a a

pooled

a x yT t a

a an m

S

: 1 1

pooled

a x a yt aa a

n m

Note

S

is the test statistic for testing:

0 : vs :x y A x yH a a a H a a a

Popn A

Popn B

X1

X2

Hotelling’s T2 test

Popn A

Popn B

X1

X2

Univariate test for X1

Popn A

Popn B

X1

X2

Univariate test for X2

Popn A

Popn B

X1

X2

Univariate test for a1X1 + a2X2

Mahalanobis distance

A graphical explanation

22

1

,p

i ii

d a b a b a b a b

Euclidean distance

a

points equidistantfrom a

2 ,Md a b a b a b

Mahalanobis distance: , a covariance matrix

a

points equidistantfrom a

Hotelling’s T2 statistic for the two sample problem

2 1 21 1 , ,pooled M pooledT x y x y d x yn m

S S

2 111 1 pooledT x y x y

n m

S

1pooled

nm x y x yn m

S

2 , ,M pooledn md x ynm

S

Popn A

Popn B

X1

X2

Case I

Popn A

Popn B

X1

X2

Case II

Popn A

Popn B

X1

X2

Case IPopn A

Popn B

X1

X2

Case II

In Case I the Mahalanobis distance between the mean vectors is larger than in Case II, even though the Euclidean distance is smaller. In Case I there is more separation between the two bivariate normal distributions