G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

27
G1HB - Hart & Bloedsomloop - April 2012 Cardiac mechanics Paul Steendijk, PhD Associate Professor Cardiovascular Physiology Department of Cardiology, LUMC [email protected]

description

test presentatie van G1HB 2011-2012

Transcript of G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Page 1: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

G1HB - Hart & Bloedsomloop - April 2012

Cardiac mechanics

Paul Steendijk, PhD

Associate Professor Cardiovascular PhysiologyDepartment of Cardiology, LUMC

[email protected]

Page 2: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Determinants of cardiac performance

• Myocardial contractility (inotropy & lusitropy)- contraction, relaxation

• Loading conditions- preload, afterload, geometry

• Chronotropy- heart rate

• Temporal and spatial (non)-uniformity- dyssynchrony

Page 3: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Stiffness (Elastance) = dP/dVCompliance = dV/dP

Intrinsic propertiesby load-independent characterization

Page 4: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

early compartmentlate compartmentdt = 0.010 s

0.0

1.0

2.0

3.0

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Ela

stan

ce (

mm

Hg/

mL)

0.0

1.0

2.0

3.0

0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

0 50 100 150 200 250

Volume (mL)

Pre

ssu

re (

mm

Hg

)

t=0.00

t=0.02

t=0.04

t=0.06

t=0.08

t=0.10

t=0.14

t=0.18

t=0.22

t=0.30

Time-varying elastance (stiffness)

Senzaki, Circulation 1996

Page 5: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Reduced cardiac output (stroke volume)

increased afterloadreduced preload

reduced contractility reduced

compliance

Page 6: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Effects of load changes(preload, afterload)

Pre

ssu

re

Volume

Preload change Afterload change

Volume

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

Page 7: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Systolic vs. Diastolic Heart Failure

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

0

20

40

60

80

100

120

0 30 60 90 120 150

Pre

ssu

re

Volume

Systolic Heart Failure Diastolic Heart Failure

Volume

Page 8: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Systolic and diastolic PV relationsDobutamine vs. Baseline

0

25

50

75

100

125

0 50 100 150LV Volume (ml)

LV P

ress

ure

(m

mH

g)

BaselineDobutamine

Steendijk et al. J Am Coll Cardiol 1998; 32: 816-26

Page 9: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)
Page 10: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)
Page 11: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

2.2: Contraction mechanisms

2.3:Excitation-contraction coupling

2.4: Pump function

G1HB - Hart & Bloedsomloop - April 2012

Cardiac mechanics

Page 12: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Cross-bridge cycling & calcium

Page 13: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Calcium & cross-bridge cycling

Page 14: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Calcium concentrationsExtracellular Ca concentration: [Ca]o ~ 1.2 mM (1200 μM) Intracellular Ca concentration: [Ca]i ~ 100 nM (0.1 μM)- 104-fold concentration gradient

During action potential:- Ca enters via L-type Ca channels- Free [Ca]i increases ~10-fold

Page 15: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

[Ca]o , [Ca]i and Force

- [Ca]i depends on [Ca]o

- Developed force is dependent on free [Ca]i

Page 16: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Calcium-induced calcium release from SR- Ca influx is not sufficient to raise [Ca]i and initiate contraction- Sarcoplasmic reticulum stores large amounts of Ca- Ca entry (L-type Ca channels) triggers Ca release from SR via Ryanodine receptors

Page 17: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Calcium re-uptake into the SR- Ca is sequestered into SR by SERCA pump (SR Ca-ATPase)- Phospholamban regulates SERCA; phosphorylation removes its inhibitory effect- Calsequestrin is a SR Ca-binding protein

Page 18: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Calcium removal initiates relaxation

Species differences: Humans ≈ Rabbit

- Ca must be removed from the cytosol to lower [Ca]i and allow relaxation- Routes: SERCA (SR-ATPase), Na/Ca exchange (NCX), SL-ATPase

Cave:Na (“natrium”) = SodiumK (“kalium”) = Potassium

Page 19: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Calcium handling

Page 20: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Beta-receptor stimulation & ECC- Sympathetic activation >> release norepinephrine >> stimulate beta- receptors on SL >> stimulates cAMP production >> protein kinase A- Phosphorylation of L-type Ca-channels: positive inotropic effect (improves contraction)- Phosphorylation of phospholamban (PLB) and troponin-I (TnI): positive lusitropic effect (improves relaxation)

Page 21: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

- Myofilaments (Actine-Myosine)- Myofibrils- Mitochondria (ATP)

-Sarcolemma, T-tubule- Sarcoplasmic reticulum- Cisterna

Anatomy & E-C coupling

Page 22: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Sarcomere length and intracellular calcium control force

Isometric force is increased by:

Increased intracellular calcium- binding to Tn-C >> actine-myosin interaction

Increased sarcomere length(“Starling’s Law of the Heart”)- Optimal actine-myosine overlap- Reduced lattice spacing- Altered myosin head orientation

Interaction of two mechanisms- Increased calcium sensitivity at increased sarcomere length

Page 23: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Mechanical dyssynchrony (Heart failure and LBBB)Cardiac Resynchronization Therapy (CRT)

Page 24: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

0

20

40

60

80

100

120

140 160 180 200 220

LV Volume (ml)

LV P

ress

ure

(m

mH

g)

Baseline

LV 120

BiV 120

Steendijk et al. Eur Heart J Suppl 2004; 6: D35-42

Cardiac Resynchronization Therapy (CRT)Acute effects

Page 25: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Nelson et al., Circulation 2000

Myocardial Oxygen Consumption (MVO2)LV Pacing vs. Dobutamine

Page 26: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Steendijk et al. Circulation 2006; 113: 1295-1304

Cessation of biventricular pacingafter 6 months of CRT

Page 27: G1 hb 2011 2012 23 excitation-contraction coupling (steendijk)

Asynchronous mechanical activation

McVeigh, Magn Res Med 1998