G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Post on 27-Jun-2015

329 views 0 download

Tags:

description

test presentatie van G1HB 2011-2012

Transcript of G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

G1HB - Hart & Bloedsomloop - April 2012

Cardiac mechanics

Paul Steendijk, PhD

Associate Professor Cardiovascular PhysiologyDepartment of Cardiology, LUMC

p.steendijk@lumc.nl

Determinants of cardiac performance

• Myocardial contractility (inotropy & lusitropy)- contraction, relaxation

• Loading conditions- preload, afterload, geometry

• Chronotropy- heart rate

• Temporal and spatial (non)-uniformity- dyssynchrony

Stiffness (Elastance) = dP/dVCompliance = dV/dP

Intrinsic propertiesby load-independent characterization

early compartmentlate compartmentdt = 0.010 s

0.0

1.0

2.0

3.0

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Ela

stan

ce (

mm

Hg/

mL)

0.0

1.0

2.0

3.0

0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

0 50 100 150 200 250

Volume (mL)

Pre

ssu

re (

mm

Hg

)

t=0.00

t=0.02

t=0.04

t=0.06

t=0.08

t=0.10

t=0.14

t=0.18

t=0.22

t=0.30

Time-varying elastance (stiffness)

Senzaki, Circulation 1996

Reduced cardiac output (stroke volume)

increased afterloadreduced preload

reduced contractility reduced

compliance

Effects of load changes(preload, afterload)

Pre

ssu

re

Volume

Preload change Afterload change

Volume

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

Systolic vs. Diastolic Heart Failure

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

Pre

ssu

re

Volume

Systolic Heart Failure Diastolic Heart Failure

Volume

Systolic and diastolic PV relationsDobutamine vs. Baseline

0

25

50

75

100

125

0 50 100 150LV Volume (ml)

LV P

ress

ure

(m

mH

g)

BaselineDobutamine

Steendijk et al. J Am Coll Cardiol 1998; 32: 816-26

2.2: Contraction mechanisms

2.3:Excitation-contraction coupling

2.4: Pump function

G1HB - Hart & Bloedsomloop - April 2012

Cardiac mechanics

Cross-bridge cycling & calcium

Calcium & cross-bridge cycling

Calcium concentrationsExtracellular Ca concentration: [Ca]o ~ 1.2 mM (1200 μM) Intracellular Ca concentration: [Ca]i ~ 100 nM (0.1 μM)- 104-fold concentration gradient

During action potential:- Ca enters via L-type Ca channels- Free [Ca]i increases ~10-fold

[Ca]o , [Ca]i and Force

- [Ca]i depends on [Ca]o

- Developed force is dependent on free [Ca]i

Calcium-induced calcium release from SR- Ca influx is not sufficient to raise [Ca]i and initiate contraction- Sarcoplasmic reticulum stores large amounts of Ca- Ca entry (L-type Ca channels) triggers Ca release from SR via Ryanodine receptors

Calcium re-uptake into the SR- Ca is sequestered into SR by SERCA pump (SR Ca-ATPase)- Phospholamban regulates SERCA; phosphorylation removes its inhibitory effect- Calsequestrin is a SR Ca-binding protein

Calcium removal initiates relaxation

Species differences: Humans ≈ Rabbit

- Ca must be removed from the cytosol to lower [Ca]i and allow relaxation- Routes: SERCA (SR-ATPase), Na/Ca exchange (NCX), SL-ATPase

Cave:Na (“natrium”) = SodiumK (“kalium”) = Potassium

Calcium handling

Beta-receptor stimulation & ECC- Sympathetic activation >> release norepinephrine >> stimulate beta- receptors on SL >> stimulates cAMP production >> protein kinase A- Phosphorylation of L-type Ca-channels: positive inotropic effect (improves contraction)- Phosphorylation of phospholamban (PLB) and troponin-I (TnI): positive lusitropic effect (improves relaxation)

- Myofilaments (Actine-Myosine)- Myofibrils- Mitochondria (ATP)

-Sarcolemma, T-tubule- Sarcoplasmic reticulum- Cisterna

Anatomy & E-C coupling

Sarcomere length and intracellular calcium control force

Isometric force is increased by:

Increased intracellular calcium- binding to Tn-C >> actine-myosin interaction

Increased sarcomere length(“Starling’s Law of the Heart”)- Optimal actine-myosine overlap- Reduced lattice spacing- Altered myosin head orientation

Interaction of two mechanisms- Increased calcium sensitivity at increased sarcomere length

Mechanical dyssynchrony (Heart failure and LBBB)Cardiac Resynchronization Therapy (CRT)

0

20

40

60

80

100

120

140 160 180 200 220

LV Volume (ml)

LV P

ress

ure

(m

mH

g)

Baseline

LV 120

BiV 120

Steendijk et al. Eur Heart J Suppl 2004; 6: D35-42

Cardiac Resynchronization Therapy (CRT)Acute effects

Nelson et al., Circulation 2000

Myocardial Oxygen Consumption (MVO2)LV Pacing vs. Dobutamine

Steendijk et al. Circulation 2006; 113: 1295-1304

Cessation of biventricular pacingafter 6 months of CRT

Asynchronous mechanical activation

McVeigh, Magn Res Med 1998