ELECTROLYSERS AND ELECTROFUELS IN SMART ENERGY …

Post on 06-Nov-2021

7 views 0 download

Transcript of ELECTROLYSERS AND ELECTROFUELS IN SMART ENERGY …

ELECTROLYSERS AND ELECTROFUELS IN

SMART ENERGY SYSTEMS

I v a R i d j a n S k o v, i v a @ p l a n . a a u . d k

S u s t a i n a b l e E n e r g y P l a n n i n g R e s e a r c h G r o u p

A a l b o r g U n i v e r s i t y

Solutions on the table

1. Interconnectors and trading

2. Flexible electricity demands and smart grids

3. Integrated efficient Smart Energy Systems

Smart Energy Systems

Download report:

www.EnergyPLAN.eu/IDA

ENERGY SAVINGS

EFFICIENT CONVERSION

RENEWABLE ENERGY

SOURCES F L E X I B L E

T E C H N O L O G I E S

I N T E G R A T E D

E N E R G Y

S Y S T E M S

Key principles

Pump Hydro Storage

175 €/kWh (Source: Electricity Energy Storage

Technology Options: A White Paper

Primer on Applications, Costs, and

Benefits. Electric Power Research

Institute, 2010)

Natural Gas Underground Storage

0.05 €/kWh (Source: Current State Of and Issues

Concerning Underground Natural Gas

Storage. Federal Energy Regulatory

Commission, 2004)

Oil Tank

0.02 €/kWh (Source: Dahl KH, Oil

tanking Copenhagen A/S,

2013: Oil Storage Tank.

2013)

Thermal Storage

1-4 €/kWh (Source: Danish Technology

Catalogue, 2012)

0

10

20

30

40

50

60

70

80

90

100

1

10

100

1.000

10.000

100.000

Electricity Thermal Gas Liquid fuel

Effi

cien

cy (

%)

Pri

ce (€

/MW

h)

Price Efficiency

Storage Comparison

We need much more electricity

in the future

Download reports:

www.energyplan.eu/IDA

www.energyplan.eu/PV Wind power should be

prioritised, supplemented by

PV and power plants

0

50

100

150

200

250

2015 ENS Vind 2050 IDA 2050

2015 2050

Pri

mar

y En

erg

y Su

pp

ly (

TWh

/ye

ar)

Coal Oil Gas Biomass/waste

Onshore Offshore PV Wave/tidal

Geothermal Solar thermal

E L E C T R I C I T Y

P R I C E D R O P I S A

M A I N D R I V E R F O R

P T X

I N S T A L L A T I O N S

Download reports:

www.energyplan.eu/PV

RES LCoE are dropping

We have to use much more

electricity in the future

(flexibly)!

Demands more than doubles

Smart energy systems - T h e k e y t o c o s t - e f f e c t i ve r e n ew a b l e

e n e r g y s ys t e m s

• Heat storage, d istr ict heat ing, CHP and large heat pumps

• New electr ic i ty needs from large / smal l heat pumps and electr ic cars (wi th electr ic i ty storage )

• Electrolys is and l iquid fuels for t ransport sector wi th storages

• Integrat ion of gas system and gas storage

More El =

Sustainable

biomass

consumption

Power-to-Heat

Power-to-Transport

Power-to-Gas

Power-to-liquids

Technology Required additional investment

from today to 2050 (Billion €)

1 Energy renovations of the existing

building stock

29.9

2 Offshore wind 28.4

3 Individual heat pumps 14.7

4 District heating grid expansion 5.5

5 Electrofuel production (PtX) 4.4

6 Photovoltaic 2.6

7 Individual solar thermal 2.6

8 Biogas plants 2.6

9 Charging stations 2.2

10 Large-scale heat pumps 2.0

The top 10 technologies that requi re addi t ional

investment in the 100% renewable energy system in 2050

- F r o m E l e c t r i c i t y m a r k e t s t o S m a r t E n e r g y

S ys t e m M a r k e t s ?

What are electrofuels?

High share of electricity in production process

New way of producing hydrocarbons/ammonia

Merging hydrogen with carbon or nitrogen

Redirecting electricity to transport sector

Open a door to fuel storage

Flexible end-fuel choice

ELECTRO FUELS

Electrolyser Hydrogenation

Carbon

or N2

source

Chemical

synthesis

H 2

METHANOL/DME/METHANE

H 2O

/

A M M O N I A

Electrolyser Hydrogenation

Carbon

or N2

source

Chemical

synthesis

H 2

S t e p 2

H yd r o g e n p r o d u c t i on f r o m

s t e a m e l e c t ro lys i s METHANOL/DME/

METHANE

H 2O

/

A M M O N I A

Electrolyser Hydrogenation

Carbon

or N2

source

Chemical

synthesis

H 2

S t e p 3

C o n ve r s i o n o f c r e a te d s yn g a s

t o d e s i r ed f u e l

METHANOL/DME/METHANE

S Y N G A S

T W O L I Q U I D

E L E C T R O F U E L

P L A N T S I N T H E

W O R L D

H 2O

/

A M M O N I A

N U M E R U S

P O W E R - T O - G A S

I N S T A L L A T I O N S

Biomass potential

B I O M A S S P O T E N T I A L

O P T I M I S T I C : C A . 3 0 0

P J

P E S I M I S T I C : 1 6 5 P J

R E A L I S T I C : 2 0 0 P J

4 0 G J B I O P R . C A P I T A

H I G H G L O B A L L Y

Biomass consumption

A D D I T I O N O F

H Y D R O G E N R E D U C E S

S I G N I F I C A N T L Y

B I O M A S S

C O N S U M P T I O N

Ridjan (2015), Integrated electrofuels and renewable energy systems

Technology

readiness level

• The individual technologies more

advanced than generally presumed

• The concept as an integrated

production system remains to be

proven on a larger scale.

What is the role of electrolysis in

the future?

Growth of PtX

installations?

Electrolysis installations are growing:

2018: 1 MW (typical big demo project)

2020: 10 MW (Shell refinery in Germany)

2022-2023: 100 MW

S A M E

D E V E L O P M E N T

F O R

E L E C T R O L Y S I S ?

Source: Auke Hoekstra Twitter

Costs? 3500€2015/MWhfuel

10€2015/MWhfuel

H U G E C O S T

D I F F E R E N C E S D U E T O

D I F F E R E N T

A S S U M P T I O N S

Brynolf et al (2018) Electrofuels for the transport sector: A review of production costs

Ridjan (2015), Integrated electrofuels and renewable energy systems

CO2 capture costs (short term)

20 20 0

200

400

600

800

1.000

20

High

Petroleum

refining/petrochemical

Low

€2015/tCO2

Natural gas

power plant

30 60

Coal power

plants

70

Cement

industry

Iron and steel

production

50

Ammonia

production

Bioethanol

production/biogas

upgrading

20

Ambient air

60

170 140 150

70

950

Expected biggest drop in price

Brynolf et al (2018) Electrofuels for the transport sector:

A review of production costs

12,9

10,1 2,8

0

2

4

6

8

10

12

14

€/GJ

12,6

9,8 2,7

0

2

4

6

8

10

12

1412,0

9,6 2,4

0

2

4

6

8

10

12

14

11,6

9,2 2,4

0

2

4

6

8

10

12

14

2015 2020 2030 2050

Raw biogas Purification Total

Biogas purification

*Assumed free manure for biogas production

22,3

10,1

12,2

0

5

10

15

20

25

€/GJ

20,3

9,8

10,4

0

5

10

15

20

25

18,5

9,6

8,9

25

15

0

5

10

20

15,5

9,2 6,4

0

5

10

15

20

25

2015 2020 2030 2050

Raw biogas Methanation Total

Biogas methanation

*Assumed free manure for biogas production, and 96% technical availability of the methanation plant. Electricity cost for hydrogen production

via alkaline electrolysis 63.6% efficiency included with price for onshore wind.

F I N A L C O N S U M E R

N G P R I C E E U 2 8 ( 2 0 1 7 ) :

H O U S E H O L D S 1 6 . 2 € / G J

I N D U S T R Y 7 € / G J

Locations for P2Methane

Both biogas methanation and CO2 methanation

The role of future gas grids

• Exist ing natural gas networks can

handle max 20% of H2 in the pipel ine

• What the carbon steel natural gas

pipes can handle due to the

material propert ies.

• Very few modif icat ion necessary i f

the hydrogen concentrat ion is below

15%

The role of future gas grids

Danish grid tests

• In case the gr id is connected to ei ther f i l l ing stat ions, gas turbines

or any gas engines, the percentage of hydrogen that can be

to lerated drops to 2%.

• Previous conclusion:

• maximum of 2% can be in jected into natural gas gr ids i f

connected to CNG f i l l ing stat ions;

• maximum of 5% i f the gr id is not connected to CNG f i l l ing

stat ions, gas turbines and most gas engines;

• maximum of 10% i f the gr id is not connected to f i l l ing stat ions,

gas turbines and or gas engines.

Advantages of

electrofuels

Improved flexibility of the system

Cross-sector integration

Flexibility of fuel choice

Conversion of electricity into form of liquid or

gaseous fuels

Reduction of CO2 emissions in case of CO2

recycling pathways

Reduction of biomass usage for fuel

production in case of biomass hydrogenation

No big infrastructure adaptations

Any questions?