Electric Machinery and Transformers_I. L. Kosow

Post on 02-Jun-2018

225 views 0 download

Transcript of Electric Machinery and Transformers_I. L. Kosow

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 1/412

Scilab Textbook Companion for

Electric Machinery And Transformers

by I. L. Kosow1

Created byThirumalesh H S

Bachelor of EngineeringElectrical Engineering

Sri Jayachamarajendra College of EngineeringCollege Teacher

R. S. Ananda MurthyCross-Checked by

Lavitha Pereira

August 13, 2013

1Funded by a grant from the National Mission on Education through ICT,http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilabcodes written in it can be downloaded from the ”Textbook Companion Project”section at the website http://scilab.in

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 2/412

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 3/412

Scilab numbering policy used in this document and the relation to theabove book.

Exa  Example (Solved example)

Eqn  Equation (Particular equation of the above book)

AP  Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

2

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 4/412

Contents

List of Scilab Codes   5

1 ELECTROMECHANICAL FUNDAMENTALS   11

2 DYNAMO CONSTRUCTION AND WINDINGS   27

3 DC DYNAMO VOLTAGE RELATIONS DC GENERATORS   37

4 DC DYNAMO TORQUE RELATIONS DC MOTORS   49

5 ARMATURE REACTION AND COMMUTATION IN DY-

NAMOS   80

6 AC DYNAMO VOLTAGE RELATIONS ALTERNATORS   84

7 PARALLEL OPERATION   103

8 AC DYNAMO TORQUE RELATIONS SYNCHRONOUS

MOTORS   129

9 POLYPHASE INDUCTION OR ASYNCHRONOUS DY-

NAMOS   182

10 SINGLE PHASE MOTORS   225

11 SPECIALIZED DYNAMOS   234

12 POWER ENERGY AND EFFICIENCY RELATIONS OF

DC AND AC DYNAMOS   241

3

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 5/412

13 RATINGS SELECTION AND MAINTENANCE OF ELEC-

TRIC MACHINERY   298

14 TRANSFORMERS   317

4

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 6/412

List of Scilab Codes

Exa 1.1 calculate average voltage   . . . . . . . . . . . . . . . . 11Exa 1.2 calculate e and E . . . . . . . . . . . . . . . . . . . . . 12Exa 1.3 calculate E   . . . . . . . . . . . . . . . . . . . . . . . . 13Exa 1.4 calculate E for different theta   . . . . . . . . . . . . . . 14Exa 1.5 calculate Eperpath Eg Ia Ra Vt P   . . . . . . . . . . . 15Exa 1.6 repeated previous eg with 4poles   . . . . . . . . . . . . 17Exa 1.7 calculate Eav per coil and per coilside   . . . . . . . . . 18Exa 1.8 verify previous eg with phi in webers  . . . . . . . . . . 19Exa 1.9 verify eg1 5b with eq1 5a   . . . . . . . . . . . . . . . . 20Exa 1.10 calculate Z and Eg   . . . . . . . . . . . . . . . . . . . . 21Exa 1.11 calculate F and find its direction   . . . . . . . . . . . . 22Exa 1.12 repeat previous eg with angle 75   . . . . . . . . . . . . 23Exa 1.13 calculate counter emf    . . . . . . . . . . . . . . . . . . 24

Exa 1.14 calculate Eg phi in linesperpole and mWb   . . . . . . . 25Exa 2.1 calculate a for lap and wave windings   . . . . . . . . . 27Exa 2.2 calculate generated emf   . . . . . . . . . . . . . . . . . 28Exa 2.3 calculate polespan p kp   . . . . . . . . . . . . . . . . . 29Exa 2.4 calculate kp . . . . . . . . . . . . . . . . . . . . . . . . 30Exa 2.5 find alpha n theta   . . . . . . . . . . . . . . . . . . . . 31Exa 2.6 find n alpha kd for different number of slots   . . . . . . 32Exa 2.7 calculate Eg Np kd kp Egp   . . . . . . . . . . . . . . . 34Exa 2.8 calculate f S omega . . . . . . . . . . . . . . . . . . . . 35Exa 3.1 calculate I1 If Ia Eg   . . . . . . . . . . . . . . . . . . . 37Exa 3.2 calculate Rd Eg   . . . . . . . . . . . . . . . . . . . . . 38

Exa 3.3 calculate Vnoload   . . . . . . . . . . . . . . . . . . . . 39Exa 3.4 calculate E   . . . . . . . . . . . . . . . . . . . . . . . . 40Exa 3.5 calculate Ia Eg   . . . . . . . . . . . . . . . . . . . . . . 42Exa 3.6 calculate VR   . . . . . . . . . . . . . . . . . . . . . . . 43

5

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 7/412

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 8/412

Exa 6.8 calculate torqueperphase and total torque   . . . . . . . 100

Exa 7.1 calculate I Ia and P   . . . . . . . . . . . . . . . . . . . 103Exa 7.2 calculate all currents and power of the generator   . . . 106Exa 7.3 calculate VL IL Pg and PL   . . . . . . . . . . . . . . . 107Exa 7.4 calculate total load and kW output of each G   . . . . . 110Exa 7.5 calculate max and min E and frequency and Epeak and

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Exa 7.6 calculate max and min E and f and phase relations   . . 113Exa 7.7 calculate Is in both alternators   . . . . . . . . . . . . . 114Exa 7.8 calculate generator and motor action and P loss and

terminal V and phasor diagram   . . . . . . . . . . . . . 116Exa 7.9 calculate synchronizing I and P and P losses . . . . . . 119

Exa 7.10 calculate synchronizing I and P and P losses . . . . . . 122Exa 7.11 calculate mesh currents line currents phase voltages pha-

sor diagram  . . . . . . . . . . . . . . . . . . . . . . . . 125Exa 8.1 calculate alpha Er Ia Pp Pt Power loss Pd . . . . . . . 129Exa 8.2 calculate alpha Er Ia Pp Pt Power loss Pd . . . . . . . 132Exa 8.3 calculate Ia PF hp   . . . . . . . . . . . . . . . . . . . . 134Exa 8.4 calculate IL Iap Zp IaZp theta deba Egp . . . . . . . . 139Exa 8.5 calculate torque angle   . . . . . . . . . . . . . . . . . . 142Exa 8.6 calculate Pp Pt hp internal and external torque and

motor efficiency   . . . . . . . . . . . . . . . . . . . . . 144

Exa 8.7 calculate total load I and PF using IM and SM percentreduction in I and overall PF   . . . . . . . . . . . . . . 146Exa 8.8 calculate Tp and hp   . . . . . . . . . . . . . . . . . . . 150Exa 8.9 calculate original kvar and kvar correction and kVA and

Io and If and power triangle . . . . . . . . . . . . . . . 151Exa 8.10 calculate cost of raising PF to unity and point85 lagging   154Exa 8.11 calculate Po jQo and power triangle   . . . . . . . . . . 156Exa 8.12 calculate Pf jQf Pa jQa kVA and draw power tabulation

grid   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157Exa 8.13 calculate Pf jQf Pa jQa kVA and power tabulation grid   159Exa 8.14 calculate original and final kVA kvar P and correction

kvar Sa   . . . . . . . . . . . . . . . . . . . . . . . . . . 161Exa 8.15 calculate kVA added Pa and Qa and Pf Qf and PF   . 164Exa 8.16 Verify tellegens theorem for kVAs found in Ex 8 15   . . 167Exa 8.17 calculate overall PF using unity PF SM   . . . . . . . . 169Exa 8.18 calculate overall PF using point8 PF leading SM   . . . 172

7

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 9/412

Exa 8.19 calculate kVA and PF of system and same for SM   . . 175

Exa 8.20 calulate speeds and poles for alternator and motor   . . 178Exa 9.1 calculate poles and synchronous speed   . . . . . . . . . 182Exa 9.2 calculate rotor speed  . . . . . . . . . . . . . . . . . . . 183Exa 9.3 calculate rotor frequency   . . . . . . . . . . . . . . . . 185Exa 9.4 calculate starting torque and current   . . . . . . . . . . 186Exa 9.5 calculate s Xlr fr Sr   . . . . . . . . . . . . . . . . . . . 187Exa 9.6 calculate full load S and Tf   . . . . . . . . . . . . . . . 189Exa 9.7 calculate rotor I and PF and same with added Rr . . . 191Exa 9.8 calculate Rx and rotor PF and starting current   . . . . 193Exa 9.9 calculate Sr with added Rx   . . . . . . . . . . . . . . . 197Exa 9.10 calculate Elr Ir Pin RCL RPD torques   . . . . . . . . . 200

Exa 9.11 calculate Elr Ir Pin RCL RPD and torques   . . . . . . 202Exa 9.12 calculate s and Sr for Tmax   . . . . . . . . . . . . . . . 205Exa 9.13 calculate starting torque  . . . . . . . . . . . . . . . . . 207Exa 9.14 calculate full load and starting torques   . . . . . . . . . 208Exa 9.15 calculate Ip Ir PF SPI SCL RPI RPD and rotor power

and torque and hp and motor efficiency   . . . . . . . . 209Exa 9.16 calculate Ism IL Ts and percent IL and percent Ts   . . 215Exa 9.17 calculate T s Sr for different V   . . . . . . . . . . . . . 217Exa 9.18 calculate T s Sr for different impressed stator V . . . . 219Exa 9.19 calculate fcon and Scon   . . . . . . . . . . . . . . . . . 222

Exa 10.1 calculate total starting current and PF and componentsof Is Ir and phase angle between Is Ir . . . . . . . . . . 225Exa 10.2 calculate Ps Pr Pt and motor efficiency   . . . . . . . . 227Exa 10.3 calculate total starting current and sine of angle between

Is Ir   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229Exa 10.4 calculate ratios of T and efficiency and rated PF and hp   232Exa 11.1 calculate S V P T A and B from torque speed relations

fig   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234Exa 11.2 calculate stepping angle   . . . . . . . . . . . . . . . . . 236Exa 11.3 calculate stepping length   . . . . . . . . . . . . . . . . 237Exa 11.4 calculate synchronous velocity . . . . . . . . . . . . . . 238

Exa 11.5 calculate slip of DSLIM   . . . . . . . . . . . . . . . . . 239Exa 12.1 Pr Ia efficiency   . . . . . . . . . . . . . . . . . . . . . . 241Exa 12.2 efficiency at different LF . . . . . . . . . . . . . . . . . 243Exa 12.3 field current Ec Pf   . . . . . . . . . . . . . . . . . . . . 245Exa 12.4 Pr variable losses efficiency table   . . . . . . . . . . . . 246

8

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 10/412

Exa 12.5 Ia LF max efficiency LF   . . . . . . . . . . . . . . . . . 252

Exa 12.6 Pd Pr efficiency   . . . . . . . . . . . . . . . . . . . . . 254Exa 12.7 Pd Pr max and fl efficiency Pk Ia LF . . . . . . . . . . 256Exa 12.8 IL Ia Pd Pr Speed SR   . . . . . . . . . . . . . . . . . . 258Exa 12.9 Ec Pd Po Pr To Ia efficiency speed SR   . . . . . . . . . 261Exa 12.10 efficiency Pf Pd Pr Ia LF max efficiency   . . . . . . . . 263Exa 12.11 efficiency at different LF . . . . . . . . . . . . . . . . . 266Exa 12.12 Ia Ra Pf Pk Pcu efficiencies Pd   . . . . . . . . . . . . . 268Exa 12.13 Pf Pcu Zs VR efficiencies Pd   . . . . . . . . . . . . . . 272Exa 12.14 Pr Pcu efficiencies hp torque   . . . . . . . . . . . . . . 276Exa 12.15 RPO efficiency hp torque compare   . . . . . . . . . . . 280Exa 12.16 Ip Ir PF SPI SCL RPI RCL RPD T hp efficiency   . . . 283

Exa 12.17 upper and lower limit Is   . . . . . . . . . . . . . . . . . 287Exa 12.18 starting I and PF   . . . . . . . . . . . . . . . . . . . . 289Exa 12.19 Re1s slip Pcu and Pr at LFs hp T   . . . . . . . . . . . 291Exa 13.1 R and reduced life expectancy   . . . . . . . . . . . . . 298Exa 13.2 E and increased life expectancy   . . . . . . . . . . . . . 299Exa 13.3 E and increased life expectancy classB   . . . . . . . . . 300Exa 13.4 ClassB insulation SCIM details   . . . . . . . . . . . . . 301Exa 13.5 final temperature . . . . . . . . . . . . . . . . . . . . . 303Exa 13.6 Tf R decreased life expectancy   . . . . . . . . . . . . . 305Exa 13.7 rms hp   . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Exa 13.8 Vb Ib Rb Rpu   . . . . . . . . . . . . . . . . . . . . . . 307Exa 13.9 Rpu jXpu Zpu   . . . . . . . . . . . . . . . . . . . . . . 309Exa 13.10 new Zpu   . . . . . . . . . . . . . . . . . . . . . . . . . 311Exa 13.11 line and phase Vpu   . . . . . . . . . . . . . . . . . . . 312Exa 13.12 Zb Xs Ra Zs P   . . . . . . . . . . . . . . . . . . . . . . 313Exa 14.1 stepup stepdown alpha I1   . . . . . . . . . . . . . . . . 317Exa 14.2 turns I1 I2 stepup stepdown alpha   . . . . . . . . . . . 318Exa 14.3 alpha Z1 I1   . . . . . . . . . . . . . . . . . . . . . . . . 320Exa 14.4 Z2prime Z3prime Z1 I1 Pt V2 P2 V3 P3 Pt   . . . . . . 322Exa 14.5 alpha N2 N1 ZL   . . . . . . . . . . . . . . . . . . . . . 324Exa 14.6 Z between terminals A B   . . . . . . . . . . . . . . . . 326

Exa 14.7 alpha V1 V2 I2 I1 PL Ps PT efficiency . . . . . . . . . 328Exa 14.8 PL alpha maxPL  . . . . . . . . . . . . . . . . . . . . . 331Exa 14.9 Eh El Ih new kVA   . . . . . . . . . . . . . . . . . . . . 332Exa 14.10 Piron   . . . . . . . . . . . . . . . . . . . . . . . . . . . 334Exa 14.11 I2 I1 Z2 Z1their loss E2 E1 alpha  . . . . . . . . . . . . 335

9

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 11/412

Exa 14.12 ZL ZP difference   . . . . . . . . . . . . . . . . . . . . . 338

Exa 14.13 Re1 Xe1 Ze1 ZLprime I1   . . . . . . . . . . . . . . . . 339Exa 14.14 I2 ohmdrops E2 VR   . . . . . . . . . . . . . . . . . . . 342Exa 14.15 E2 VR   . . . . . . . . . . . . . . . . . . . . . . . . . . 344Exa 14.16 E2 VR   . . . . . . . . . . . . . . . . . . . . . . . . . . 345Exa 14.17 Ze1 Re1 Xe1 Ze2 Re2 Xe2their drops VR   . . . . . . . 347Exa 14.18 Pcsc   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350Exa 14.19 Ze1drop Re1drop Xe1drop VR   . . . . . . . . . . . . . 351Exa 14.20 Re1 Re1 r2 its drop Pc   . . . . . . . . . . . . . . . . . 354Exa 14.21 tabulate I2 efficiencies   . . . . . . . . . . . . . . . . . . 356Exa 14.22 Zeqpu V1pu VR   . . . . . . . . . . . . . . . . . . . . . 363Exa 14.23 Pcu LF efficiencies   . . . . . . . . . . . . . . . . . . . . 365

Exa 14.24 efficiencies at differnt LFs   . . . . . . . . . . . . . . . . 368Exa 14.25 Zpu2 St S2 S1 LF   . . . . . . . . . . . . . . . . . . . . 370Exa 14.26 Vb Ib Zb Z1 Z2 I1 I2 E1 E2 . . . . . . . . . . . . . . . 373Exa 14.27 RL ZbL ZLpu Z2pu Z1pu IbL ILpu VRpu VSpu VS

VxVxpu . . . . . . . . . . . . . . . . . . . . . . . . . . 377Exa 14.28 ZT1 ZT2 Zbline3 Zlinepu VLpu IbL IL ILpu VSpu VS   381Exa 14.29 Z1pu Z2pu Vbline Zlinepu ZMs  . . . . . . . . . . . . . 385Exa 14.30 ST ST Sxformer   . . . . . . . . . . . . . . . . . . . . . 387Exa 14.31 Wc tabulate allday efficiency   . . . . . . . . . . . . . . 389Exa 14.32 I2 Ic   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Exa 14.33 Zeh Zel I2rated I2sc overload   . . . . . . . . . . . . . . 396Exa 14.34 PT kVA phase and line currents kVAtransformers . . . 398Exa 14.35 PT ST phase and line currents kVAtransformers   . . . 400Exa 14.36 find line currents and their sum . . . . . . . . . . . . . 403Exa 14.37 kVAcarry loadtransformer VVkVA ratiokVA increaseload   406Exa 14.38 IL alpha Ia kVA   . . . . . . . . . . . . . . . . . . . . . 409Exa 14.39 VL ST Idc Sac Sdc per line   . . . . . . . . . . . . . . . 410

10

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 12/412

Chapter 1

ELECTROMECHANICAL

FUNDAMENTALS

Scilab code Exa 1.1  calculate average voltage

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 1 : E l e c t r o m e c h a n i c a l F un da me nt al s7   / / E xa mp le 1−18

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   t = 50 e -3;   // t = ti m e i n m i l l i s e c o n d13   phi = 8 * 10 ^ 6;   / / p h i = u n if o rm m a gn et i c f i e l d i n

m a x w e l l s14

15   / / C a l c u l a t i o n s16   E_av = ( phi / t ) * 10 ^ -8;   / / E av = a v er a ge

v o l t a g e g e ne r a t ed i n t he c on du ct or

11

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 13/412

17   / / i n v o l t

1819   / / D is pl ay t h e r e s u l t20   disp ( ”E x ampl e 1−1 S o l u t i on : ” ) ;

21   disp ( ” A v er a ge v o l t a g e g e n e ra t ed i n t he c on du ct or i s: ” ) ;

22   printf ( ” E a v = %. 2 f V” , E _a v ) ;

Scilab code Exa 1.2  calculate e and E

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 1 : E l e c t r o m e c h a n i c a l F un da me nt al s7   / / E xa mp le 1−28

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

1011   / / G iv en d a ta12   l = 18;   // l = l e n g t h o f t he c on du ct or i n i n ch e s13   B = 5 00 00 ;   / / B = u n if o rm m a gn e ti c f i e l d i n l i n e s / sq

−i n c h e s14   d = 720;   // d = d i s t a n c e t r a v e l l e d by c on du ct or i n

i n c h e s15   t = 1 ;   // t =t i me t ak en f o r t he c on du ct or t o move

i n s ec on d16

17   / / C a l c u l a t i o n s18   v = d / t ;   / / v = v e l o c i t y i n i n c he s / s ec on d w it h whi cht h e c o n d u c t o r mo ves

19

20   / / p ar t a

12

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 14/412

21   e = B * l * v * 1 0 ^ -8;   / / e = i n s ta n t an e o us

i n d u c ed EMF i n v o l t22   / / p ar t b23   A = d * l ;   // Area s we pt by t he c o nd u ct o r w h i le

moving24   phi = B * A ;   / / p h i = u n i fo r m m a g ne t i c f i e l d25   E = ( phi / t ) * 10 ^ -8;   / / E = a v e r a g e i n du c ed

EMF26

27   / / D is pl ay t h e r e s u l t28   disp ( ”E x ampl e 1−2 S o l u t i on : ” ) ;

29

30   printf ( ”   \n a : e = %. 2 f V ” , e ) ;31   printf ( ”   \n b : E = %. 2 f V ” , E ) ;

Scilab code Exa 1.3   calculate E

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   / / C ha pt er 1 : E l e c t r o m e c h a n i c a l F un da me nt al s7   / / E xa mp le 1−38

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   l = 18;   // l = l e n g t h o f t he c on du ct or i n i n ch e s

13   B = 5 00 00 ;   / / B = u n if o rm m a gn e ti c f i e l d i n l i n e s / sq−i n c h e s14   d = 720;   // d = d i s t a n c e t r a v e l l e d by c on du ct or i n

i n c h e s15   t = 1 ;   // t =t i me t ak en f o r t he c on du ct or t o move

13

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 15/412

i n s ec on d

16   t he ta = 75   // t h et a = a n g l e b et we en t he mo ti on o f  t h e c o n d u c t o r a nd f i e l d17   / / i n r a di a ns18

19   / / C a l c u l a t i o n s20   v = d / t ;   / / v = v e l o c i t y i n i n c he s / s ec on d w it h whi ch

t h e c o n d u c t o r mo ves21

22   E = B * l * v * 10 ^ -8 * sind ( theta );   / / E =A ve ra ge i n d u ce d EMF i n v o l t

23

24   / / D is pl ay t h e r e s u l t25   disp ( ”E x ampl e 1−3 S o l u t i on : ” ) ;

26

27   disp ( ” Av er ag e i nd uc ed EMF i n v o l t i s : ” )

28   printf ( ” E = %. 2 f V ” , E ) ;

Scilab code Exa 1.4  calculate E for different theta

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 1 : E l e c t r o m e c h a n i c a l F un da me nt al s7   / / E xa mp le 1−48

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

1011   / / G iv en d a ta12   v = 1.5;   // v = v e l o c i t y i n m/ s w it h whi ch t he

c o n du c to r i s moving13   l = 0.4;   // l = l e n g t h o f t h e c on du ct or

14

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 16/412

14   B = 1 ;   // B = u ni fo rm f i e l d i n t e n s i t y i n t e s l a

15   t he ta _a = 9 0;   // t h e t a a = a n g le b et we en t he mo ti ono f t h e c o n d u c t o r and f i e l d16   t he ta _b = 3 5;   / / t h e t a b = a n g le b et we en t he m ot io n

o f t h e c o n d u c t o r and f i e l d17   t h e ta _ c = 1 20 ;   // t h e t a c = a n g l e b et wee n t he m oti on

o f t h e c o n d u c t o r and f i e l d18

19   / / C a l c u l a t i o n s20   E_a = B * l * v * sind ( thet a_a );   // V o l ta g e i n du c ed

i n t he c on du ct or f o r t h e t a a21   E_b = B * l * v * sind ( thet a_b );   // V o l ta g e i n du c ed

i n t he c on du ct or f o r t h e t a b22   E_c = B * l * v * sind ( thet a_c );   // V o l ta g e i n du c ed

i n t he c on du ct or f o r t h e t a c23

24   / / D is pl ay t h e r e s u l t25   disp ( ”E x ampl e 1−1 S o l u t i on : ” ) ;

26

27   printf ( ” \n a : E = %. 2 f V ” , E _a ) ;

28   printf ( ” \n b : E = %. 3 f V ” , E _b ) ;

29   printf ( ” \n c : E = %. 2 f V ” , E _c ) ;

Scilab code Exa 1.5  calculate Eperpath Eg Ia Ra Vt P

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 1 : E l e c t r o m e c h a n i c a l F un da me nt al s7   / / E xa mp le 1−58

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

15

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 17/412

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 18/412

42   disp ( ”E x ampl e 1−5 S o l u t i o n ” ) ;

4344   printf ( ”   \n a : E/ p at h = %. 2 f V/ p at h ” , E _p at h ) ;

45   printf ( ”   \n b : Eg = %. 2 f V ” , E _ g ) ;

46   printf ( ”   \n c : I a = %. 2 f A ” , I _ a ) ;

47   printf ( ”   \n d : Ra = %. 2 f ohm ” , R _ a ) ;

48   printf ( ”   \n e : Vt = %. 2 f V ” , V _ t ) ;

49   printf ( ”   \n f : P = %. 2 f W ” , P ) ;

Scilab code Exa 1.6  repeated previous eg with 4poles

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 1 : E l e c t r o m e c h a n i c a l F un da me nt al s7   / / E xa mp le 1−68

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   n o _ o f _ c on d u c to r s = 4 0;

13   I = 10;   // C ur re nt c a r r i e d by e ac h c o nd u tc o r14   R _ pe r _p a th = 0 .0 1;   // R e s i s t a n ce p er p at h15   f lu x_ pe r_ po le = 6 .4 8 * 10 ^ 8;   // f l u x l i n e s16   P = 2 ;   // No . o f p o l es17   p ath = 4;   // No . o f p a r a l l e l p a t h s18   t o t a l_ f lu x = P * f l ux _ pe r _p o le ;   // T o ta l f l u x l i n k e d

i n one r e v o l u t i o n19   t = 2 ;   // t i m e f o r one r e v o l u t i o n20   e _ a v _ p e r _c o n d u ct o r = 6 . 48 ;   // A ve ra ge v o l t a g e

g e n e r a t ed p e r c o n du c t or21

17

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 19/412

22   / / C a l c u l a t i o n s

23   E _ p at h = ( e _ av _ pe r _c o nd u ct o r ) * ( n o _o f _c o nd u ct o rs/ path ) ;   / / A v er a ge24   / / v o l t a g e g e ne r a t ed p er pa th25

26   E _ g = E _p at h ;   // G en er at ed a rm at ur e v o l t a g e27

28   I_a =( I / path ) * ( 4 * path ) ;   // A r mat ur ec u r r e n t d e l i v e r e d t o an e x t er n a l

29   / / l o ad30

31   R_a = ( ( R_ pe r_p at h) / path ) * 10;   / / A r ma t ur e

r e s i s t a n c e32

33   V_t = E_g - I_a * R_a ;   // T er mi na l v o l t a g e o f  g e n e r a t o r

34

35   P = V_t * I_a ;   // G en r at o r p ower r a t i n g36

37   // D is pl ay t h e r e s u l t s38   disp ( ”E x ampl e 1−6 S o l u t i o n ” ) ;

39

40   printf (”   \n a : E/ p at h = %. 2 f V/ p at h ”

, E _p at h ) ;

41   printf ( ”   \n b : Eg = %. 2 f V ” , E _ g ) ;

42   printf ( ”   \n c : I a = %. 2 f A ” , I _ a ) ;

43   printf ( ”   \n d : Ra = %. 3 f ohm ” , R _ a ) ;

44   printf ( ”   \n e : Vt = %. 2 f V ” , V _ t ) ;

45   printf ( ”   \n f : P = %. 2 f W ” , P ) ;

Scilab code Exa 1.7  calculate Eav per coil and per coilside

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

18

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 20/412

5

6   / / C ha pt er 1 : E l e c t r o m e c h a n i c a l F un da me nt al s7   / / E xa mp le 1−78

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   N = 1 ;   // no . o f t ur n s13   phi = 6.48 * 10 ^ 8;   // M a gn e t i c f l u x i n l i n e s14   s = 30 / 60;   // No . o f r e v o l u t i o n o f t h e c o i l p e r

s ec o nd ( r e f e r s e c t i o n 1 −14)

1516   / / C a l c u l a t i o n s17   E _a v _ pe r _ co i l = 4 * phi * N * s * 10 ^ -8;   //

a ve ra ge v o l t a ge p e r c o i l18   / / f o r abov e e qu at io n r e f e r s e c t i o n 1−1419

20   E _a v_ pe r_ co il _s id e = E _a v_ pe r_ co il * ( 1 / 2) ;   //a v er a ge v o l t a g e p er c on d uc to r

21

22   // D is pl ay t h e r e s u l t s23   disp (

”E x ampl e 1−7 S o l u t i on : ”)

24   printf ( ”   \n Eav / c o i l = % . 2 f V/ c o i l ” , E _ a v _p e r _ co i l

) ;

25   printf ( ”   \n Eav / c o i l s i d e = % . 2 f V/ c o n du c to r ” ,

E _ a v _ p e r _ c o i l _ s i d e ) ;

Scilab code Exa 1.8  verify previous eg with phi in webers

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

19

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 21/412

6   / / C ha pt er 1 : E l e c t r o m e c h a n i c a l F un da me nt al s

7   / / E xa mp le 1−88

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   p hi _l in es = 6. 48 * 10 ^ 8;   // m ag ne t i c f l u x i n l i n e s13   N = 1 ;   // no . o f t ur n s14

15   / / C a l c u l a t i o n s16   p hi = p hi _l in es * 10 ^ -8;   // M ag ne ti c f l u x i n weber

1718   omega = ( 30 ) * ( 2 * %pi ) * ( 1 / 60 ) ;   //

a ng ul ar v e l o c i t y i n r a d / s19

20   E _a v_ pe r_ co il = 0 .6 36 62 * o me ga * p hi * N ;   //a ve ra ge v o l t a ge p e r c o i l

21   // f o r t he abov e f o rm ul a r e f e r s e c t i o n 1−14 e qn (1 −4b )

22

23   / / D is pl ay t h e r e s u l t24   disp (

”E x ampl e 1−8 S o l u t i on : ”) ;

25   printf ( ” \n Eav / c o i l = % 0 . 2 f V/ c o i l ” ,

E _ a v _ p e r _ c o i l ) ;

Scilab code Exa 1.9  verify eg1 5b with eq1 5a

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 1 : E l e c t r o m e c h a n i c a l F un da me nt al s7   / / E xa mp le 1−9

20

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 22/412

8

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .10

11   / / G iv en d a ta12   P = 2 ;   // No . o f p o l es13   Z = 40;   // no o f c on du c t o rs14   a = 2 ;   // a = P a r a l l e l p a th s15   phi = 6.48 * 10 ^ 8;   // m ag ne ti c f l u x16   S = 30;   // S pee d o f t h e p ri me mover17

18   / / C a l c u l a t i o n s

19   E_g = ( ( phi * Z * S * P ) / ( 60 * a ) ) * 10 ^ -8;// a v er a ge v o l t a g e b et wee n

20   / / t h e b r us h es21

22   / / D is pl ay t h e r e s u l t23   disp ( ”E x ampl e 1−9 S o l u t i on : ” ) ;

24   printf ( ” \n Eg = %. 2 f V b et we en t h e b r u s h es ” , E _g ) ;

Scilab code Exa 1.10  calculate Z and Eg

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 1 : E l e c t r o m e c h a n i c a l F un da me nt al s7   / / E xa mp le 1−108

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .10

11   / / G iv en d a ta12   n o _o f _c o il s = 4 0;

21

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 23/412

13   N = 20;   // n o o f t ur ns i n e a c h c o i l

14   o me ga = 2 00 ;   // a ng ul ar v e l o c i t y o f a r m a t u r e i n r ad /s15   phi = 5 * 10 ^ -3;   // f l u x p e r p ol e16   a = 4 ;   // No . o f p a r a l l e l p a t h s17   P = 4 ;   // No . o f p o l es18

19   / / C a l c u l a t i o n s20   Z = n o_o f_c oi ls * 2 * N ;   // No . o f c o nd u c to r s21

22   E_g = ( phi * Z * omega * P ) / ( 2 * %pi * a ) ;   //V o lt ag e g e n er a t ed by t he

23   / / a r ma t ur e b et we en b r u s h e s24

25   // D is pl ay t h e r e s u l t s26   disp ( ”E x ampl e 1−10 S o l u t i o n : ” ) ;

27   printf ( ” \n Z = % d c o nd u ct o rs ” , Z ) ;

28   printf ( ” \n Eg = % . 2 f V b et we en t he b r us h es ” , E _g ) ;

Scilab code Exa 1.11  calculate F and find its direction

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 1 : E l e c t r o m e c h a n i c a l F un da me nt al s7   / / E xa mp le 1−118

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   l = 0.5;   // l e ng t h o f t he c on du ct or13   A = 0.1 * 0.2;   // a re a o f t h e p ol e f a c e

22

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 24/412

14   phi = 0.5 * 10 ^ -3;   // m ag ne ti c f l u x i n web er

15   I = 10;   // C u rr en t i n t he c o nd u ct o r16

17   / / C a l c u l a t i o n s18   B = ( phi ) / ( A ) ;   // Fl ux d e n s i t y19

20   F = B * I * l ;   // Mag ni tude o f f o r c e21

22   / / D is pl ay t h e r e s u l t23   disp ( ”E x ampl e 1−11 S o l u t i o n : ” ) ;

24

25   printf ( ” \n a : F = % . 3 f N” , F ) ;

2627   printf ( ” \n b : The f o r c e on t h e c on du ct or i s % . 3 f N

i n an upward d i r e c t i o n a s shown i n f i g 1−13 c ” ,

F ) ;

Scilab code Exa 1.12  repeat previous eg with angle 75

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 1 : E l e c t r o m e c h a n i c a l F un da me nt al s7   / / E xa mp le 1−128

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   l = 0.5;   // l e ng t h o f t he c on du ct or13   A = 0.1 * 0.2;   // a re a o f t h e p ol e f a c e14   phi = 0.5 * 10 ^ -3;   // m ag ne ti c f l u x i n web er15   I = 10;   // C u rr en t i n t he c o nd u ct o r

23

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 25/412

16   t h et a = 7 5;   // a n g l e b et we en t he c o nd u ct o r and t he

f l u x d e ns i t y B17

18   / / C a l c u l a t i o n s19   B = ( phi ) / ( A ) ;   // Fl ux d e n s i t y20

21   F = B * I * l * sind ( theta );   // Ma gnitu de o f f o r c e22

23   / / D is pl ay t h e r e s u l t24   disp ( ”E x ampl e 1−12 S o l u t i o n : ” ) ;

25

26   printf ( ” \n F =% f N i n a v e r t i c a l l y upward d i r e c t i o n

” , F ) ;

Scilab code Exa 1.13  calculate counter emf 

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

56   / / C ha pt er 1 : E l e c t r o m e c h a n i c a l F un da me nt al s7   / / E xa mp le 1−138

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   R _ a = 0 .2 5;   // Armature r e s i s t a n c e13   V _a = 1 25 ;   // dc bus v o l t a g e

14   I _a = 60;   / / A rm at ur e c u r r e n t15

16   / / C a l c u l a t i o n s17   E_c = V_a - I_a * R_a ;   / / C ou n te r EMF g e n e r a t e d i n

t h e a rm at ur e c o n d u c to r s o f m oto r

24

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 26/412

18

19   / / D is pl ay t h e r e s u l t20   disp ( ”E x ampl e 1−13 S o l u t i o n : ” ) ;

21   printf ( ” \n Ec = % d V ” , E _ c ) ;

Scilab code Exa 1.14  calculate Eg phi in linesperpole and mWb

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 1 : E l e c t r o m e c h a n i c a l F un da me nt al s7   / / E xa mp le 1−138

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   V _a = 1 10 ;   // v o l t a g e a c r o s s a rm at u re

13   I _a = 60;   / / A rm at ur e c u r r e n t14   R _ a = 0 .2 5;   // Armature r e s i s t a n c e15   P = 6 ;   // No . o f p o l es16   a = 12;   // No . o f p at hs17   Z = 720;   // No . o f a rm at ur e c o n du c to r s18   S = 18 00 ;   / / S pe ed i n rpm19

20   / / C a l c u l a t i o n s21   E_g = V_a + I_a * R_a ;   / / G e n e ra t e d EMF i n t h e

a r m a t u r e

2223   ph i_ li ne s = ( E_g * ( 60 * a ) ) / ( ( Z * S * P ) *

10 ^ -8 ) ;

24   / / Fl ux p e r p ol e i n l i n e s25

25

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 27/412

26   p hi _W b = p hi _l in es * 10 ^ -8;   // Flux p e r p o l e i n

w e b e r s27

28   // D is pl ay t h e r e s u l t s29   disp ( ”E x ampl e 1−14 S o l u t i o n : ” ) ;

30

31   printf ( ” \n a : Eg = %d V ” , E _ g ) ;

32

33   printf ( ” \n b : p hi = %f l i n e s / p o l e ” , p hi _l in es ) ;

34

35   printf ( ” \n c : p hi = %f Wb ”, p hi _W b ) ;

26

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 28/412

Chapter 2

DYNAMO CONSTRUCTION

AND WINDINGS

Scilab code Exa 2.1  calculate a for lap and wave windings

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 2 : Dynamo C o n s t r u c t i o n and W in di ng s7   / / E xa mp le 2−18

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   m = 3 ;   // M u l t i p i c i t y o f t he a rm at u re13   P = 14;   // No . o f p o l e s

1415   / / C a l c u l a t i o n s16   a_lap = m * P ;   // No . o f p a r a l l e l p a t h s i n t h e

a rm at ur e f o r a l a p w in di ng17   a_w ave = 2 * m ;   // No . o f p a r a l l e l p a t h s i n t h e

27

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 29/412

a rm at ur e f o r a wave w in d in g

1819   / / D is pl ay t h e r e s u l t20   disp ( ”E x ampl e 2−1 S o l u t i on : ” ) ;

21

22   printf ( ” \n a : a = %d p at hs ” , a _l ap ) ;

23   printf ( ” \n b : a = %d p at hs ” , a _w a ve ) ;

Scilab code Exa 2.2   calculate generated emf 

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 2 : Dynamo C o n s t r u c t i o n and W in di ng s7   / / E xa mp le 2−28

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

1011   / / G iv en d a ta12   P = 14;   // No . o f p o l e s13   p h i = 4 .2 e 6;   // Flux p er p o l e14   S = 60;   // G e ne r at o r s p ee d15   c oi ls = 4 20 ;   // No . o f c o i l s16   t u rn s _p e r_ c oi l = 2 0;

17   c o n d u c t o rs _ p e r_ t u r n = 2 ;

18   a _ la p = 4 2;   // No . o f p a r a l l e l p at h s i n t he a r m a t ur ef o r a l ap w in di ng

19   a _ wa ve = 6;   // No . o f p a r a l l e l p at h s i n t he a r m a t ur ef o r a wave w in di n g20

21   / / C a l c u l a t i o n s22   Z = c oi ls * t u rn s _p e r_ c oi l * c o nd u ct o rs _ pe r _t u rn ;   //

28

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 30/412

No . o f c o nd u c to r s

23   E _g_l ap = (( phi * Z * S * P ) / ( 60 * a_lap ) ) *10 ^ -8;   / / G e n e r a t e d EMF f o r24   / / l ap w i nd in g ( Eq 1−5a )25   E _g _wa ve = ( phi * Z * S * P ) / ( 60 * a_w ave ) *

10 ^ -8;   / / G e n e r a t e d EMF f o r26   / / wave w in d in g ( Eq 1−5a )27

28   / / D is pl ay t h e r e s u l t29   disp ( ”E x ampl e 2−2 S o l u t i on : ” ) ;

30

31   printf ( ” \n a : Eg = %0 . 1 f V ” , E _ g_ l ap ) ;

32   printf ( ” \n b : Eg = %0 . 1 f V ” , E _g _ wa ve ) ;

Scilab code Exa 2.3  calculate polespan p kp

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

56   / / C ha pt er 2 : Dynamo C o n s t r u c t i o n and W in di ng s7   / / E xa mp le 2−38

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   s l ot s = 7 2;   // No . o f s l o t s13   P = 4 ;   // No . o f p o l es

14   c o il s _s p an n ed = 1 4;   // 14 s l o t s a re spa nne d w hi l ew i n d in g t he c o i l s15

16   / / C a l c u l a t i o n s17   P ol e_ sp an = s lo ts / P ;   // P o le s pa n

29

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 31/412

18   p _n ot = c oi ls _s pa nn ed / P ol e_ sp an * 1 80 ;   // Span o f  

t h e c o i l i n19   // e l e c t r i c a l de gr e e s20   funcprot ( 0) ;   // U se t o a vo i d t h i s m es sa ge ” W arning

: r e d e f i n i n g f u n c t i o n : b e t a ”21   b e ta = ( 18 0 - p _n ot ) ;

22   k_p1 = cosd ( beta / 2 ) ;   // P it ch f a c t o r u si ng eq(2 −7)

23   k_p2 = sind ( p_not / 2 ) ;   // P it ch f a c t o r u si ng eq(2 −8)

24

25   // D is pl ay t h e r e s u l t s

26   disp ( ”E x ampl e 2−3 S o l u t i on : ” )27   printf ( ”   \n a : F ul l −p i t c h c o i l s pa n = %d s l o t s / p o l e

” , P ol e_ sp an ) ;

28   printf ( ”   \n b : p = %d d e gr e e s ” , p _n ot ) ;

29   printf ( ”   \n c : kp = %. 2 f    \ t \ t eq (2 −7) ” , k_p1 ) ;

30   printf ( ”   \n d : kp = %. 2 f    \ t \ t eq (2 −8) ” , k_p2 ) ;

Scilab code Exa 2.4   calculate kp

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 2 : Dynamo C o n s t r u c t i o n and W in di ng s7   / / E xa mp le 2−48

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   f ra ct io na l_ pi tc h = 1 3 / 1 6;

13   s l o t = 9 6;   // No . o f s l o t s

30

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 32/412

14   P = 6 ;   // No . o f p o l es

1516   / / C a l c u l a t i o n17   k_p = s in d( ( f ra ct io na l_ pi tc h * 1 80 ) / 2 ) ;   //

P it ch f a c t o r18

19   / / D is pl ay t h e r e s u l t20   disp ( ”E x ampl e 2−4 S o l u t i on : ” )

21   printf ( ” \n kp = %. 4 f ” , k _ p ) ;

Scilab code Exa 2.5  find alpha n theta

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 2 : Dynamo C o n s t r u c t i o n and W in di ng s7   / / E xa mp le 2−58

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P = 12;   // No . o f p o l e s13   t he ta = 3 60 ;   // No . o f m ec ha ni ca l d e gr e es o f  

r o t a t i o n14   a l p ha _ b = 1 80 ;   / / No . o f e l e c t r i c a l d e g r e e s f o r

f i n d i n g c as e b i n t h e q ue st i o n15

16   / / C a l c u l a t i o n s17   alpha = ( P * theta ) / 2;   // No . of e l e c t r i c a ld e g r e e s i n one r e v o l u t i o n

18   n = alpha / 360;   // No . o f a c c y c l e s19   t heta _b = ( 2 * alp ha_b ) / P ;   // No . o f m e ch a ni c al

31

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 33/412

d e g r e e s o f r o t a t i o n

20   // f o r f i n d i n g c as e b i n t h e q ue st i o n21

22   // D is pl ay t h e r e s u l t s23   disp ( ”E x ampl e 2−5 S o l u t i on : ” )

24   printf ( ” \n a : a l ph a = %d d e g r e e s ” , a lp ha ) ;

25   printf ( ” \n n = %d c y c l e s ” , n ) ;

26   printf ( ” \n b : t h et a = %d m ec h an i ca l d e g r e es ” ,

t h et a _b ) ;

Scilab code Exa 2.6  find n alpha kd for different number of slots

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 2 : Dynamo C o n s t r u c t i o n and W in di ng s7   / / E xa mp le 2−68

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P = 4 ; // No . o f p o l e s13   p hi = 3;   // No . o f p ha se s14   s l o ts _ ( 1) = 1 2;   // No . o f s l o t s f o r c a s e 115   s l o ts _ ( 2) = 2 4;   // No . o f s l o t s f o r c a s e 216   s l o ts _ ( 3) = 4 8;   // No . o f s l o t s f o r c a s e 317   s l o ts _ ( 4) = 8 4;   // No . o f s l o t s f o r c a s e 4

1819   / / C a l c u l a t i o n s20   e l e c t ri c al _ de g re e s = 1 80 * 4 ;

21   i = 1 ;   / / where i i s c as e s u b s c r i p t . eg c as e1 , c a se 2 ,e t c

32

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 34/412

22

23   while   i < = 424   a lp ha _ ( i ) = e l ec t ri c al _ de g re e s / s lo t s_ ( i ) ;   //e l e c t r i c a l d e g r e e s

25   // p e r s l o t s f o r c a s e i26   n_ (i ) = slots _( i) / ( P * phi );   // No . o f a c

c y c l e s f o r c a se 127   k_d (i ) = s ind ( n_ (i )*( alpha _( i) / 2 ) ) / ( n_ (

i ) * s in d( a lp ha _ (i ) / 2) );

28   i = i + 1 ;

29   end ;

30

31   // D is pl ay t h e r e s u l t s32   disp ( ”E x ampl e 2−6 S o l u t i on : ” )

33   printf ( ” \n a : ” ) ;

34   i = 1 ;   / / where i i s c as e s u b s c r i p t . eg c a se 1 , c a se 2 ,e t c

35

36   while   i < = 4

37   printf ( ” \n   \ t %d : a l p h a = %. 2 f d e g r e e s / s l o t ”, i , alpha_ (i ) ) ;

38   printf ( ” \n\ t n = %d s l o t s / po l e −p h as e ” ,

n_ ( i) ) ;

39   printf ( ” \n\ t kd = %. 3 f ” , k _d ( i ) ) ;

40   printf ( ” \n” ) ;

41   i = i + 1 ;

42   end ;

43

44   printf ( ” \n\n\n b : ” ) ;

45   printf ( ” \n   \ t   \ t n   \ t a lp ha i n d e g r ee s   \ t \ t kd ” ) ;

46   printf ( ” \n   \ t

”   ) ;

47   i = 1 ;48

49   while   i < = 4

50   printf ( ” \n   \ t   \ t %d   \ t %. 2 f    \ t \ t \ t \t% . 3 f ” , n_ (i

) , a lp ha _( i) , k_d ( i) ) ;

33

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 35/412

51   i = i +1;

52   end ;53   printf ( ” \n   \ t

”   ) ;

Scilab code Exa 2.7  calculate Eg Np kd kp Egp

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 2 : Dynamo C o n s t r u c t i o n and W in di ng s7   / / E xa mp le 2−78

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta

12   s l ot s = 7 2;   // No . o f s l o t s13   P = 6 ;   // No . o f p o l es14   p h a se = 3;   // t h r e e p ha se s t a t o r a rm at ur e15   N _c = 20;   // Number o f t u r ns p er c o i l16   pitch = 5 / 6;

17   p hi = 4 .8 e +6 ;   // f l u x p e r p o le i n l i n e s18   S = 12 00 ;   / / R ot or s p ee d19

20   / / C a l c u l a t i o n s21   f = ( P * S ) / 120;   // F re qu en cy o f r o t o r

2223   E_ g_p erc oil = 4.44 * phi * N_c * f *10 ^ -8;   //G en er at e d e f f e c t i v e v o l t a g e

24   // p e r c o i l o f a f u l l p it ch c o i l25

34

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 36/412

26   N_p = ( slots / phase ) * N_c ;   // T o t a l number o f  

t u rn s p er p ha se27

28   n = slots / ( phase * P ) ;   // No . o s s l o t s p e r p ol ep e r p ha se

29

30   alpha = ( P * 180 ) / slots ;   // No . of e l e c t r i c a ld e gr e e s be tw e en a d ja c en t s l o t s

31

32   k_d = sind ( n * alpha / 2 ) / ( n * sind ( alpha / 2

) ) ;   // D i s t r i b u t i o n f a c t o r33

34   sp an = p itc h * 18 0;   // S pan o f t h e c o i l i ne l e c t r i c a l d e g r ee s

35

36   k_p = sind ( span / 2 ) ;   // P it ch f a c t o r37

38   E_gp = 4.44 * phi * N_p * f * k_p * k_d * 10 ^ -8;

// T ot al g e ne r a t ed v o l t a g e39   / / p er p ha se c o n s i d e r i n g kp and kd40

41   / / D is pl ay t h e r e s u l t42   disp (

”E x ampl e 2−7 S o l u t i on : ”)

43   printf ( ” \n a : Eg / c o i l = %. 2 f V/ c o i l ” , E _ g_ p er c oi l ) ;

44   printf ( ” \n b : Np = %d t u r n s / p h a se ” , N _ p ) ;

45   printf ( ” \n c : kd = %. 3 f ” , k _ d ) ;

46   printf ( ” \n d : kp = %. 3 f ” , k _ p ) ;

47   printf ( ” \n e : Egp = %. 2 f V/ p h a s e ” , E_gp ) ;

Scilab code Exa 2.8  calculate f S omega

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

35

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 37/412

5

6   / / C ha pt er 2 : Dynamo C o n s t r u c t i o n and W in di ng s7   / / E xa mp le 2−88

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P = 8 ;   // No . o f p o l es13   S = 900;   // Speed i n r e v o l u t i o n s / mi nut e14   f _1 = 50;   // F re qu en cy o f g e n er a t ed v o l t a g e from

g e n er a t or 1

15   f _2 = 25;   // F re qu en cy o f g e n er a t ed v o l t a g e fromg e n er a t or 2

16

17   / / C a l c u l a t i o n s18   f = ( P * S ) / 120;   // F re qu en cy o f t he g e n er a t ed

v o l t a g e19   S_1 = ( 120 * f_1 ) / P ;   / / S pe ed o f g e n e r a t o r ( rpm )

1 t o g e n e r a t e 50 Hz v o l t a ge20   S_2 = ( 120 * f_2 ) / P ;   / / S pe ed o f g e n e r a t o r ( rpm )

2 t o g e n e r a t e 25 Hz v o l t a ge21   o mega _1 = ( 4 * %pi * f_1 ) / P ;

  // Sp eed o f  g e n e r a to r 1 i n r a d / s22   o mega _2 = ( 4 * %pi * f_2 ) / P ;   // Sp eed o f  

g e n e r a to r 2 i n r a d / s23

24   / / D is pl ay t h e r e s u l t25   disp ( ”E x ampl e 2−8 S o l u t i on : ” )

26   printf ( ” \n a : f = %d Hz ” , f ) ;

27   printf ( ” \n b : S 1 = %d rpm   \n S2 = %d rpm ” , S _ 1 ,

S _2 ) ;

28   printf ( ” \n c : omega1 = %f r ad / s   \n omega2 = %f  

r a d / s ” , o me g a_ 1 , o m e ga _ 2 ) ;

36

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 38/412

Chapter 3

DC DYNAMO VOLTAGE

RELATIONS DC

GENERATORS

Scilab code Exa 3.1  calculate I1 If Ia Eg

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 3 : DC Dynamo V o l t a g e R e l a t i o n s   −   DCG e n e r a t o r s

7   / / E xa mp le 3−18

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   k W = 15 0;   // Power r a t i n g o f Shunt g e n e r a to r i n kW13   V_1 = 2 50 ;   // V ol ta ge r a t i n g o f Shunt g e n er a t or i n V14   V _a = V_1 ;   // V ol ta ge r a t i n g o f Shunt g e n er a t or i n V15   R _f = 50;   // F i el d r e s i s t a n c e i n ohm

37

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 39/412

16   R _ a = 0 .0 5;   // Armature r e s i s t a n c e i n ohm

1718   / / C a l c u l a t i o n s19   I_1 = ( kW * 1000 ) / V_1 ;   // F u ll −l oa d l i n e c u r r e n t

f l o w i n g t o t h e l o ad i n A20   I_f = V_1 / R_f ;   // F i e l d c u r re n t i n A21   I_a = I_f + I_1 ;   // Armature c u r r e nt i n A22   E _ g = V _ a + I _ a * R _ a ;   // F u ll l oa d g e ne r a t ed

v o l t a ge i n V23

24   // D is pl ay t h e r e s u l t s25   disp ( ”E x ampl e 3−1 S o l u t i on : ” )

26   printf ( ” \n a : I 1 = %d A ” , I _ 1 ) ;27   printf ( ” \n b : I f = %d A ” , I _ f ) ;

28   printf ( ” \n c : I a = %d A ” , I _ a ) ;

29   printf ( ” \n d : Eg = %. 2 f A ” , E _ g ) ;

Scilab code Exa 3.2  calculate Rd Eg

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 3 : DC Dynamo V o l t a g e R e l a t i o n s   −   DCG e n e r a t o r s

7   / / E xa mp le 3−28

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

1011   / / G iv en d a ta12   k W = 10 0;   // Power r a t i n g o f t he g e n er a t or i n kW13   V_1 = 5 00 ;   // V ol ta ge r a t i n g o f h te g e ne r a t or i n V14   R _ a = 0 .0 3;   // Armature r e s i s t a n c e i n ohm

38

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 40/412

15   R _f = 1 25 ;   / / S hu nt f i e l d r e s i s t a n c e i n ohm

16   R _ s = 0 .0 1;   // S e r i e s f i e l d r e s i s t a n c e i n ohm17   I _d = 54;   // D i ve r te r c u r r e n t i n A18

19   / / C a l c u l a t i o n s20   I_1 = ( kW * 1000 ) / V_1 ;   // F u ll −l oa d l i n e c u r r e n t

f l o w i n g t o t h e l o ad i n A21   I_f = V_1 / R_f ;   // Shunt F i e l d c u r r e nt i n A22   I_a = I_f + I_1 ;   // Armature c u r r e nt i n A23   I_s = I_a - I_d ;   // S e r i e s F i e l d c ur r e n t i n A24   R_d = ( I_s * R_s ) / I_d ;   // D i v e r t e r r e s i s t a n c e i n

ohm

25   E _ g = V _ 1 + I _ a * R _ a + I _ s * R _ s ;   / / G e n er a t e dv o l t a g e a t f u l l l oa d i n V

26

27   // D is pl ay t h e r e s u l t s28   disp ( ”E x ampl e 3−2 S o l u t i on : ” )

29   printf ( ” \n a : Rd = %. 4 f ohm ” , R _ d ) ;

30   printf ( ” \n b : Eg = %. 2 f V ” , E _ g ) ;

Scilab code Exa 3.3   calculate Vnoload

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 3 : DC Dynamo V o l t a g e R e l a t i o n s   −   DCG e n e r a t o r s

7   / / E xa mp le 3−3

89   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta

39

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 41/412

12   E _ o ri g = 1 50 ;   // Armature v o l t a g e o f t he g e n e r a t or

i n V13   S _ o ri g = 1 80 0;   // Speed o f t he g e n er a t or i n rpm14   S _ f i n a l_ a = 2 0 00 ;   // I n c r e a s ed Speed o f t he g e n er a t or

i n rpm f o r c as e a15   S _ f i n a l_ b = 1 6 00 ;   // I n c r e a s ed Speed o f t he g e n er a t or

i n rpm f o r c as e b16

17   / / C a l c u l a t i o n s18   E _f in al _a = E _o ri g * ( S _f in al _a / S _o ri g ) ;   / / No−

l oa d v o l t a ge o f t h e g e n e ra t o r19   // g e n er at or i n V f o r c a se a

20   E _f in al _b = E _o ri g * ( S _f in al _b / S _o ri g ) ;   / / No−l oa d v o l t a ge o f t h e g e n e ra t o r

21   // g e n er at or i n V f o r c a se b22

23   // D is pl ay t h e r e s u l t s24   disp ( ”E x ampl e 3−3 S o l u t i on : ” )

25   printf ( ” \n a : E f i n a l = %. 1 f V ” , E _f in al _a ) ;

26   printf ( ” \n b : E f i n a l = %. 1 f V ” , E _f in al _b ) ;

Scilab code Exa 3.4   calculate E

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 3 : DC Dynamo V o l t a g e R e l a t i o n s   −   DCG e n e r a t o r s

7   / / E xa mp le 3−48

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

40

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 42/412

11   / / G iv en d a ta

12   S _ f in a l = 1 20 0;   // Speed o f th g e n er a t or i n rpm13   E _ o r ig _ a = 6 4. 3;   // Armature v o l t a g e o f t heg en er at or i n V f o r c a se a

14   E _ o r ig _ b = 8 2. 9;   // Armature v o l t a g e o f t heg en er at or i n V f o r c a se b

15   E _ or ig _ c = 1 62 .3 ;   // Armature v o l t a g e o f t heg en er at or i n V f o r c a se c

16

17   S _ o r ig _ a = 1 20 5;   // V ar ie d Speed o f t he g e n er a t o r i nrpm f o r c as e a

18   S _ o r ig _ b = 1 19 4;   // V ar ie d Speed o f t he g e n er a t o r i n

rpm f o r c as e b19   S _ o r ig _ c = 1 20 2;   // V ar ie d Speed o f t he g e n er a t o r i n

rpm f o r c as e c20

21   / / C a l c u l a t i o n s22   E_1 = E _o ri g_ a * ( S _f in al / S _o ri g_ a ) ;   / / No−   l o a d

v o l t a ge o f t h e g e ne r a t or23   // g e n er at or i n V f o r c a se a24   E_2 = E _o ri g_ b * ( S _f in al / S _o ri g_ b ) ;   / / No−   l o a d

v o l t a ge o f t h e g e ne r a t or25

  // g e n er at or i n V f o r c a se b26   E_3 = E _o ri g_ c * ( S _f in al / S _o ri g_ c ) ;   / / No−   l o a dv o l t a ge o f t h e g e ne r a t or

27   // g e n er at or i n V f o r c a se c28

29   // D is pl ay t h e r e s u l t s30   disp ( ”E x ampl e 3−4 S o l u t i on : ” )

31   printf ( ” \n a : E1 = %. 1 f V a t %d rpm ” , E_ 1 , S _ fi na l

) ;

32   printf ( ” \n b : E2 = %. 1 f V a t %d rpm ” , E_ 2 , S _ fi na l

) ;

33   printf ( ” \n c : E3 = %. 1 f V a t %d rpm ” , E_ 3 , S _ fi na l) ;

41

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 43/412

Scilab code Exa 3.5  calculate Ia Eg

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 3 : DC Dynamo V o l t a g e R e l a t i o n s   −   DCG e n e r a t o r s

7   / / E xa mp le 3−58

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   V = 125;   // Rated v o l t ag e o f t he s hu nt g e n er a t or i n

V13   R _ a = 0 .1 5;   // Armature r e s i s t a n c e i n ohm14   V _a = 0;   // Shunt g e ne r a t or i s l oa de d p r o g r e s s i v e l y

u n t i l t he t e r m i n a l v o l t a ge15   / / a c r o s s t h e l o a d i s z e r o v o l t16   I _1 = 96;   // Load c u r r e n t i n A17   I _f = 4;   // F i e l d c ur r e nt i n A18

19   / / C a l c u l a t i o n s20   I_a = I_f + I_1 ;   // Armature c u r r e nt i n A21   E_g = V_a + I_a * R_a ;   // V ol ta ge g e ne r a t ed i n t he

a rm at ur e i n V22

23   // D is pl ay t h e r e s u l t s24   disp ( ”E x ampl e 3−5 S o l u t i on : ” )

25   printf ( ” \n I a = %d A ” , I _ a ) ;

26   printf ( ” \n E g = % d V ” , E _ g ) ;

42

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 44/412

Scilab code Exa 3.6   calculate VR

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 3 : DC Dynamo V o l t a g e R e l a t i o n s   −   DCG e n e r a t o r s

7   / / E xa mp le 3−68

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   V _n 1 = 1 35 ;   // No l oa d v o l t ag e o f t he s hu nt

g e n e r a to r i n V13   V _f 1 = 1 25 ;   // F ul l l oa d v o l t a ge o f t h e s h u n t

g e n e r a to r i n V

1415   / / C a l c u l a t i o n16   VR = ( V_n1 - V_f1 ) / V_f1 * 100;   / / P e r ce n t a ge

v o l t a ge r e g u l a t i o n17

18   / / D is pl ay t h e r e s u l t19   disp ( ”E x ampl e 3−6 S o l u t i on : ” )

20   printf ( ”   \n VR = %d p e r c e n t ” , VR ) ;

Scilab code Exa 3.7   calculate Vnoload

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

43

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 45/412

3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   / / C ha pt er 3 : DC Dynamo V o l t a g e R e l a t i o n s   −   DCG e n e r a t o r s

7   / / E xa mp le 3−78

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   V R = 0 .1 05 ;   // v o l t a ge r e g u l a t i o n

13   V _f 1 = 2 50 ;   // F ul l l oa d v o l t a ge o f t h e s h u n tg e n e r a to r i n V

14

15   / / C a l c u l a t i o n16   V_n1 = V_f1 + ( V_f1 * VR ) ;   / / No−l oa d v o l t a ge o f  

t h e g e ne r a t or i n V17

18   / / D is pl ay t h e r e s u l t19   disp ( ”E x ampl e 3−7 S o l u t i on : ” )

20   printf ( ” \n Vn1 = %. 1 f V ” , V_n1 ) ;

Scilab code Exa 3.8  calculate IsNs Rd

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 3 : DC Dynamo V o l t a g e R e l a t i o n s   −   DCG e n e r a t o r s7   / / E xa mp le 3−88

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

44

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 46/412

c o n s o l e .

1011   / / G iv en d a ta12   N _ f = 1 00 0;   / / S hu nt f i e l d w i nd i n g t u r n s13   N _s = 4;   // S e r i e s f i e l d w in d in g t u r n s14   I_f = 0 .2 ;   // F i e l d c ur r e nt i n A15   I _a = 80;   // F u ll l oa d a rm at ur e c u r r e nt i n A16   R _ s = 0 .0 5 ;   // S e r i e s f i e l d r e s i s t a n c e i n ohm17

18   / / C a l c u l a t i o n s19   d eb a_ I_ f_ N_ f = I _f * N _f ;

20   I _ s_ N _s = d e ba _ I_ f _N _ f ;   / / S e r i e s f i e l d a mp ere−t u r n s

21   I_s =( I _s _N _s ) / N_s ;   // D es ir ed c u r r e n t i n A i nt he s e r i e s f i e l d r e q u i r e d t o

22   // p ro du ce v o l t a g e r i s e23   I_d = I_a - I_s ;   // D i ve r t e r c u r r e n t i n A24   R_d = ( I_s * R_s ) / I_d ;   // D i v e r t e r r e s i s t a n c e i n

ohm25

26   / / D is pl ay t h e r e s u l t27   disp ( ”E x ampl e 3−8 S o l u t i on : ” )

28   printf ( ” \n a : I s Ns = %d A t ” , I _s _N _s ) ;

29   printf (” \n b : Rd = %. 4 f ohm ”

, R _ d ) ;

Scilab code Exa 3.9  calculate Rd Vnl Vfl

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

56   / / C ha pt er 3 : DC Dynamo V o l t a g e R e l a t i o n s   −   DCG e n e r a t o r s

7   / / E xa mp le 3−98

45

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 47/412

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   k W = 60;   // Power r a t i n g o f t he g e n er a t o r i n kW13   V = 240;   // V ol ta ge r a t i n g o f t he g e n er a t or i n V14   I _f = 3;   / / I n c r e a s e i n t he f i e l d c u r r e nt i n A15   O C_ V = 2 75 ;   / / O ve r Compounded V o l t a g e i n V16   I_l = 2 50 ;   // Rated l oa d c u r r e nt i n A17   N_f = 2 00 ;   // No . o f t ur ns p er p o l e i n t h e s h u n t

f i e l d w i ndi ng18   N _s = 5;   // No . o f t ur ns p e r p ol e i n t h e s e r i e s

f i e l d w i ndi ng19   R_f = 2 40 ;   / / Shunt f i e l d r e s i s t a n c e i n ohm20   R _s = 0 .0 05 ;   / / S e r i e s f i e l d r e s i s t a n c e i n ohm21

22   / / C a l c u l a t i o n s23   d eb a_ I_ f_ N_ f = I _f * N _f ;

24   I _ s_ N _s = d e ba _ I_ f _N _ f ;   / / S e r i e s f i e l d a mp ere−t u r n s25   I_s =( I _s _N _s ) / N_s ;   // D es ir ed c u r r e n t i n A i n

t he s e r i e s f i e l d r e q u i r e d t o26   // p ro du ce v o l t a g e r i s e27   I_d = I_l - I_s ;

  // D i ve r t e r c u r r e n t i n A28   R_d = ( I_s * R_s ) / I_d ;   // D i v e r t e r r e s i s t a n c e i nohm

29   NL_ MMF = ( V / R_f ) * N_f ;   / / No−l o a d MMF30   I _ f _N _ f = N L_ M MF ;

31   F L_ MM F = I _f _N _f + I _s _N _s ;   // F ul l −l o a d MMF32

33   / / D is pl ay t h e r e s u l t34   disp ( ”E x ampl e 3−9 S o l u t i on : ” )

35   printf ( ” \n a : Rd = %. 5 f ohm ” , R _ d ) ;

36   printf ( ” \n b : No−lo ad MMF = %d At/ po le ” , N L_ MM F ) ;

37   printf ( ” \n F u l l −lo ad MMF = %d At/ po le ” , F L_ MM F );

46

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 48/412

Scilab code Exa 3.10  determine approx size of dynamo

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C ha pt er 3 : DC Dynamo V o l t a g e R e l a t i o n s   −   DCG e n e r a t o r s

7   / / E xa mp le 3−108

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   k W = 5 0;   // Power r a t i n g o f t h e dynamo13   V = 125;   // Rated v o l t ag e i n V14   S = 18 00 ;   // S pe ed o f t h e dynamo i n rpm15   I _ f = 20 ;   // E x c i t i n g f i e l d c u r r e n t

16   M a x_ t em p _r i se = 2 5;   / / Maximum T e mp e ra t ur e r i s e i nd eg re e c e l s i u s

17   I_l = 4 00 ;   // Load C ur re nt i n A18   // INSULATION CLASS A19   // COMPOUND WINDING20

21   / / D is pl ay t h e r e s u l t22   disp ( ”E x ampl e 3−10 S o l u t i o n : ” )

23   printf ( ” \n a : S i n ce t he s pe e d i s r e du ce d i n h al f , wemust r e d uc e t h e kW r a t i n g i n h a l f . C on s eq ue nt ly ,t h e 2 5kW, 9 00 rpm dynamo h a s t h e same s i z e . ” ) ;

24   printf ( ” \n\n b : S i n c e we have c ut t h e s pe ed i n h a l f  b ut m a i n t ai n e d t h e same kW r a t i n g , t h e dynamo h a s

t wi ce t h e s i z e a s t h e o r i g i n a l . ” ) ;

25   printf ( ” \n\n c : H a lf t h e s i z e . ” ) ;

47

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 49/412

26   printf ( ” \n\n d : Same s i z e . ” ) ;

48

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 50/412

Chapter 4

DC DYNAMO TORQUE

RELATIONS DC MOTORS

Scilab code Exa 4.1   calculate force and torque

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−18

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   d = 0.5;   // d i am e t e r o f t h e c o i l i n m13   l = 0.6;   // a x i a l l en gt h o f t h e c o i l i n m

14   B = 0.4;   // f l u x d e n s i t y i n T15   I = 25;   // c ur r e nt c a r r i e d by t h e c o i l i n A16   t h et a = 6 0;   // a n gl e be t we en t he u s e f u l f o r c e & th e

i n t e r p o l a r r e f a x i s i n deg17

49

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 51/412

18   / / C a l c u l a t i o n s

19   F = B * I * l ;   // f o r c e d ev el op ed on e a c h c o i l s i d ei n N20   f = F * s in d( th et a) ;   // f o r c e d ev el op ed a t t h e

i n s t a n t t he c o i l l i e s a t an a ng l e21   // o f 60 w . r . t t h e i n t e r p o l a r r e f a x i s22   r = d / 2;   // r ad i u s o f t h e c o i l i n m23   T_c = f * r ;   // t or qu e d ev el op ed i n N−m24   T_c1 = T_c * 0 .2248 * 3.281 ;   // t o rq u e d e ve l op e d i n

l b − f t b y f i r s t m et ho d25   T_ c2 = T_c * 0 .7 37 56 2 ;   // t or qu e d ev el op ed i n l b − f t

by s e c o n d m eth od

2627   // D is pl ay t h e r e s u l t s28   disp ( ”E x ampl e 4−1 S o l u t i on : ” )

29   printf ( ” \n a : F = %d N ” , F ) ;

30   printf ( ” \n b : f = %. 2 f N ” , f ) ;

31   printf ( ” \n c : Tc = %. 2 f N−m ” , T _ c ) ;

32   printf ( ” \n d : 1 . 3 N−m   ∗   0 . 2 24 8 l b /N   ∗   3 . 2 8 1 f t /m =%. 2 f l b− f t ” , T_c1 ) ;

33   printf ( ” \n 1 . 3 N−m   ∗   0 . 7 3 7 5 6 2 l b . f t /N . m = % . 2 f  l b − f t ” , T_c2 ) ;

Scilab code Exa 4.2   calculate force and torque

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−28

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

50

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 52/412

10

11   / / G iv en d a ta12   d = 1 8 ;   // d i am e t e r o f h t e c o i l i n i n c h e s13   l = 2 4 ;   // a x i a l l en gt h o f t h e c o i l i n i nc he s14   B = 24000 ;   / / Fl ux d e n s i t y i n l i n e s / s q . i n c h e s15   I = 2 6 ;   // C u r r e n t c a r r i e d by t h e c o i l i n A16   theta = 60 ;   // a n gl e bet w ee n t he u s e f u l f o r c e & th e

i n t e r p o l a r r e f a x i s i n deg17

18

19   / / C a l c u l a t i o n s20   F = ( B * I * l * 10 ^ -7 ) / 1.13 ;   // f o r c e

d e v e l o p e d o n e a c h c o i l s i d e i n l b21   f = F * s in d( th et a) ;   // f o r c e d ev el op ed a t t h e

i n s t a n t t he c o i l l i e s a t an a ng l e22   // o f 60 w . r . t t h e i n t e r p o l a r r e f a x i s23   r = d / 2;   // r ad i u s o f t h e c o i l i n i nc he s24   T_c = f * ( r * 1 / 12) ;   // t or qu e d ev el op ed i n l b .

f t / c o n d u c t o r25

26   // D is pl ay t h e r e s u l t s27   disp ( ”E x ampl e 4−2 S o l u t i on : ” )

28   printf (” \n a : F = %. 3 f l b ”

, F ) ;

29   printf ( ” \n b : f = %. 2 f l b ” , f ) ;

30   printf ( ” \n c : Tc = %. 3 f l b − f t / c o n d u c to r ” , T _ c ) ;

Scilab code Exa 4.3  calculate average force and torque

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−3

51

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 53/412

8

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .10

11   / / G iv en d a ta12   Z = 700 ;   / / no . o f c o nd u c to r s13   d = 2 4 ;   // d i am et er o f t he a rm at ur e o f t he dc motor

i n i n ch e s14   l = 3 4 ;   // a x i a l l en gt h o f t h e c o i l i n i nc he s15   B = 50000 ;   / / Fl ux d e n s i t y i n l i n e s / s q . i n c h e s16   I = 2 5 ;   // C u r r e n t c a r r i e d by t h e c o i l i n A17

18   / / C a l c u l a t i o n s19   F_av = ( B * I * l * 10 ^ -7 ) / 1.13 * ( 700 * 0.7

) ;   // a v e ra g e f o r c e20   // d e v e l o p e d on e a c h c o i l s i d e i n l b21   r = d / 2;   // r ad i u s o f t h e c o i l i n i nc he s22   T_av = F_av * ( r /12 ) ;   // a rm at ur e a v e ra g e t o r q ue

i n l b −f t23

24   // D is pl ay t h e r e s u l t s25   disp ( ”E x ampl e 4−3 S o l u t i on : ” )

26   printf (” \n a : Fav = %. 2 f l b ”

, F_av ) ;

27   printf ( ” \n b : Tav = %. 2 f l b−f t ” , T_av ) ;

Scilab code Exa 4.4   calculate torque developed

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−48

52

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 54/412

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   slots = 120 ;   // No . o f a rm at u re s l o t s13   c o nd u ct o rs _ pe r _s l ot = 6 ;

14   B = 60000 ;   / / Fl ux d e n s i t y i n l i n e s / s q . i n c h e s15   d = 2 8 ;   // d i am et er o f t he a rm at ur e16   l = 1 4 ;   // a x i a l l en gt h o f t h e c o i l i n i nc he s17   A = 4 ;   // No . o f p a r a l l e l p a t h s18   s pan = 0. 72 ;   // P ol e a r c s s pa n 72% o f t he a rm at ur e

s u r f a c e

19   I = 133.5 ;   // Armature c u r r e nt i n A20

21   / / C a l c u l a t i o n s22   Z _T a = s lo ts * c on du ct or s_ pe r_ sl ot * s pa n ;   / / No .

o f a rm at ur e c o n d u c to r s23   F_t = ( B * I * l ) / ( 1 .13 * 10 ^ 7 * A ) * Z_Ta ;

// F or ce d ev el op ed i n l b24   r = ( d / 2 ) / 12 ;   // r a d i u s o f t he a rm at u re i n

f e e t25   T = F _t * r ;   // T i t a l t or qu e d ev el op ed26

27   / / D is pl ay t h e r e s u l t28   disp ( ”E x ampl e 4−4 S o l u t i on : ” )

29   printf ( ”   \n T = %d l b− f t ” , T ) ;

Scilab code Exa 4.5  calculate armature current

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors

53

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 55/412

7   / / E xa mp le 4−5

89   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   slots = 120 ;   // No . o f a rm at u re s l o t s13   c o nd u ct o rs _ pe r _s l ot = 6 ;

14   B = 60000 ;   / / Fl ux d e n s i t y i n l i n e s / s q . i n c h e s15   d = 2 8 ;   // d i am et er o f t he a rm at ur e16   l = 1 4 ;   // a x i a l l en gt h o f t h e c o i l i n i nc he s17   A = 4 ;   // No . o f p a r a l l e l p a t h s

18   s pan = 0. 72 ;   // P ol e a r c s s pa n 72% o f t he a rm at ur es u r f a c e

19   T _a = 1500 ;   // t o t a l a rm at ur e t or qu e i n l b −f t20

21   / / C a l c u l a t i o n22   Z = s lo ts * c on du ct or s_ pe r_ sl ot ;   // No . o f a rm at ur e

c o n d u c t o r s23   r = ( d / 2 ) / 12 ;   // r a d i u s o f t he a rm at u re i n

f e e t24   I_a = ( T_a * A * 1.13 e7 ) / ( B * l * Z * r * span

) ;  // A rma tu re c u r r e n t i n A25

26   / / D is pl ay t h e r e s u l t27   disp ( ”E x ampl e 4−5 S o l u t i on : ” )

28   printf ( ”   \n I a = %. 1 f A ” , I _ a ) ;

Scilab code Exa 4.6  calculate torque due to change in field flux

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

54

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 56/412

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors

7   / / E xa mp le 4−68

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   T_old = 150 ;   // To rque d e ve l op e d by a motor i n N−m.13   disp ( ”E x ampl e 4−6” )

14   disp ( ” Given d at a : ” )

15   printf ( ” \n   \ t \ t \ t p h i   \ t I a   \ t T ” ) ;

16   printf ( ” \n   \ t \ t \ t ” ) ;

17   printf ( ” \n O r i g i n a l c o n d i t i o n   \ t 1   \ t 1   \ t 150 N−m ”) ;

18   printf ( ” \n New c o n d i t i o n   \ t \ t 0 . 9   \ t 1 . 5   \ t ? ” ) ;

19

20   / / C a l c u l a t i o n21   T_new = T_old * ( 0.9 / 1 ) * ( 1.5 / 1 ) ;   // New

t o rq u e p ro du ce d i n N−m22

23   / / D is pl ay t h e r e s u l t24   printf ( ” \n\n S o l u t i on : ” )

25   printf (” \n U si ng t he r a t i o method , t he new t o rq u e i st he p ro du ct ” ) ;

26   printf ( ” \n o f two new r a t i o c h an ge s : ” ) ;

27   printf ( ” \n T = %. 1 f N−m ” , T _n ew ) ;

Scilab code Exa 4.7  calculate Ia and percentage change in Ia and E

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors

55

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 57/412

7   / / E xa mp le 4−7

89   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   R _a = 0.25 ;   // Armature r e s i s t a n c e i n ohm13   BD = 3 ;   // Brush c o nt a ct dro p i n v o l t14   V = 120 ;   // A pp l ie d v o lt a g e i n v o l t15   E_a = 110 ;   // EMF i n v o l t a t a g i ve n l oa d16   E_b = 105 ;   // EMF i n v o l t due t o a p p l i c a t i o n o f  

e x tr a l oa d

1718   / / C a l c u l a t i o n s19   I_a_a = ( V - ( E_a + BD ) ) / R_a ;   / / A r ma t ur e

c ur r e nt f o r E a20   I_a_b = ( V - ( E_b + BD ) ) / R_a ;   / / A r ma t ur e

c ur r e nt f o r E b21   del_E = ( ( E_a - E_b ) / E_a ) * 100 ;   / / % c h a n g e

i n c o u n t e r EMF22   del_I = ( ( I_a_a - I_a_b ) / I_a_a ) * 100 ;   // %

c ha ng e i n a rm at ur e c u r r e n t23

24   / / D is pl ay t h e r e s u l t25   disp ( ”E x ampl e 4−7 S o l u t i on : ” )

26   printf ( ” \n a : I a = %d A ”   , I _a _a ) ;

27   printf ( ” \n b : At i n c r e a s e d l o ad   \n I a = %d A ”, I_ a_ b ) ;

28   printf ( ” \n c : d e l E c = %. 2 f p e r c e nt   \n d e l I a =%. 2 f p e r ce n t ”   , d el _E , d el _I ) ;

Scilab code Exa 4.8  calculate speed at different loads

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

56

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 58/412

3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−88

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   V_a = 120 ;   // Rated t e r m in a l v o l t a g e o f t he DC

motor i n v o l t

13   R_a = 0.2 ;   // Armature c i r c u i t r e s i s t a n c e i n ohm14   R_sh = 60 ;   // S hun t f i e l d r e s i s t a n c e i n ohm15   I_l = 40 ;   / / L in e c u r r e nt i n A @ f u l l l o ad16   BD = 3 ;   // Brush v o l t a ge dr op i n v o l t17   S _o ri g = 1 80 0 ;   // Rated f u l l  −l o ad s pe ed i n rpm18

19   / / C a l c u l a t i o n s20   I_f = V_a / R_sh ;   // F i e l d c ur r e n t i n A21   I_a = I_l - I_f ;   / / A rm at ur e c u r r e n t @ f u l l l o a d22   E _c _or ig = V_a - ( I_a * R_a + BD ) ;   // Back EMF @

f u l l l o a d23

24   I_a_a = I_a / 2 ;   // Armature c u r r e nt @ h a l f l o ad25   E_c_a = V_a - ( I_a_a * R_a + BD ) ;   // Back EMF @

h a l f l oa d26   S_a = S_orig * ( E_c_a / E_c _or ig ) ;   / / S pe ed @

f u l l l o a d27

28   I_a_b = I_a * ( 5 / 4 ) ;   / / A rm at ur e c u r r e n t @ 1 2 5%o v e r l o a d

29   E_c_b = V_a - ( I_a_b * R_a + BD ) ;   // Back EMF @

1 25% o v e r l o a d30   S_b = S_orig * ( E_c_b / E_c _or ig ) ;   / / S pe ed @ 1 25

% o v e rl o a d31

32   / / D is pl ay t h e r e s u l t

57

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 59/412

33   disp ( ”E x ampl e 4−8 S o l u t i on : ” ) ;

3435   printf ( ”   \n a : At f u l l l oa d ” ) ;

36   printf ( ”   \n S = %. 1 f rpm ”   , S _ a ) ;

37

38   printf ( ”   \n b : At 125 p e r c e n y t o v e r l o ad ” ) ;

39   printf ( ”   \n S = %. 1 f rpm ”   , S _ b ) ;

Scilab code Exa 4.9   calculate speed with increased line current

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−98

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

1011   / / G iv en d a ta12   I _ l _o r ig = 4 0;   // o r i g i n a l L i n e c ur r e nt i n A13   I _ l _ fi n al = 6 6;   // F i n al L in e c u r r e n t i n A14

15   p hi _o ri g = 1;

16   / / f i e l d f l u x i s i n c r e a s e d by 1 2% s o EMF p ro d uc edand t e r m i n a l

17   / / v o l t a g e w i l l a l s o i n c r e a s e by 1 2%18   p h i_ f in a l = 1 .1 2;

1920   V_a = 1 20 ;

21   R _ s h _o r ig = 6 0;   // O r i g i n al F i e l d c k t r e s i s t a n c e i nohm

22   R _s h_ fi na l = 50 ;   // D ec re as ed f i n a l f i e l d c kt

58

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 60/412

r e s i s t a n c e i n ohm

2324   R _a = 0 .2 ;   // Armature r e s i s t a n c e i n ohm25   B D = 3;   // Brush v o l t a g e dr op i n v o l t26   S _ o ri g = 1 80 0;   // Rated f u l l  − l o ad s pe ed27

28   / / C a l c u l a t i o n s29   I _ f _o ri g = V _a / R _s h_ or ig ;   // O r i g i n al F i e l d

c u r r e n t i n A30   I _a _o ri g = I _l _o ri g - I _f _o ri g ;   // O r i g i na l

A rm at ur e c u r r e n t @ f u l l l o a d31   E _c _or ig = V_a - ( I _a_ or ig * R_a + BD ) ;   / / B ac k

EMF @ f u l l lo ad32

33   I _f _f in al = V _a / R _s h_ fi na l ;   / / F i n a l f i e l dc u r r e n t i n A

34   I _ a _f i na l = I _ l_ f in a l - I _ f_ f in a l ;   // F i na lArm atur e c u r r e n t i n A

35   E_ c_ fi na l = V_a - ( I_ a_ fi na l * R_a + BD ) ;   //F i n a l EMF i n d u c e d

36   S = S_orig * ( E_ c_ fi na l / E _c _or ig ) * ( p hi _or ig /

p hi _f in al ) ;

37  / / F i na l s pe ed o f t he motor38

39   / / D is pl ay t h e r e s u l t40   disp ( ”E x ampl e 4−9 S o l u t i on : ” ) ;

41   printf ( ”   \n S = %. 1 f rpm ” , S ) ;

Scilab code Exa 4.10  calculate power developed

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

59

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 61/412

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors

7   / / E xa mp le 4−108

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   I_a_1 = 38 ;   // Armature c u r r e nt i n A @ f u l l  −l oa d a s

p e r e xa mp le 4−8a13   E _c _1 = 1 09 .4 ;   / / Back EMF i n v o l t @ f u l l − l oa d a s

p e r e xa mp le 4−8a14   S _1 = 1800 ;   / / S peed i n rpm @ f u l l − l oa d a s p er

e x am p le 4−8a15

16   I_a_2 = 19 ;   / / Armature c u r r e nt i n A @ h a l f   −l o a d a sp e r e xa mp le 4−8a

17   E _c _2 = 1 13 .2 ;   / / Back EMF i n v o l t @ h a l f   −l oa d a sp e r e xa mp le 4−8a

18   S _2 = 1863 ;   / / S pee d i n rpm @ h a l f   −l oa d a s p ere x am p le 4−8a

19

20   I _a _3 = 47 .5 ;   / / A rma tu re c u r r e n t i n A @ 1 25%

o v e r lo a d a s p er exa mp le 4−8b21   E _c _3 = 1 07 .5 ;   / / Back EMF i n v o l t @ 1 2 5% o v e r l o a da s p er ex am pl e 4−8b

22   S _3 = 1769 ;   // S pee d i n rpm @ 1 25% o v e r l o a d a s p e re x am p le 4−8b

23

24   I _a _4 = 63 .6 ;   / / Armature c u r r e nt i n A @ o v e r lo a da s p er ex am pl e 4−9

25   E _c _4 = 1 04 .3 ;   / / Back EMF i n v o l t @ o v e r l o a d a sp e r e xa mp le 4−9

26   S _4 = 1532 ;   // S peed i n rpm @ o v e r l o ad a s p er

e x am p le 4−927

28   / / C a l c u l a t i o n s29   P _d _1 = E _c _1 * I _a _1 ;   // A rm at ur e p ow er d e v e l o p e d

@ f u l l − l o a d

60

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 62/412

30

31   P _d _2 = E _c _2 * I _a _2 ;   // A rm at ur e p ow er d e v e l o p e d@ h a l f   −l o a d32

33   P _d _3 = E _c _3 * I _a _3 ;   // A rm at ur e p ow er d e v e l o p e d@ 1 2 5 % o v e r l o a d

34

35   P _d _4 = E _c _4 * I _a _4 ;   // A rm at ur e p ow er d e v e l o p e d@ o v e r l o a d

36

37   // D is pl ay t h e r e s u l t s38   disp ( ” E xa mp le 4−10 S o l u t i o n : ” ) ;

39   printf ( ” \n E xampl e   \ t I a   \ t Ec   \ t S pe ed   \ t Pd o r ( Ec∗ I a ) ” ) ;

40   printf ( ” \n

” ) ;

41   printf ( ” \n 4−8a   \ t \ t %d   \ t %. 1 f    \ t %d   \ t %d W a tf u l l −l o a d ” , I _a _1 , E _ c_ 1 , S _ 1 , P _ d _ 1 ) ;

42   printf ( ” \n 4−8a   \ t \ t %d   \ t %. 1 f    \ t %d   \ t %. 1 f W a th a l f   −l o a d ” , I_a _2 , E _c _2 , S _2 , P_ d_ 2 );

43   printf ( ” \n 4−8b   \ t \ t %. 1 f    \ t %. 1 f    \ t %d   \ t %d W a t

125 p e rc e nt o v er l oa d ”, I _ a _ 3 , E _ c _ 3 , S _ 3 , P _ d _ 3 ) ;

44   printf ( ” \n 4−9   \ t \ t %. 1 f    \ t %. 1 f    \ t %d   \ t % d W a to v er l oa d ” , I _ a _ 4 , E _ c _ 4 , S _ 4 , P _ d _ 4 ) ;

45   printf ( ” \n

” ) ;

Scilab code Exa 4.11  convert torque readings into Nm and lbft

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

61

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 63/412

5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−118

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   T _a = 6 .5 ;   // T or qu e i n d yn e−c e n t i m e t e r s13   T _ b = 1 0. 6;   / / T or qu e i n gram−c e n t i m e t e r s14   T _ c = 1 2. 2;   // T or qu e i n o un ce−i n c h e s15

16   / / C a l c u l a t i o n s17   T _a _N m = T _a * 1 .4 16 e -5 * 7 .0 61 2 e -3 ;   / / T or qu e T a

i n N−m18   T _ b _ N m = T _ b * ( 1 / 7 2 . 0 1 ) * 7 . 0 6 1 2 e - 3 ;   / / T o rq u e

T b i n N−m19   T _c _N m = T_c * 7 .0 61 2e -3 ;   // Torque T c i n N−m20

21   T _a _l bf t = T _a * 1 .4 16 e -5 * 5 .2 08 e - 3;   / / T or qu e T ai n l b − f t

22   T _b _lb ft = T_b * ( 1 / 72.01 ) * 5.208 e -3;   / / T o rq u e

T b i n l b − f t23   T _c _l bf t = T _c * 5 .2 08 e - 3;   // Torque T c i n l b− f t24

25   // D is pl ay t h e r e s u l t s26   disp ( ”E x ampl e 4−11 S o l u t i o n : ” ) ;

27   printf ( ”   \n a : T = %. 1 e N−m ” , T _a _N m ) ;

28   printf ( ”   \n T = %. 1 e l b − f t   \n ” , T _a _l bf t ) ;

29

30   printf ( ”   \n b : T = %. 2 e N−m ” , T _b _N m ) ;

31   printf ( ”   \n T = %. 1 e l b − f t   \n ” , T _b _l bf t ) ;

32

33   printf ( ”   \n c : T = %. 3 e N−m ” , T _c _N m ) ;34   printf ( ”   \n T = %. 2 e l b − f t   \n ” , T _c _l bf t ) ;

62

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 64/412

Scilab code Exa 4.12  calculate Ist and percentage of load current

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−128

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   V_a = 120 ;   // Rated t e rm i n al v o l t a g e o f dc s hu nt

n ot or i n v o l t13   R_a = 0.2 ;   // Armature r e s i s t a n c e i n ohm14   BD = 2 ;   // Brush drop i n v o l t15   I_a = 75 ;   // F u l l l oa d a rm at u re c u r r e n t i n A

1617   / / C a l c u l a t i o n s18   I_st = ( V_a - BD ) / R_a ;   // C ur re nt @ t he i n s t a n t

o f s t a r t i n g i n A19   p er ce nt ag e = I_ st / I_ a * 100 ;   // P e rc en t ag e a t

f u l l l o a d20

21   // D is pl ay t h e r e s u l t s22   disp ( ” E xa mp le 4−12 S o l u t i o n : ” ) ;

23   printf ( ”   \n I s t = %d A ( Back EMF i s z e r o ) ” , I_ st ) ;

24   printf ( ”   \n P e rc e nt a ge a t f u l l l o ad = %d p e r ce n t ” ,

p e r c en t a g e ) ;

63

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 65/412

Scilab code Exa 4.13  calculate Rs at various back Emfs and Ec at zero

Rs

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−138

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   V_a = 120 ;   // Rated t e rm i n al v o l t a g e o f dc s hu nt

n ot or i n v o l t13   R_a = 0.2 ;   // Armature r e s i s t a n c e i n ohm14   BD = 2 ;   // Brush drop i n v o l t15   I_a = 75 ;   // F u l l l oa d a rm at u re c u r r e n t i n A16   I _a_n ew = 1.5 * I_a ;   // a rm at ur e c u r r e nt i n A a t

1 50% r a t e d l o a d17

18   E_c_a = 0 ;   / / Back EMF a t s t a r t i n g19   E_c_b = ( 25 / 100 ) * V_a ;   // Back EMF i n v o l t i s

25% o f Va @ 1 50% r a t e d l o a d20   E_c_c = ( 50 / 100 ) * V_a ;   // Back EMF i n v o l t i s

50% o f Va @ 1 50% r a t e d l o a d21

22   / / C a l c u l a t i o n s23   R_s_a = ( V_a - E_c_a - BD ) / I_a _new - R_a ;   / / Ra

t ap pi ng v al ue a t s t a r t i n g24   / / i n ohm

25   R_s_b = ( V_a - E_c_b - BD ) / I_a _new - R_a ;   / / Rat a p pi n g v a l u e @ 2 5% o f Va

26   // i n ohm27   R_s_c = ( V_a - E_c_c - BD ) / I_a _new - R_a ;   / / Ra

t a p pi n g v a l u e @ 5 0% o f Va

64

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 66/412

28   / / i n ohm

29   E_c_d = V_a - ( I_a * R_a + BD ) ;   // Back EMF @f u l l −l oa d w it h ou t s t a r t i n g r e s i s t a n c e30

31   // D is pl ay t h e r e s u l t s32   disp ( ” E xa mp le 4−13 S o l u t i o n : ” ) ;

33   printf ( ”   \n a : At s t a r t i n g , Ec i s z er o ” ) ;

34   printf ( ”   \n Rs = %. 2 f ohm   \n ” , R _s _a ) ;

35

36   printf ( ”   \n b : When b ac k EMF i n v o l t i s 2 5 p e r c e n to f Va @ 150 p e rc e nt r a te d l oa d ” ) ;

37   printf ( ”   \n Rs = %. 3 f ohm   \n ” , R _s _b ) ;

3839   printf ( ”   \n c : When b ac k EMF i n v o l t i s 5 0 p e r c e n t

o f Va @ 150 p e rc e nt r a te d l oa d ” ) ;

40   printf ( ”   \n Rs = %. 3 f ohm   \n ” , R _s _c ) ;

41

42   printf ( ”   \n d : Back EMF a t f u l l  −l o a d w i th o u ts t a r t i n g r e s i s t a n c e ” ) ;

43   printf ( ”   \n Ec = %d V ” , E _c _d ) ;

Scilab code Exa 4.14  calculate field flux in percent and final torque de-veloped

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors

7   / / E xa mp le 4−148

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

65

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 67/412

11   / / G iv en d a ta

12   / / C u m ul a t iv e DC com pound m ot or a c t i n g a s s h u n tmotor13   T _o ri g = 160 ;   / / O r i g i na l t or qu e d ev el op ed i n l b . f t14   I _ a_ or ig = 1 40 ;   // O r i g i na l a rm at u re c u r r e n t i n A15   p hi _f _o ri g = 1 .6 e +6 ;   // O r i g i na l f i e l d f l u x i n

l i n e s16

17   / / R e c o nn e c t ed a s a c u m u l a t i v e DC comp ound m ot or18   T _f in al _a = 1 90 ;   / / F i n a l t or qu e d ev el op ed i n l b . f t

( c a s e a )19

20   / / C a l c u l a t i o n s21   p hi _f = p hi _f _o ri g * ( T _f in al _a / T _o ri g ) ;   //

F ie l d f l u x i n l i n e s22   p er ce nt ag e = ( p hi _f / p hi _f _o ri g ) * 100 - 100 ;   //

p e r ce nt a g e i n c r e a s e i n f l u x23

24   p hi _f _f in al = 1 .1 * p hi _f ;   // 10% i n c r e a s e i n l oa dc a u se s 10% i n c r e a s e i n f l u x

25   I_a_b = 154 ;   // F i na l a rm at ur e c u r r e nt i n A ( c a se b)

26   T_f = T _fi na l_ a * ( I_a_b / I_ a_o ri g ) * (

p hi _f _f in al / p hi _f ) ;

27   // F i n a l t o rq u e d e ve l op e d28

29   // D is pl ay t h e r e s u l t s30   disp ( ” E xa mp le 4−14 S o l u t i o n : ” ) ;

31   printf ( ”   \n a : p h i f = %. 1 e l i n e s   \n ” , p hi _f ) ;

32   printf ( ”   \n P e r c e n t a g e o f f l u x i n c r e a s e = %. 1 f  p e r c e n t   \n ” , p e rc e nt a ge ) ;

33

34   printf ( ”   \n b : The f i n a l f i e l d f l u x i s 1 . 1   ∗   1 . 9   ∗

10 ˆ 6 l i n e s ”   ) ;35   printf ( ”   \n ( due t o th e 10 pe r c e n t i n c r e a s e i n

l o ad ) . The f i n a l t o rq u e i s  \ n” ) ;

36   printf ( ”   \n T f = %. 1 f l b −f t ” , T _ f ) ;

66

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 68/412

Scilab code Exa 4.15  calculate torque developed for varying flux and Ia

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−158

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   I _a _o ri g = 25 ;   // O r i g i n al a rm at ur e c u r r e nt i n A13   I _ a_ fi na l = 3 0 ;   // F i na l a rm at u re c u r r e nt i n A14   T _ or ig = 90 ;   // O r i g i na l t or qu e d ev el op ed i n l b . f t15   p h i_ or ig = 1 .0 ;   // O r i g i n al f l u x16   p hi _f in al = 1 .1 ;   // F in a l f l u x

1718   / / C a l c u l a t i o n s19   T_a = T_orig * ( I _a _f in al / I _a_ or ig ) ^ 2 ;   //

F i n a l t o r q ue d e v el o p ed i f f i e l d20   // i s u n sa t u r a t e d21   T_b = T_orig * ( I _a _f in al / I _a_ or ig ) * (

p hi _f in al / p hi _o ri g ) ;

22   / / F i na l t or qu e d ev el op ed when I a r i s e s t o 30 A andf l u x by 10%

23

24   // D is pl ay t h e r e s u l t s25   disp ( ” E xa mp le 4−15 S o l u t i o n : ”   ) ;

26   printf ( ”   \n a : T = %. 1 f l b− f t   \n ” , T _ a ) ;

27   printf ( ”   \n b : T = %. 1 f l b− f t ” , T _ b ) ;

67

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 69/412

Scilab code Exa 4.16  calculate speed at rated load and P and hp

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−168

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   V_a = 230 ;   // Rated a rm at ur e v o l t a g e i n v o l t13   P = 1 0 ;   // Ra ted p ower i n hp14   S = 1250 ;   // Rat ed s p ee d i n rpm15   R _A = 0.25 ;   // Armature r e s i s t a n c e i n ohm16   R _p = 0.25 ;   // I n t e r p o l a r r e s i s t a n c e

17   BD = 5 ;   // Brush v o l t ag e dro p i n v o l t18   R _s = 0.15 ;   // S e r i e s f i e l d r e s i s t a n c e i n ohm19   R_sh = 230 ;   / / Sh un t f i e l d r e s i s t a n c e i n ohm20

21   / / s hu nt c o n n ec t i on22   I_l = 54 ;   // L i ne c u r r e n t i n A at r at ed l oa d23   I_ol = 4 ;   / / No−l oa d l i n e c ur r e nt i n A24   S _o = 1810 ;   / / No−l o ad s pe ed i n rpm25

26   / / C a l c u l a t i o n s27   R_a = R_A + R_p ;   // E f f e c t i v e a r m a t u r e r e s i s t a n c e

i n ohm28   I_f = V_a / R_sh ;   // F i e l d c u r r e n t i n A ( Shunt

c o n n ec t i o n )29   I_a = I_ol - I_f ;   // Armature c u r r e n t i n A

68

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 70/412

30

31   E_c_o = V_a - ( I_a * R_a + BD ) ;   / / No−l o a d BACKEMF i n v o l t32   E _c _f ul l_ lo ad = V_a - ( I_l * R_a + BD ) ;   / / No−l o a d

BACK EMF i n v o l t a t f u l l  − l o a d33

34   S_r = S_o * ( E _c _f ul l_ lo ad / E _c _o ) ;   // S pe ed a tr a t ed l o ad

35

36   P _ d = E _c _f ul l_ lo ad * I _l ;   // I n t e r n a l power i nw a t t s

37   h p = P_d / 746 ;   // I n t e r n a l h o rs e power

3839   // D is pl ay t h e r e s u l t s40   disp ( ”E x ampl e 4−16 S o l u t i o n : ” ) ;

41   printf ( ”   \n a : S r = %d rpm\n ” , S _ r ) ;

42   printf ( ”   \n b : P d = %d W ” , P _ d ) ;

43   printf ( ”   \n hp = %. 1 f hp ” , hp ) ;

Scilab code Exa 4.17   calculate speed torque and horsepower

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−178

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   V_a = 230 ;   // Rated a rm at ur e v o l t a g e i n v o l t13   P = 1 0 ;   // Ra ted p ower i n hp

69

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 71/412

14   S = 1250 ;   // Rat ed s p ee d i n rpm

15   R _A = 0.25 ;   // Armature r e s i s t a n c e i n ohm16   R _p = 0.25 ;   // I n t e r p o l a r r e s i s t a n c e17   BD = 5 ;   // Brush v o l t ag e dro p i n v o l t18   R _s = 0.15 ;   // S e r i e s f i e l d r e s i s t a n c e i n ohm19   R_sh = 230 ;   / / Sh un t f i e l d r e s i s t a n c e i n ohm20   phi_1 = 1 ; // O r i g i n al f l u x p e r p ol e21

22   // Long−s hu nt c u m ul a t i ve c o n n e c t i o n23   I_l = 55 ;   // L i ne c u r r e n t i n A at r at ed l oa d24   p hi _2 = 1. 25 ;   // Fl ux i n c r e a s e d by 25% due t o l on g−

s h un t c u m u la t i v e c o n n e c t i o n

25   I_ol = 4 ;   / / No−l oa d l i n e c ur r e nt i n A26   S _o = 1810 ;   / / No−l o ad s pe ed i n rpm27

28   / / C a l c u l a t i o n s29   R_a = R_A + R_p ;   // E f f e c t i v e a r m a t u r e r e s i s t a n c e

i n ohm30   I_f = V_a / R_sh ;   // F i e l d c u r r e n t i n A i n s h u n t

w i n d i n g31   I_a = I_ol - I_f ;   // Armature c u r r e n t i n A f o r

s h un t c o n n e c t i o n32   E_c_o = V_a - ( I_a * R_a + BD ) ;

  / / No−l o a d BACKEMF i n v o l t f o r s hu nt c o n n ec t i on33   E_c _o1 = V_a - ( I_a * R_a + I_a * R_s + BD ) ;   / / No

−l o a d BACK EMF i n v o l t f o r34   / / l o ng s hu nt c u mu l at i ve c o n n ec t i o n35   S_n1 = S_o * ( E_c _o1 / E_c_o ) ;   // Sp eed a t no l o ad36

37   I_f = V_a / R_sh ;   // F i e l d c u r r e n t i n A i n s h u n tw i n d i n g

38   I _a_l sh = I_l - I_f ;   // Armature c u r r e nt i n A39   E _c _f ul l_ lo ad = V_a - ( I _a _l sh * R_a + BD ) ;   / / No−

l o a d BACK EMF i n v o l t a t40   // f u l l − l oa d f o r l o n g −s h un t c u m u la t i v e c o n n e c t i o n41

42   E _c _f ul l_ lo ad _l sh = V _a - ( I _a _l sh * R _a + I _a _l sh

* R_s + BD ) ;   // BACK EMF in v o l t

70

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 72/412

43   / / a t f u l l − l oa d f o r l o n g −s h un t c u m u l a t i v e m ot or

4445   S_r = S_o * ( E _c _f ul l_ lo ad / E _c _o ) ;   // S pe ed a t

r a te d l oa d f o r s hu nt c o nn e ct i on46   S _r _l sh = S_ n1 * ( E _c _f ul l_ lo ad _l sh / E _c _o 1 ) * (

p hi_ 1 / p hi _2 ) ;

47   / / S peed a t r a te d l oa d f o r s hu nt c o nn e ct i on48

49   P _d = E _c _f ul l_ lo ad * I _a _l sh ;   // I n t e r n a l power i nw a t t s

50   h p = P_d / 746 ;   // I n t e r n a l h o rs e power51

52   T _shu nt = ( hp * 5252 ) / S_r ;   // I n t e r n a l t or qu e @f u l l − l o ad f o r s hu nt motor

53

54   I _ a1 = I _ a_ ls h ;   // Arm at ure c u r r e n t f o r s hu nt mo to ri n A

55   I _ a2 = I _ a_ ls h ;   // Armature c u r r e nt f o r l on g−s h u n tc u m ul a t i ve m oto r i n A

56   T_c omp = T_s hun t * ( phi_2 / phi_1 ) * ( I_a2 / I_a1

) ;   // I n t e r n a l t or qu e57   / / a t f u l l − l oa d f o r l o n g −s hu nt c u m ul a t i ve m oto r i n A58

59   H or se po we r = ( E _c _f ul l_ lo ad _l sh * I _a _l sh ) / 7 46 ;

// I n t e r n a l h or se po we r o f  60   / / compound m oto r b as ed on f l u x i n c r e a s e61

62   // D is pl ay t h e r e s u l t s63   disp ( ” E xa mp le 4−17 S o l u t i o n : ” ) ;

64   printf ( ”   \n a : S n 1 = %d rpm   \n” , S_n1 ) ;

65   printf ( ”   \n b : S r = %d rpm   \n” , S _r _l sh ) ;

66   printf ( ”   \n c : I n t e r n a l t or qu e o f s hu nt motor a tf u l l −l o a d : ” ) ;

67   printf ( ”   \n T s hu nt = %. 2 f l b − f t ” , T _s hu nt ) ;68   printf ( ”   \n T comp = %. 2 f l b − f t   \n” , T _c om p ) ;

69   printf ( ”   \n d : H o rs ep o we r = %. 1 f hp   \n” , H o r s ep o w er

) ;

70   printf ( ”   \n e : The i n t e r n a l h or se po we r e x ce e ds t he

71

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 73/412

r a t ed h or se po we r b ec a us e ” ) ;

71   printf ( ”   \n t he power d ev el op ed i n t he motor musta l s o o ve rc om e t he i n t e r n a l ” ) ;

72   printf ( ”   \n m e c h a n i c a l r o t a t i o n a l l o s s e s . ”) ;

Scilab code Exa 4.18  calculate speed with and without diverter

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−188

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P = 2 5 ;   // Power r a t i n g o f a s e r i e s motor i n hp

13   V_a = 250 ;   // Rated v o l t a g e i n v o l t14   R_a = 0.1 ;   // Armature c kt r e s i s t a n c e i n ohm15   BD = 3 ;   // Brush v o l t ag e dro p i n v o l t16   R _s = 0.05 ;   // S e r i e s f i e l d r e s i s t a n c e i n ohm17   I_a1 = 85 ;   / / Armature c u r r e nt i n A ( c a s e a )18   I_a2 = 100 ;   / / Armature c u r r e nt i n A ( c a s e b )19   I_a3 = 40 ;   / / Ar ma tu re c u r r e n t i n A ( c a s e c )20   S_1 = 600 ;   // Speed i n rpm a t c u r re n t I a 121   R _d = 0.05 ;   // D i v e r t o r r e s i s t a n c e i n ohm22

23   / / C a l c u l a t i o n s24   E_c2 = V_a - I_a2 * ( R_a + R_s ) - BD ;   // BACK EMFi n v o l t f o r I a 2

25   E_c1 = V_a - I_a1 * ( R_a + R_s ) - BD ;   // BACK EMFi n v o l t f o r I a 1

72

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 74/412

26

27   S_2 = S_1 * ( E_c2 / E_c1 ) * ( I_a1 / I_a2 ) ;   //Speed i n rpm a t c u r r e n t I a 228

29   E_c3 = V_a - I_a3 * ( R_a + R_s ) - BD ;   // BACK EMFi n v o l t f o r I a 3

30

31   S_3 = S_1 * ( E_c3 / E_c1 ) * ( I_a1 / I_a3 ) ;   //Speed i n rpm a t c u r r e n t I a 3

32

33   / / When d i v e r t o r i s c on ne ct ed i n p a r a l l e l t o R s34   R_sd = ( R_s * R_d ) / ( R_s + R_d ) ;   // E f f e c t i v e

s e r i e s f i e l d r e s i s t a n c e i n ohm35

36   E _c 2_n ew = V_a - I_a2 * ( R_a + R_sd ) - BD ;   //BACK EMF i n v o l t f o r I a 2

37   S _2_n ew = S_1 * ( E_ c2_ new / E_c1 ) * ( I_a1 / (

I_a2 / 2 ) ) ;   // S pe ed i n rpm38   / / a t c ur r e n t I a 239

40   E _c 3_n ew = V_a - I_a3 * ( R_a + R_sd ) - BD ;   //BACK EMF i n v o l t f o r I a 3

41   S _3_n ew = S_1 * ( E_ c3_ new / E_c1 ) * ( I_a1 / (

I_a3 / 2 ) ) ;   // S pe ed i n rpm42   / / a t c ur r e n t I a 343

44   // D is pl ay t h e r e s u l t s45   disp ( ” E xa mp le 4−18 S o l u t i o n : ” ) ;

46   printf ( ”   \n a : S 2 = %d rpm   \n” , S _ 2 ) ;

47   printf ( ”   \n b : S 3 = %d rpm   \n” , S _ 3 ) ;

48   printf ( ”   \n c : The e f f e c t o f t h e d i v e r t o r i s t or ed u ce t he s e r i e s f i e l d c u r r e n t ” ) ;

49   printf ( ”   \n ( and f l u x ) t o h a l f t h e i r p r e v i o us

v a l u e s . ” ) ;50   printf ( ”   \n S 2 = %d rpm ” , S _2 _n ew ) ;

51   printf ( ”   \n S 3 = %d rpm   \n” , S _3 _n ew ) ;

52

53   printf ( ”   \n The r e s u l t s may be t a bu la te d as

73

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 75/412

f o l l o w s :   \n ” ) ;

54   printf ( ”   \n Case   \ t I a i n A   \ t S o i n rpm   \ tS d i n rpm ” ) ;

55   printf ( ”   \n

” ) ;

56   printf ( ”   \n 1   \ t %d   \ t %d\ t ” , I_a1 , S _1 ) ;

57   printf ( ”   \n 2 .   \ t %d   \ t %d\ t %d ” , I_a2 , S_2 , S_2 _new ) ;

58   printf ( ”   \n 3 .   \ t %d   \ t %d   \ t%d ” , I_a3 , S_3 , S_ 3_ne w ) ;

Scilab code Exa 4.19   calculate percentage speed regulation

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−198

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   / / From t he c a l c u l a t i o n s o f Ex .4 −16 , Ex .4 −17 , Ex

.4 −18 we g e t no−l o a d and13   // f u l l − l oa d s pe ed s a s f o l l o w s

14   S _n1 = 18 10 ;   / / No−l o a d s p ee d i n rpm ( Ex .4 −16)15   S _f1 = 16 03 ;   // F u ll −l o a d s p ee d i n rpm ( Ex .4 −16)16

17   S _n2 = 18 06 ;   / / No−l o a d s p ee d i n rpm ( Ex .4 −17)18   S _f2 = 12 31 ;   // F u ll −l o a d s p ee d i n rpm ( Ex .4 −17)

74

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 76/412

19

20   S _n3 = 13 11 ;   / / No−l o a d s p ee d i n rpm ( Ex .4 −18)21   S_f3 = 505 ;   // F ul l −l o a d s p ee d i n rpm ( Ex .4 −18)22

23   / / C a l c u l a t i o n s24   SR_1 = ( S_n1 - S_f1 ) / S_f1 * 100 ;   / / S p ee d

r e g u l a t i o n f o r s hu nt motor25

26   SR_2 = ( S_n2 - S_f2 ) / S_f2 * 100 ;   / / S p ee dr e g u l a t i o n f o r compound mo to r

27

28   SR_3 = ( S_n3 - S_f3 ) / S_f3 * 100 ;   / / S p ee d

r e g u l a t i o n f o r s e r i e s motor29

30   // D is pl ay t h e r e s u l t s31   disp ( ”E x ampl e 4−19 S o l u t i o n : ” ) ;

32   printf ( ”   \n a : SR ( s h u n t ) = %. 1 f p e r c e n t   \n ” , S R _ 1 )

;

33   printf ( ”   \n b : SR ( c ompou nd ) = %. 1 f p e r c e n t   \n ” ,

S R_ 2 ) ;

34   printf ( ”   \n c : SR ( s e r i e s ) = %. 1 f p e r c e n t   \n ” , S R_ 3

) ;

Scilab code Exa 4.20  calculate no load speed

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−208

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

75

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 77/412

10

11   / / G iv en d a ta12   S R = 0.1 ;   // Given p e r ce n t s pe ed r e g u l a t i o n 10% o f  a s h un t m ot or

13   o me ga_ f1 = 60 * %pi ;   // F u ll −l oa d s pe ed i n r a d / s14

15   / / C a l c u l a t i o n s16   o me ga_ n1 = om ega _f 1 * ( 1 + SR ) ;   / / No−l o ad s pe ed

i n r a d / s17

18   S = om eg a_n 1 * ( 1 / ( 2 * %pi ) ) * ( 60 / 1 ) ;   //No−l o ad s pe ed i n rpm

1920   // D is pl ay t h e r e s u l t s21   disp ( ”E x ampl e 4−20 S o l u t i o n : ” ) ;

22   printf ( ”   \n a : o me ga n 1 = %. 2 f    \n ” , o m eg a_ n 1 ) ;

23   printf ( ”   \n b : S = %d rpm ” , S ) ;

Scilab code Exa 4.21   calculate internal and external torque

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−218

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

1011   / / G iv en d a ta12   S _i nt = 16 03 ;   // I n t e r n a l r a te d s pe ed i n rpm ( Ex

. 4 −16)13   S _e xt = 12 50 ;   // E x te r na l r a t ed s pe ed i n rpm ( Ex

76

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 78/412

. 4 −16)

14   h p_ in t = 1 4. 3 ;   // I n t e r n a l h or se po we r15   h p _e xt = 10 ;   // E x t e rn a l h o rs e po w er16

17   / / C a l c u l a t i o n s18   T_int = ( hp_ int * 5252 ) / S_int ;   // I n t e r n a l

t or qu e i n l b − f t19

20   T_ext = ( hp_ ext * 5252 ) / S_ext ;   // E x t e rn a lt or qu e i n l b − f t

21

22   // D is pl ay t h e r e s u l t s

23   disp ( ”E x ampl e 4−21 S o l u t i o n : ” ) ;24   printf ( ”   \n a : T i n t = %. 2 f l b − f t   \n ” , T _i nt ) ;

25   printf ( ”   \n b : T e xt = %. 2 f l b− f t   \n ” , T _e xt ) ;

26   printf ( ”   \n c : I n t e r n a l h or se po we r i s d ev el op ed a s ar e s u l t o f e l e c t r o m a g ne t i c ” ) ;

27   printf ( ”   \n t or qu e p r o d u c e d by e n er gy c o nv e r s i o n .Some o f t h e m e ch a n ic a l e n er g y ” ) ;

28   printf ( ”   \n i s us e d i n t e r n a l l y to ov er co mem ec ha n ic a l l o s s e s o f t he motor , ” ) ;

29   printf ( ”   \n r e d u c i n g th e to r q u e a v a i l a b l e at i t s

s h a f t t o p er f or m work . ”) ;

Scilab code Exa 4.22   calculate output torque in ounceinches

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

56   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−228

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

77

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 79/412

c o n s o l e .

1011   / / G iv en d a ta12   P = 5 0 ;   // Power r a t i n g o f t he s er vo −m ot or i n W13   S = 3000 ;   // F ul l −l oa d s pe ed o f t he s er vo −m ot or i n

rpm14

15   / / C a l c u l a t i o n16   T_l bft = ( 7.04 * P ) / S ;   // Output t o rq u e i n l b−

f t17   T _o un ce in ch = T _l bf t * 1 92 ;   // Output t o r q ue i n

ounce−i n c h e s

1819   / / D is pl ay t h e r e s u l t20   disp ( ” E xa mp le 4−22 S o l u t i o n : ” ) ;

21   printf ( ”   \n T = %. 1 f o z . i n ” , T _ ou n ce i nc h ) ;

Scilab code Exa 4.23  calculate speed and torque

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h ap t er 4 : DC Dynamo T or qu e R e l a t i o n s −DC Motors7   / / E xa mp le 4−238

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P = 5 0 ;   // Power r a t i n g o f t he s er vo −m ot or i n W13   S _r pm = 30 00 ;   // F u ll −l oa d s pe ed o f t he s er vo −motor

i n rpm14

78

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 80/412

15   / / C a l c u l a t i o n s

16   S _r ad _p er _s ec = S_rpm * 2 * %pi / 60 ;   // F u ll −l o a ds pe ed o f t he s er vo −motor17   / / i n r ad / s18   o me ga = 3 14 .2 ;   // A ng ul ar f r e qu e n cy i n r ad / s19   T_Nm = P / omega ;   // Ou tpu t t o r q u e i n Nm20   T _o un ce in ch = T _Nm * ( 1 / 7 .0 61 2e -3 ) ;   / / O ut pu t

t o r q ue i n o z . i n21

22   // D is pl ay t h e r e s u l t s23   disp ( ”E x ampl e 4−23 S o l u t i o n : ” ) ;

24   printf ( ”   \n a : S peed i n r ad / s = %. 1 f r ad / s   \n ” ,

S _ r a d_ p e r _s e c ) ;25   printf ( ”   \n b : T = %. 4 f N−m   \n ” , T_Nm ) ;

26   printf ( ”   \n c : T = %. 1 f o z . i n   \n ” , T _ ou n ce i nc h ) ;

27   printf ( ”   \n d : Bo th a n s w er s a r e t h e same . ” ) ;

79

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 81/412

Chapter 5

ARMATURE REACTION

AND COMMUTATION IN

DYNAMOS

Scilab code Exa 5.1   calculate Zp

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 5 : ARMATURE REACTION AND COMMUTATION INDYNAMOS

7   / / E xa mp le 5−18

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   c on du ct or s = 8 00 ;   // No . o f c o nd u ct o r s13   I _a = 1000 ;   // Rated a rm at ur e c u r r e n t i n A14   P = 1 0 ;   // No . o f p o l es15   pitch = 0.7 ;   // P ol e−f a c e c o v e r s 70% of t he p i t ch

80

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 82/412

16   a = P ;   // No . o f p a r a l l e l p at hs ( S i m p l e x l a p −wound

)17

18   / / C a l c u l a t i o n s19   / / U s in g Eq . ( 5 − 1 )20   Z = c on duc to rs / P ;   // No . o f a rm at ur e c o nd u c to r s /

p at h u nd er e ac h p o l e21   Z_a = Z * pitch ;   / / A c ti v e a rm at ur e c o n d u c to r s / p o l e22

23   // S ol vi ng f o r Z p u s in g Z p = Z a / a24   Z_p = Z_a / a ;   // No . o f p o le f a c e c o nd uc t o r s / p o l e25

26   // D is pl ay t h e r e s u l t s27   disp ( ”E x ampl e 5−1 S o l u t i on : ” ) ;

28   printf ( ”   \n No . o f p o l e f a c e c on du ct or s / p o l e t o g i vef u l l a rm at ur e r e a c t i o n ” ) ;

29   printf ( ”   \n c om pe ns at io n , i f t he p o l e c o v e r s 70p er ce n t o f t h e p it ch i s :   \n ” ) ;

30   printf ( ”   \n Z p = %. 1 f c o n du c to r s / p o l e ” , Z _ p ) ;

Scilab code Exa 5.2   calculate cross and de magnetising ampereconduc-torsperpole and ampereturnsperpole

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 5 : ARMATURE REACTION AND COMMUTATION INDYNAMOS

7   / / E xa mp le 5−28

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

81

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 83/412

11   / / G iv en d a ta

12   c on du ct or s = 8 00 ;   // No . o f c o nd u ct o r s13   I _a = 1000 ;   // Rated a rm at ur e c u r r e n t i n A14   I_l = I_a ;   // l oa d o r t o t a l c ur r e nt e n t e r i n g t h e

a rm at ur e i n A15   P = 1 0 ;   // No . o f p o l es16   pitch = 0.7 ;   // P ol e−f a c e c o v e r s 70% of t he p i t ch17   a = P ;   // No . o f p a r a l l e l p at hs ( S i m p l e x l a p −wound

)18   alpha = 5 ;   / / No . o f e l e c t r i c a l d e g r e s s t h a t t h e

b ru sh es a re s h i f t e d19

20   / / C a l c u l a t i o n s21   Z = c on duc to rs / P ;   // No . o f a rm at ur e c o nd u c to r s /

p at h u nd er e ac h p o l e22   A_ Z _ pe r _p o l e = ( Z * I_l ) / ( P * a ) ;   // C ro s s

m a g n e t i z i n g23   // ampe re−c o n d u c t o r s / p o l e24

25   At _ pe r _p o le = ( 1 / 2 ) * ( 8000 / 1 ) ;   // Ampere−t u r n s / p o l e

26

27   f r ac _d em ag _A t_ pe r_ po le = ( 2* a lp ha ) / 1 80 * (

A t _ p e r _ p o l e ) ;

28   / / F r a c t i o n o f d e m a gn e t iz i n g ampere−t u r n s / p o l e29

30   funcprot ( 0 ) ;   // t o a vo id r e d e f i n i n g f u nc t i o n : b et aw a r ni n g m e s sa g e

31

32   be ta = 180 - 2* a lp ha ;   // c r o ss −m a g n e t i z i n ge l e c t r i c a l d e g r ee s

33

34   c r o s s _m a g _ A t_ p e r _ po l e = ( b e t a / 1 80 ) * ( A t _ p e r _p o l e ) ;

35   / / c r o ss −m a g n e t i z i n g a mp er e−t u r n s / p o l e36

37   // D is pl ay t h e r e s u l t s38   disp ( ”E x ampl e 5−2 S o l u t i on : ” ) ;

39   printf ( ”   \n a : With t h e b r u s h e s on t h e GNA, t h e

82

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 84/412

e n t i r e a rm at u re r e a c t i o n e f f e c t ” ) ;

40   printf ( ”   \n i s c o m p l e t e l y c r o s s −m a g n e t i z i n g . Thec r o s s −m ag ne ti zi ng ” ) ;

41   printf ( ”   \n ampere−c o nd u c to r s / p o l e a r e ” ) ;

42   printf ( ”   \n = %d ampere−c o n d u c t o t s / p o l e   \n” ,

A _ Z _ p e r _ p o l e ) ;

43

44   printf ( ”   \n and s i n c e t he re a r e 2 c o nd uc t o rs / turn, t h e c ro ss −m a g n et i z i ng ” ) ;

45   printf ( ”   \n ampere−t u r n s / p o l e a r e   \n = %d At /p o l e   \n\n” , A t _p e r_ p ol e ) ;

46

4748   printf ( ”   \n b : L e t a l p h a = t h e n o . o f e l e c t r i c a l

d e g r e e s t ha t t he b ru sh es a re ” ) ;

49   printf ( ”   \n s h i f t e d . Then t h e t o t a l no . o f  d e m a g n e t i z i n g e l e c t r i c a l d e g r e e s ” ) ;

50   printf ( ”   \n a r e 2∗ a lp ha , w h i l e t h e ( r e ma i n i ng )c r o s s −ma gn et iz in g e l e c t r i c a l ”) ;

51   printf ( ”   \n d eg re e s , bet a , a re 180   −   2∗ a l p h a . Ther a t i o o f d em ag ne ti zi ng t o ” ) ;

52   printf ( ”   \n c r o s s −m a g n e t i z i n g a mp er e−t ur ns i s

a l wa y s 2∗ a l p h a / b e t a . The ”) ;

53   printf ( ”   \n f r a c t i o n o f d em ag ne ti zi ng ampere−t ur n s / p o le i s ” ) ;

54   printf ( ”   \n = %. 1 f At / p ol e   \n\n” ,

f r a c _ de m a g _ At _ p e r _p o l e ) ;

55   printf ( ”   \n Note : S l i g h t c a l c u l a t i o n m is t a k e i nt h e t ex tb oo k f o r c as e b \n” )

56

57

58   printf ( ”   \n c : S i n ce b et a = 180 −2∗ a l ph a = 1 7 0 , t h ec r o s s −m a g n e t i z i n g a mp er e−t u r n s / p o l e ” ) ;

59   printf ( ”   \n a r e   \n = %. 1 f At / p ol e ” ,c r o s s _m a g _ A t_ p e r _ po l e ) ;

83

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 85/412

Chapter 6

AC DYNAMO VOLTAGE

RELATIONS ALTERNATORS

Scilab code Exa 6.1  calculate Eg at unity PF and point75 lagging PF

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 6 : AC DYNAMO VOLTAGE RELATIONS−ALTERNATORS

7   / / E xa mp le 6−18

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   k VA = 1000 ;   // kVA r a t i n g o f t he 3−p ha se a l t e r n a t o r

13   V _L = 4600 ;   // R ated l i n e v o l t a ge i n v o l t14   // 3−p h as e , Y−c on n ec te d a l t e r n a t o r15   R_a = 2 ;   // Armature r e s i s t a n c e i n ohm p er p ha se16   X_s = 20 ;   // S yn ch ro no us a rm at ur e r e a c t a n c e i n ohm

p e r p ha se

84

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 86/412

17   c os _t he ta _a = 1 ;   // U ni ty power f a c t o r ( c a s e a )

18   c os _t he ta _b = 0 .7 5 ;   // 0 . 7 5 power f a c t o r l a g gi n g (c a s e b )19   s i n _ t h et a _ b =   sqrt ( 1 - ( c os _t he ta _b ) ^ 2 ) ;

20

21   / / C a l c u l a t i o n s22   V_P = V_L /   sqrt (3) ;   // Phase v o l t a g e i n v o l t23   I_P = ( kVA * 1000 ) / ( 3* V_P ) ;   // P ha se c u r r e n t

i n A24   I_a = I_P ;   // Arma tu re c u r r e n t i n A25

26   // a : At u ni ty PF

27   E_g_a = ( V_P + I_a * R_a ) + %i *( I_a * X_s );28   / / F u ll −l oa d g e ne r a t ed v o l t ag e per −p ha se ( c a s e a )29   E _ g _ a _ m = abs ( E _ g _ a ) ; // E g a m=m ag ni tu de o f E g a i n

v o l t30   E _ g _ a _ a = atan ( imag ( E _ g_ a ) / real ( E _ g _ a ) ) * 1 8 0 / % p i ; //

E g a a=p h a s e a n g l e o f E g a i n d e g r e e s31

32   // b : At 0 . 7 5 PF l a g g i n g33   E _g _b = ( V_ P* c os _t he ta _b + I_a * R_a ) + %i *( V_P *

s i n_ t he t a_ b + I _a * X _s ) ;

34  / / F u ll −l oa d g e ne r a t ed v o l t ag e per −p ha se ( c a se b )35   E _ g _ b _ m = abs ( E _ g _ b ) ; // E g b m=m ag ni tu de o f E g b i n

v o l t36   E _ g _ b _ a = atan ( imag ( E _ g_ b ) / real ( E _ g _ b ) ) * 1 8 0 / % p i ; //

E g b a=p h a s e a n g l e o f E g b i n d e g r e e s37

38

39   // D is pl ay t h e r e s u l t s40   disp ( ”E x ampl e 6−1 S o l u t i on : ” ) ;

41   printf ( ” \n r o ot 3 v a l u e i s t a k e n a s %f , s o s l i g h tv a r i a t i o n s i n t he a ns we r . ” ,   sqrt ( 3 ) ) ;

42   printf ( ” \n\n a : At u n i ty PF ,   \n ” ) ;43   printf ( ” \n R e c t a n g u l a r form : \ n E g = ” ) ;   disp

( E _ g _ a ) ;

44   printf ( ” \n P o l a r form : ” ) ;

45   printf ( ”   \n E g = %d   <%. 2 f V/ p h a s e ” , E _g _a _m ,

85

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 87/412

E _ g_ a _a ) ;

46   printf ( ”   \n where %d i s mag ni t ude and %. 2 f i sp ha s e a n g l e \n” ,E_g_a_m ,E_g_ a_a) ;

47

48   printf ( ”   \n b : At 0 . 7 5 PF l a g g i n g ,   \n ” ) ;

49   printf ( ” \n R e c t a n g u l a r form : \ n E g = ” ) ;   disp

( E _ g _ b ) ;

50   printf ( ” \n P o l a r form : ” ) ;

51   printf ( ”   \n E g = %d   <%. 2 f V/ p h a s e ” , E _g _b _m ,

E _ g_ b _a ) ;

52   printf ( ”   \n where %d i s mag ni t ude and %. 2 f i sp ha s e a n g l e \n” ,E_g_b_m ,E_g_ b_a) ;

Scilab code Exa 6.2  calculate Eg at point75 PF and point4 lead

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 6 : AC DYNAMO VOLTAGE RELATIONS−ALTERNATORS

7   / / E xa mp le 6−28

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   k VA = 1000 ;   // kVA r a t i n g o f t he 3−p ha se a l t e r n a t o r13   V _L = 4600 ;   // R ated l i n e v o l t a ge i n v o l t

14   // 3−p h as e , Y−c on n ec te d a l t e r n a t o r15   R_a = 2 ;   // Armature r e s i s t a n c e i n ohm p er p ha se16   X_s = 20 ;   // S yn ch ro no us a rm at ur e r e a c t a n c e i n ohm

p e r p ha se17   c os _t he ta _a = 0 .7 5 ;   // 0 . 75 PF l e a d i ng ( c a se a )

86

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 88/412

18   c os _t he ta _b = 0 .4 0 ;   / / 0 . 40 PF l e a d i ng ( c a se b )

19   s i n _ t h et a _ a =   sqrt ( 1 - ( c os _t he ta _a ) ^ 2 ) ;   / / ( c a s ea )20   s i n _ t h et a _ b =   sqrt ( 1 - ( c os _t he ta _b ) ^ 2 ) ;   / / ( c a s e

b )21

22   / / C a l c u l a t i o n s23   V_P = V_L /   sqrt (3) ;   // Phase v o l t a g e i n v o l t24   I_P = ( kVA * 1000 ) / ( 3* V_P ) ;   // P ha se c u r r e n t

i n A25   I_a = I_P ;   // Arma tu re c u r r e n t i n A26

27   // a : At 0 . 75 PF l e a d i ng28   E _g _a = ( V_ P* c os _t he ta _a + I_a * R_a ) + %i *( V_P *

s i n_ t he t a_ a - I _a * X _s ) ;

29   / / F u ll −l oa d g e ne r a t ed v o l t ag e per −p ha se ( c a s e a )30   E _ g _ a _ m = abs ( E _ g _ a ) ; // E g a m=m ag ni tu de o f E g a i n

v o l t31   E _ g _ a _ a = atan ( imag ( E _ g_ a ) / real ( E _ g _ a ) ) * 1 8 0 / % p i ; //

E g a a=p h a s e a n g l e o f E g a i n d e g r e e s32

33   // b : At 0 . 4 0 PF l e a d i n g34   E _g _b = ( V_ P* c os _t he ta _b + I_a * R_a ) + %i *( V_P *

s i n_ t he t a_ b - I _a * X _s ) ;

35   / / F u ll −l oa d g e ne r a t ed v o l t ag e per −p ha se ( c a se b )36   E _ g _ b _ m = abs ( E _ g _ b ) ; // E g b m=m ag ni tu de o f E g b i n

v o l t37   E _ g _ b _ a = atan ( imag ( E _ g_ b ) / real ( E _ g _ b ) ) * 1 8 0 / % p i ; //

E g b a=p h a s e a n g l e o f E g b i n d e g r e e s38

39

40   // D is pl ay t h e r e s u l t s41   disp ( ”E x ampl e 6−2 S o l u t i on : ” ) ;

42   printf ( ” \n r o ot 3 v a l u e i s t a k e n a s %f , s o s l i g h tv a r i a t i o n s i n t he a ns we r . ” ,   sqrt ( 3 ) ) ;

43   printf ( ” \n\n a : 0 . 7 5 PF l e ad i n g ,   \n ” ) ;

44   printf ( ” \n R e c t a n g u l a r form : \ n E g = ” ) ;   disp

( E _ g _ a ) ;

87

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 89/412

45   printf ( ” \n P o l a r form : ” ) ;

46   printf ( ”   \n E g = %d  <

%. 2 f V/ p h a s e ” , E _g _a _m ,E _ g_ a _a ) ;

47   printf ( ”   \n where %d i s mag ni t ude and %. 2 f i sp ha s e a n g l e \n” ,E_g_a_m ,E_g_ a_a) ;

48

49   printf ( ”   \n b : At 0 . 4 0 PF l e a d i n g ,   \n ” ) ;

50   printf ( ” \n R e c t a n g u l a r form : \ n E g = ” ) ;   disp

( E _ g _ b ) ;

51   printf ( ” \n P o l a r form : ” ) ;

52   printf ( ”   \n E g = %d   <%. 2 f V/ p h a s e ” , E _g _b _m ,

E _ g_ b _a ) ;

53   printf ( ”   \n where %d i s mag ni t ude and %. 2 f i sp ha s e a n g l e \n” ,E_g_b_m ,E_g_ b_a) ;

Scilab code Exa 6.3  calculate percent voltage regulation

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   // Ch apt e r 6 : AC DYNAMO VOLTAGE RELATIONS−ALTERNATORS

7   / / E xa mp le 6−38

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta

12   // From Ex.6 −1 a nd Ex .6 −2 we ha ve V P and E g v a l u e sa s f o l l o w s13   / / Note : a pp ro xi ma te d v a l u e s a r e c o n s i d e r e d when

r oo t 3 v al ue i s t a k e n a s 1 . 7 314   // a s i n t ex tb oo k

88

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 90/412

15   V _P = 2660 ;   // Pha se v o l t a g e

16   E _g _a 1 = 3 83 6 ;   / / E g a t u n it y PF ( Ex.6 −1 c a s e a )17   E _g _b 1 = 4 81 4 ;   // E g a t 0 . 75 PF l a g g i n g ( Ex.6 −1c a s e b )

18

19   E _g _a 2 = 2 36 4 ;   // E g a t 0 . 75 PF l e a d i ng ( Ex.6 −2c a s e a )

20   E _g _b 2 = 1 31 5 ;   // E g a t 0 . 40 PF l e a d i ng ( Ex.6 −2c a s e b )

21

22   / / C a l c u l a t i o n s23   VR_a = ( E_g_a1 - V_P ) /V_P * 100 ;   // v o l t a g e

r e g u l a t i o n a t u ni t y PF ( Ex.6 −1 c a se a )24   VR_b = ( E_g_b1 - V_P ) /V_P * 100 ;   // v o l t a g e

r e g u l a t i o n a t 0 . 75 PF l a g g i n g ( Ex.6 −1 c a s e b )25

26   VR_c = ( E_g_a2 - V_P ) /V_P * 100 ;   // v o l t a g er e g u l a t i o n a t 0 . 75 PF l e a d i ng ( Ex.6 −2 c a se a )

27   VR_d = ( E_g_b2 - V_P ) /V_P * 100 ;   // v o l t a g er e g u l a t i o n a t 0 . 40 PF l e a d i ng ( Ex.6 −2 c a s e b )

28

29   // D is pl ay t h e r e s u l t s30   disp (

”E x ampl e 6−3 S o l u t i on : ”) ;

31   printf ( ”   \n a : At u ni ty PF : ” ) ;

32   printf ( ”   \n VR = %. 1 f p er ce nt   \n ” , VR_a ) ;

33

34   printf ( ”   \n b : At 0 . 7 5 PF l a g g i n g : ” ) ;

35   printf ( ”   \n VR = %. 2 f p er ce nt   \n ” , VR_b ) ;

36

37   printf ( ”   \n c : At 0 . 7 5 PF l e a d i n g : ” ) ;

38   printf ( ”   \n VR = %. 2 f p er ce nt   \n ” , VR_c ) ;

39

40   printf ( ”   \n d : At 0 . 4 0 PF l e a d i n g : ” ) ;

41   printf ( ”   \n VR = %. 1 f p er ce nt   \n ” , VR_d ) ;

89

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 91/412

Scilab code Exa 6.4  calculate Rdc Rac Zp Xs VR at point8 PF lag and

lead

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 6 : AC DYNAMO VOLTAGE RELATIONS−ALTERNATORS

7   / / E xa mp le 6−48

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   kVA = 100 ;   // kVA r a t i n g o f t he 3−p ha se a l t e r n a t o r13   V _L = 1100 ;   // L i ne v o l t a ge o f t he 3−p h a s e

a l t e r n a t o r i n v o l t14

15   / / dc−r e s i s t a n c e t e s t d a t a16   E_gp1 = 6 ;   // g e ne r a t ed p ha se v o l t a g e i n v o l t17   V_l = E_gp1 ;

  // g en er at ed l i n e v o l t a g e i n v o l t18   I_a1 = 10 ;   // f u l l −l oa d c u r r e n t p e r p h as e i n A19   c os _t he ta _b 1 = 0 .8 ;   // 0 . 8 PF l a g g i n g ( c a se b )20   c os _t he ta _b 2 = 0 .8 ;   // 0 . 8 PF l e a d i ng ( c a se b )21   s i n _ t h et a _ b 1 =   sqrt ( 1 - ( c o s_ th et a_ b1 ) ^ 2 ) ;   // (

c a s e b )22   s i n _ t h et a _ b 2 =   sqrt ( 1 - ( c o s_ th et a_ b2 ) ^ 2 ) ;   // (

c a s e b )23

24   / / o pe n− c i r c u i t t e s t d a t a25   E_gp2 = 420 ;   // g e n e ra t ed p ha se v o l t ag e i n v o l t

26   I _f2 = 12 .5 ;   // F i e l d c ur r e n t i n A27

28   / / s h or t − c i r c u i t t e s t d at a29   I _f3 = 12 .5 ;   // F i e l d c ur r e n t i n A30   // L in e c u r r e n t I l = r a t e d v a l u e i n A

90

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 92/412

31

32   / / C a l c u l a t i o n s33   // Assuming t ha t t he a l t e r n a t o r i s Y−c o n n e c t e d34   / / c a s e a :35   I _ a _ r at e d = ( k V A * 1 0 00 ) / ( V _ L * sqrt ( 3 ) ) ;   / / R at ed

c u r r e nt p er p ha se i n A36   I _a =   sqrt ( 3 ) * I _ a _r a t ed ;   // Rated L in e c u r r e nt i n A37

38   R _d c = V _l / ( 2* I _ a1 ) ;   // e f f e c t i v e dc a r m a t u r er e s i s t a n c e i n ohm/ w in di ng

39   R_ac = R_dc * 1.5 ;   // e f f e c t i v e ac a r m a t u r er e s i s t a n c e i n ohm . p ha se

40   R _a = R_ac ;   // e f f e c t i v e ac a r m a t u r e r e s i s t a n c e i nohm . p ha se from dc r e s i s t a n c e t e s t

41

42   Z _p = E_gp2 / I_a ;   / / S y nc h ro n ou s i mp ed an ce p e rp h a s e

43   X _s =   sqrt ( Z_p ^2 - R_a ^2 ) ;   // S y n c hr o n o u sr e a c t a nc e p er p ha se

44

45   / / c as e b :46   V_p = V_L /   sqrt ( 3 ) ;   // Phase v o l t a ge i n v o l t (Y−

c o n n e c t i o n )47

48   // At 0 . 8 PF l a g g i ng49   E _g p1 = ( V_ p* c os _t he ta _b 1 + I _a _r at ed * R_a ) + %i

* ( V _p * s i n _t h et a _b 1 + I _ a_ r at e d * X _s ) ;

50   E _ g p 1 _ m = abs ( E _ g p 1 ) ; / / E g p1 m=m a gn it ud e o f E gp 1 i nv o l t

51   E _ g p 1 _ a = atan ( imag ( E _ gp 1 ) / real ( E _ g p 1 ) ) * 1 8 0 / % p i ; //E gp 1 a=p ha se a n gl e o f E gp1 i n d e gr e e s

52   V _ n1 = E _g p1 _m ;   / / No−l o ad v o l t a g e i n v o l t53   V_f1 = V_p ;   // F ul l −l oa d v o l t a g e i n v o l t

54   VR1 = ( V_n1 - V_f1 ) / V_f1 * 100;   // p e r ce n tv o l t a ge r e g u l a t i o n a t 0 . 8 PF l a g g i n g

55

56

57   // At 0 . 8 PF l e a d i n g

91

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 93/412

58   E _g p2 = ( V_ p* c os _t he ta _b 2 + I _a _r at ed * R_a ) + %i

* ( V _p * s i n _t h et a _b 2 - I _ a_ r at e d * X_ s ) ;59   E _ g p 2 _ m = abs ( E _ g p 2 ) ; / / E g p2 m=m a gn it ud e o f E gp 2 i nv o l t

60   E _ g p 2 _ a = atan ( imag ( E _ gp 2 ) / real ( E _ g p 2 ) ) * 1 8 0 / % p i ; //E gp 2 a=p ha se a n gl e o f E gp2 i n d e gr e e s

61   V _ n2 = E _g p2 _m ;   / / No−l o ad v o l t a g e i n v o l t62   V_f2 = V_p ;   // F ul l −l oa d v o l t a g e i n v o l t63   VR2 = ( V_n2 - V_f2 ) /V_f2 * 100 ;   // p e r ce n t

v o l t a ge r e g u l a t i o n a t 0 . 8 PF l e a d i ng64

65   // D is pl ay t h e r e s u l t s

66   disp ( ”E x ampl e 6−4 S o l u t i on : ” ) ;67   printf ( ”   \n A ssuming t ha t t he a l t e r n a t o r i s Y−

c o n ne c te d ” ) ;

68   printf ( ”   \n a : R dc = %. 1 f ohm/ w i n d i ng ” , R_dc ) ;

69   printf ( ”   \n R ac = %. 2 f ohm/ p h a s e ” , R_ac ) ;

70   printf ( ”   \n Z p = %. 2 f ohm/ ph a s e ” , Z _ p ) ;

71   printf ( ”   \n X s = %. 2 f ohm/ p h a s e   \n” , X _ s ) ;

72

73   printf ( ”   \n b : At 0 . 8 PF l a g g i n g ” ) ;

74   printf ( ”   \n P e r c e n t v o l t a ge r e g u l a t i o n = %. 1 f  

p e r c e n t   \n”, V R 1 ) ;

75

76   printf ( ”   \n At 0 . 8 PF l e a d i n g ” ) ;

77   printf ( ”   \n P e r c e n t v o l t a ge r e g u l a t i o n = %. 1 f  p e rc e n t ” , V R 2 ) ;

Scilab code Exa 6.5  calculate prev eg values for delta connection

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

92

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 94/412

6   // Ch apt e r 6 : AC DYNAMO VOLTAGE RELATIONS−

ALTERNATORS7   / / E xa mp le 6−58

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   kVA = 100 ;   // kVA r a t i n g o f t he 3−p ha se a l t e r n a t o r13   V _L = 1100 ;   // L i ne v o l t a ge o f t he 3−p h a s e

a l t e r n a t o r i n v o l t14

15   / / dc−r e s i s t a n c e t e s t d a t a16   E_gp1 = 6 ;   // g e ne r a t ed p ha se v o l t a g e i n v o l t17   V_l = E_gp1 ;   // g en er at ed l i n e v o l t a g e i n v o l t18   I_a1 = 10 ;   // f u l l −l oa d c u r r e n t p e r p h as e i n A19   c os _t he ta _b 1 = 0 .8 ;   // 0 . 8 PF l a g g i n g ( c a se b )20   c os _t he ta _b 2 = 0 .8 ;   // 0 . 8 PF l e a d i ng ( c a se b )21   s i n _ t h et a _ b 1 =   sqrt ( 1 - ( c o s_ th et a_ b1 ) ^ 2 ) ;   // (

c a s e b )22   s i n _ t h et a _ b 2 =   sqrt ( 1 - ( c o s_ th et a_ b2 ) ^ 2 ) ;   // (

c a s e b )23

24   / / o pe n− c i r c u i t t e s t d a t a25   E_gp2 = 420 ;   // g e n e ra t ed p ha se v o l t ag e i n v o l t26   I _f2 = 12 .5 ;   // F i e l d c ur r e n t i n A27

28   / / s h or t − c i r c u i t t e s t d at a29   I _f3 = 12 .5 ;   // F i e l d c ur r e n t i n A30   // L in e c u r r e n t I l = r a t e d v a l u e i n A31

32   / / C a l c u l a t i o n s33   // Assuming t ha t t he a l t e r n a t o r i s d el t a −c o n n e c t e d

34   / / c a s e a :35   I _ a _ r at e d = ( k V A * 1 0 00 ) / ( V _ L * sqrt ( 3 ) ) ;   / / R at ed

c u r r e nt p er p ha se i n A36   I _ L = I _a _r at ed ;   // L i ne c u rr e n t i n A37

93

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 95/412

38   V _p = E _g p2 ;   // Phase v o l t a ge i n v o l t

39   V_l = V_p ;   // L in e v o l t a ge i n v o l t ( from s h o r tc i r c u i t d at a )40

41   I_p = I_L /   sqrt (3) ;   / / Phase c u r re n t i n A ( d e l t ac o n n e c t i o n )

42   I_a = I_p ;   // Rated c u r re n t i n A43

44   Z_s = V_l / I_p ;   // S y nc h ro n ou s i mp ed an ce p e r p h a se45   R _d c = E _g p1 / ( 2* I _ a1 ) ;   // e f f e c t i v e dc a r m a t ur e

r e s i s t a n c e i n ohm/ w in di ng46   R_ac = R_dc * 1.5 ;   // e f f e c t i v e ac a r m a t u r e

r e s i s t a n c e i n ohm . p ha se47

48   / / R e f f i n d e l t a = 3   ∗   R e ff i n Y49   R_eff = 3 * R_ac ;   // E f f e c t i v e a rm a t u r e r e s i s t a n c e

i n ohm50   R_a = R_eff ;   // e f f e c t i v e a c a r m a t u r e r e s i s t a n c e i n

ohm . p ha se fro m dc r e s i s t a n c e t e s t51

52   X _s =   sqrt ( Z_s ^2 - R_a ^2 ) ;   // S y n c hr o n o u sr e a c t a nc e p er p ha se

53

54   V_p = V_L ;   // Phase v o l t a g e i n v o l t ( d el t a −c o n n e c t i o n )

55

56   // At 0 . 8 PF l a g g i ng57   E _g p1 = ( V_ p* c os _t he ta _b 1 + I_a * R_ a ) + %i *( V_p *

s i n _t h e t a_ b 1 + I _a * X _ s ) ;

58   E _ g p 1 _ m = abs ( E _ g p 1 ) ; / / E g p1 m=m a gn it ud e o f E gp 1 i nv o l t

59   E _ g p 1 _ a = atan ( imag ( E _ gp 1 ) / real ( E _ g p 1 ) ) * 1 8 0 / % p i ; //E gp 1 a=p ha se a n gl e o f E gp1 i n d e gr e e s

60   V _ n1 = E _g p1 _m ;   / / No−l o ad v o l t a g e i n v o l t61   V_f1 = V_p ;   // F ul l −l oa d v o l t a g e i n v o l t62   VR1 = ( V_n1 - V_f1 ) / V_f1 * 100;   // p e r ce n t

v o l t a ge r e g u l a t i o n a t 0 . 8 PF l a g g i n g63

94

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 96/412

64

65   // At 0 . 8 PF l e a d i n g66   E _g p2 = ( V_ p* c os _t he ta _b 2 + I_a * R_ a ) + %i *( V_p *

s i n _t h e t a_ b 2 - I _a * X _ s ) ;

67   E _ g p 2 _ m = abs ( E _ g p 2 ) ; / / E g p2 m=m a gn it ud e o f E gp 2 i nv o l t

68   E _ g p 2 _ a = atan ( imag ( E _ gp 2 ) / real ( E _ g p 2 ) ) * 1 8 0 / % p i ; //E gp 2 a=p ha se a n gl e o f E gp2 i n d e gr e e s

69   V _ n2 = E _g p2 _m ;   / / No−l o ad v o l t a g e i n v o l t70   V_f2 = V_p ;   // F ul l −l oa d v o l t a g e i n v o l t71   VR2 = ( V_n2 - V_f2 ) /V_f2 * 100 ;   // p e r ce n t

v o l t a ge r e g u l a t i o n a t 0 . 8 PF l e a d i ng

7273   // D is pl ay t h e r e s u l t s74   disp ( ”E x ampl e 6−5 S o l u t i on : ” ) ;

75   printf ( ”   \n Assuming t ha t t he a l t e r n a t o r i s d e l t a −c o n ne c te d :   \n ” ) ;

76   printf ( ”   \n a : I p = %. 3 f A ” , I _ p ) ;

77   printf ( ”   \n Z s = %. 2 f ohm/ ph a s e ” , Z _ s ) ;

78   printf ( ”   \n R e f f i n d e l t a = %. 2 f ohm/ ph a s e ” ,

R _e ff ) ;

79   printf ( ”   \n X s = %. 1 f ohm/ p h a s e   \n” , X _ s ) ;

80   printf (”   \n R e ff , r e a c t a n c e a nd i mpe danc e p e rp h a s e i n d e l t a i s 3 t i me s ” )

81   printf ( ”   \n t h e v al ue when c o nn ec t e d i n Y .   \n” )

82

83   printf ( ”   \n b : At 0 . 8 PF l a g g i n g ” ) ;

84   printf ( ”   \n P e r c e n t v o l t a ge r e g u l a t i o n = %. 1 f  p e r c e n t   \n” , V R 1 ) ;

85

86   printf ( ”   \n At 0 . 8 PF l e a d i n g ” ) ;

87   printf ( ”   \n P e r c e n t v o l t a ge r e g u l a t i o n = %. 1 f  p e r c e n t   \n” , V R 2 ) ;

88   printf ( ”   \n P er ce n ta ge v o l t a g e r e g u l a t i o n r e m a i n st he same b ot h i n Y a nd d e l t a c o n n ec t i o n . ” ) ;

95

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 97/412

Scilab code Exa 6.6   calculate Imax overload and Isteady

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 6 : AC DYNAMO VOLTAGE RELATIONS−ALTERNATORS

7   / / E xa mp le 6−68

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   // 3−p h a s e Y−c o nn e ct ed a l t e r n a t o r13   E_L = 11000 ;   // L in e v o l t a ge g e n er at ed i n v o l t14   k VA = 1 65 00 0 ;   // kVA r a t i n g o f t he a l t e r n a t o r15   R_p = 0.1 ;   // Ar ma tu re r e s i s t a n c e i n ohm/ p e r p ha s e

16   Z_p = 1.0 ;   / / S y nc h ro n o us r e a c t a n c e / p h a s e17   Z_r = 0.8 ;   // R e ac t or r e a c t a n c e / p h as e18

19   / / C a l c u l a t i o n s20   E_p = E_L /   sqrt ( 3 ) ;   // Rated p ha se v o l t a g e i n v o l t21   I _p = ( k VA * 1 00 0) / (3 * E_ p );   // Rated c u r r e nt p er

p ha se i n A22

23   / / c as e a24   I _max _a = E_p / R_p ;   // Maximum sh or t − c i r c u i t

c u r r e nt i n A ( c a se a )25   o ve rl oa d_ a = I _m ax _a / I _p ;   / / O ve rl oa d ( c a s e a )26

27   / / c as e b28   I _ st ea dy = E_p / Z_p ;   // S u s ta i n ed s h or t − c i r c u i t

96

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 98/412

c u r r e n t i n A

29   o ve rl oa d_ b = I _s te ad y / I _p ;   / / O ve rl oa d ( c a s e b )30

31   / / c as e c32   Z_t = R_p + %i *Z_r ;   // T ot al r e a ct a n ce p er p ha se33   I _max _c = E_p / Z_t ;   // Maximum sh or t − c i r c u i t

c u r r e nt i n A ( c a se b )34   I _ m a x _ c _ m = abs ( I _ m a x _ c ) ; / / I m a x c m =m a gn i tu d e o f  

I ma x c i n A35   I _ m a x _ c _ a = atan ( imag ( I _ ma x _c ) / real ( I _ m a x _ c ) ) * 1 8 0 / % p i

; // I m a x c a=p ha se a n gl e o f I m ax c i n d e g re e s36   o ve rl oa d_ c = I _m ax _c _m / I _p ;   / / O ve rl oa d ( c a s e a )

3738   // D is pl ay t h e r e s u l t s39   disp ( ”E x ampl e 6−6 S o l u t i on : ” ) ;

40   printf ( ” \n r o ot 3 v a l u e i s t a k e n a s %f , s o s l i g h tv a r i a t i o n s i n t he a ns we r . \ n” ,   sqrt ( 3 ) ) ;

41   printf ( ”   \n a : I m ax = %d A ” , I _m ax _a ) ;

42   printf ( ”   \n o ve r l o a d = %. 1 f    ∗   ra t e d c u r r e nt   \n” ,

o v e r lo a d _ a ) ;

43

44   printf ( ”   \n b : I s t e a d y = %d A ” , I _s te ad y ) ;

45   printf (”   \n o ve r l o a d = %. 2 f    ∗   ra t e d c u r r e nt   \n”

,

o v e r lo a d _ b ) ;

46

47   printf ( ”   \n c : R e ct a ng u la r for m : \ n I max = ” ) ;

disp ( I _ m a x _ c ) ;

48   printf ( ”   \n P o l a r form : ” ) ;

49   printf ( ”   \n I max = %d   <%. 2 f A ” , I _m ax _c _m ,

I _ m ax _ c _a ) ;

50   printf ( ”   \n wher e %d i s m agni t ude a nd %. 2 f i sp ha s e a n g l e \n” , I _ m a x _c _ m , I _ m a x _ c _ a ) ;

51   printf ( ”   \n o ve r l o a d = %. 3 f    ∗   ra t e d c u r r e nt   \n” ,

o v e r lo a d _ c ) ;

97

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 99/412

Scilab code Exa 6.7  calculate P and Pperphase and Egp magnitude phase

angle and torque angle

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 6 : AC DYNAMO VOLTAGE RELATIONS−ALTERNATORS

7   / / E xa mp le 6−78

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   kVA = 100 ;   // kVA r a t i n g o f t he 3−p ha se a l t e r n a t o r13   V _L = 1100 ;   // L i ne v o l t a ge o f t he 3−p h a s e

a l t e r n a t o r i n v o l t14

15   / / dc−r e s i s t a n c e t e s t d a t a16   E_gp1 = 6 ;   // g e ne r a t ed p ha se v o l t a g e i n v o l t17   V_l = E_gp1 ;

  // g en er at ed l i n e v o l t a g e i n v o l t18   I_a1 = 10 ;   // f u l l −l oa d c u r r e n t p e r p h as e i n A19   c os _t he ta = 0 .8 ;   // 0 . 8 PF l a g g i ng20   s i n _ th e t a =   sqrt ( 1 - ( c os _t he ta ) ^2 ) ;   //21

22   / / o pe n− c i r c u i t t e s t d a t a23   E_gp2 = 420 ;   // g e n e ra t ed p ha se v o l t ag e i n v o l t24   I _f2 = 12 .5 ;   // F i e l d c ur r e n t i n A25

26   / / s h or t − c i r c u i t t e s t d at a27   I _f3 = 12 .5 ;   // F i e l d c ur r e n t i n A

28   // L in e c u r r e n t I l = r a t e d v a l u e i n A29

30   / / C a l c u l a t e d d at a fr om Ex.6 −431   I _L = 52.5 ;   // Rated l i n e c u r r e n t i n A32   I_a = I_L ;   // Rated c u r re n t p er p ha se i n A

98

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 100/412

33   E_gp = 532 + %i *623 ;   // G en er at ed v o l t a g e a t 0 . 8 PF

l a g g i n g34   X_s = 4.6 ;   // S yn ch ro n ou s r e a c t a n c e p e r p ha se35   V_p = 635 ;   // Phase v o l t a g e i n v o l t36

37   / / C a l c u l a t i o n s38   / / c as e a39   P _T =   sqrt (3) * V_L * I_L * co s_ th et a ;   // T o ta l

o u t p u t 3−p h a s e p ow er40

41   / / c as e b42   P_p_b = P_T / 3 ;   // T ot al o ut pu t 3−p h as e p ow er p e r

p h a s e43

44   / / c as e c45   E _ g p _ m = abs ( E _ g p ) ; // E gp m=m ag ni tu de o f E gp i n v o l t46   E _ g p _ a = atan ( imag ( E _g p ) / real ( E _ g p ) ) * 1 8 0 / % p i ; // E g p a

=p ha se a n gl e o f E gp i n d e g re e s47

48   / / c as e d49   t h et a =   acos ( 0 . 8 ) * 1 8 0 / % p i ;   // p ha se a n gl e f o r PF i n

d e g r e e s50   t h et a _p l us _ de b a = E _ gp _a ;

  // p h a s e a ng l e o f E gp i nd e g r e e s51   d eb a = t he ta _p lu s_ de ba - t he ta ;   // Torque a n g l e i n

d e g r e e s52

53   / / c as e e54   P _ p _ e = ( E _ g p _m / X _ s ) * V _ p * s i nd ( d e b a ) ;   / / A p p ro x i m at e

o u t p u t p ow er / p h a s e ( Eq . ( 6 − 10 ) )55

56   / / c as e f  57   P _ p _f = E _ gp _m * I _a * c os d ( t h et a _p l us _ de b a ) ;   //

A p pr o xi m at e o u t p u t p ow er / p h a s e ( Eq . ( 6 − 9 ) )58

59   // D is pl ay t h e r e s u l t s60   disp ( ”E x ampl e 6−7 S o l u t i on : ” ) ;

61   printf ( ” \n r o ot 3 v a l u e i s t a k e n a s %f , s o s l i g h t

99

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 101/412

v a r i a t i o n s i n t he a ns we r . \ n” ,   sqrt ( 3 ) ) ;

62   printf ( ”   \n a : P T = %d W   \n” , P _ T ) ;63   printf ( ”   \n b : P p = %. 2 f W   \n” , P _p _b ) ;

64   printf ( ”   \n c : E gp = %d   <%. 2 f V   \n” , E _g p_ m , E _g p_ a

) ;

65   printf ( ”   \n wher e %d i s m agni t ude i n V and %. 2 f  i s p ha se a n gl e i n d e gr e e s . \ n” , E _ g p _ m , E _ g p _ a ) ;

66   printf ( ”   \n d : T orq ue a n gl e , d eb a = %. 2 f d e g r e e s   \n”, deba ) ;

67   printf ( ”   \n e : P p = %d W   \n” , P_ p_ e ) ;

68   printf ( ”   \n f : P p = %d W ”, P _p _f ) ;

Scilab code Exa 6.8   calculate torqueperphase and total torque

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 6 : AC DYNAMO VOLTAGE RELATIONS−

ALTERNATORS7   / / E xa mp le 6−88

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12

13   kVA = 100 ;   // kVA r a t i n g o f t he 3−p ha se a l t e r n a t o r14   V _L = 1100 ;   // L i ne v o l t a ge o f t he 3−p h a s e

a l t e r n a t o r i n v o l t15   S = 1200 ;   // S yn ch ro no us s p ee d i n rpm16

17   / / dc−r e s i s t a n c e t e s t d a t a18   E_gp1 = 6 ;   // g e ne r a t ed p ha se v o l t a g e i n v o l t

100

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 102/412

19   V _l = E _g p1 ;   // g en er at ed l i n e v o l t a g e i n v o l t

20   I_a1 = 10 ;   // f u l l −l oa d c u r r e n t p e r p h as e i n A21   c os _t he ta = 0 .8 ;   // 0 . 8 PF l a g g i ng22   s i n _ th e t a =   sqrt ( 1 - ( c os _t he ta ) ^2 ) ;   //23

24   / / o pe n− c i r c u i t t e s t d a t a25   E_gp2 = 420 ;   // g e n e ra t ed p ha se v o l t ag e i n v o l t26   I _f2 = 12 .5 ;   // F i e l d c ur r e n t i n A27

28   / / s h or t − c i r c u i t t e s t d at a29   I _f3 = 12 .5 ;   // F i e l d c ur r e n t i n A30   // L in e c u r r e n t I l = r a t e d v a l u e i n A

3132   / / C a l c u l a t e d d at a fr om Ex.6 −4 & E x . 6 −733   I _L = 52.5 ;   // Rated l i n e c u r r e n t i n A34   I_a = I_L ;   // Rated c u r re n t p er p ha se i n A35   E_gp = 532 + %i *623 ;   // G en er at ed v o l t a g e a t 0 . 8 PF

l a g g i n g36   E_g = 819 ;   // E g = mag ni t ude o f E gp i n v o l t37   X_s = 4.6 ;   // S yn ch ro n ou s r e a c t a n c e p e r p ha se38   V_p = 635 ;   // Phase v o l t a g e i n v o l t39   de ba = 1 2.6 3 ;   // Torque a n g l e i n d e g r e es40

41   / / C a l c u l a t i o n s42   / / c as e a43   T _p_a = ( 7.04 * E_g * V_p * sind ( deba ) ) / ( S* X_s )

;   / / Output t o rq u e p er p ha se i n l b . f t44   T _3 ph as e_ a = 3 * T _p_ a ;   // Output t o rq u e f o r 3−

p ha se i n l b . f t45

46   / / c as e b47   o me ga = S * 2* %pi * (1 /6 0) ;   // A ng ul ar f r e qu e n cy i n

r a d / s

48   T _p _b = ( E _g * V _p * s in d ( de ba ) ) /( o me ga * X _s ) ;   //Output t o r q ue p e r p ha se i n l b . f t

49   T _3 ph as e_ b = 3 * T _p_ b ;   // Output t o rq u e f o r 3−p ha se i n l b . f t

50

101

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 103/412

51   / / c as e c

52   T _p _c = T _p _a * 1 .3 56 ;   // Output t o r q ue p e r p ha sei n N . m53   T _3 ph as e_ c = 3 * T _p_ c ;   // Output t o rq u e f o r 3−

p ha s e i n N .m54

55   // D is pl ay t h e r e s u l t s56   disp ( ”E x ampl e 6−8 S o l u t i on : ” ) ;

57   p i = %pi ;

58   printf ( ”   \n S l i g h t v a r i a t i o n s i n th e a n s w e r s ar edue t o v al ue o f p i = %f ” , p i ) ;

59   printf ( ”   \n and omega = %f , which a re s l i g h t l y

d i f f e r e n t a s i n t h e t ex tb oo k . \ n” , o m e g a ) ;60   printf ( ”   \n a : T p = %d l b− f t ” , T _ p _ a ) ;

61   printf ( ”   \n T 3 ph a s e = %d l b − f t   \n” , T _ 3 ph a s e_ a ) ;

62

63   printf ( ”   \n b : T p = %. 1 f N−m ” , T _ p _ b ) ;

64   printf ( ”   \n T 3 ph a s e = %. 1 f N−m   \n” , T _ 3 ph a s e_ b ) ;

65

66   printf ( ”   \n c : T p = %. 1 f N−m ” , T _ p _ c ) ;

67   printf ( ”   \n T 3 ph a s e = %. 1 f N−m   \n” , T _ 3 ph a s e_ c ) ;

68   printf ( ”   \n Answers from c a s e s b and c al m o s t

t a l l y e a c h o th er ”) ;

102

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 104/412

Chapter 7

PARALLEL OPERATION

Scilab code Exa 7.1  calculate I Ia and P

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / Ch apt e r 7 : PARALLEL OPERATION

7   / / E xa mp le 7−18

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   R_sh = 120 ;   / / Sh un t f i e l d r e s i s t a n c e i n ohm13   R_a = 0.1 ;   // Armature r e s i s t a n c e i n ohm14   V_L = 120 ;   // L i n e v o l t a g e i n v o l t15   E_g1 = 125 ;   / / G e ne r at e d v o l t a g e by dynamo A

16   E_g2 = 120 ;   / / G e ne r at e d v o l t a g e by dynamo B17   E_g3 = 114 ;   / / G e ne r at e d v o l t a g e by dynamo C18

19   / / C a l c u l a t i o n s20   / / c as e a

103

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 105/412

21   // 1 :

22   I_gA = ( E_g1 - V_L ) / R_a ;   // C ur re nt i n t heg e n e r a t i n g s ou rc e A ( i n A)23   I_f = V_L / R_sh ;   // S hu nt f i e l d c u r r e n t i n A24   I_a1 = I_gA + I_f ;   // Armature c u r r e nt i n A f o r

g e n e r a t o r A25   I _L1 = I_ gA ;   // C ur re nt d e l i v e r e d by dynamo A t o

t h e bus i n A26

27   // 2 :28   I _gB = ( E_g2 - V _L ) / R _a ;   // C u rr en t i n t he

g e n e r a t i n g s ou rc e B ( i n A)

29   I_a2 = I_gB + I_f ;   // Armature c u r r e nt i n A f o rg e n e r a t o r B

30   I _L2 = I_ gB ;   // C ur re nt d e l i v e r e d by dynamo B t ot h e bus i n A

31

32   // 3 :33   I _gC = ( V _L - E _g3 ) / R _a ;   // C u rr en t i n t he

g e n e r a t i n g s ou rc e C ( i n A)34   I _a3 = I_ gC ;   // Armature c u r r e n t i n A f o r g e n e r a t or

C35   I_L3 = I_gC + I_f ;

  // C ur re nt d e l i v e r e d by dynamo Ct o t h e bus i n A36

37   / / c as e b38   // 1 :39   P_LA = V_L * I_L1 ;   // Power d e l i v e r e d t o t he bus by

dynamo A i n W40   P_gA = E_g1 * I_a1 ;   / / P owe r g e n e r a t e d by dynamo A41

42   // 2 :43   P_LB = V_L * I_L2 ;   // Power d e l i v e r e d t o t he bus by

dynamo B i n W44   P_gB = E_g2 * I_a2 ;   / / P owe r g e n e r a t e d by dynamo B45

46   // 3 :47   P_LC = V_L * I_L3 ;   // Power d e l i v e r e d t o t he bus by

104

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 106/412

dynamo C i n W

48   P_gC = E_g3 * I_a3 ;   / / P owe r g e n e r a t e d by dynamo C49

50   // D is pl ay t h e r e s u l t s51   disp ( ”E x ampl e 7−1 S o l u t i on : ” ) ;

52   printf ( ”   \n a : 1 . I gA = %d A   \ t I f = %d A ” , I _g A ,

I _f ) ;

53   printf ( ”   \n Thus , dynamo A d e l i v e r s %d A t o t h eb us and h as an a rm at ur e ” , I _g A );

54   printf ( ”   \n c u r r e n t o f %d A + %d A = %d   \n” ,

I _g A , I _ f , I _ a 1 ) ;

55

56   printf ( ”   \n 2 . I g B = %d A ” , I _g B ) ;57   printf ( ”   \n Thus , dynamo B i s f l o a t i n g and ha s

a s a rm at ur e & f i e l d c u r r e n t o f %d A   \n” , I _ f ) ;

58

59   printf ( ”   \n 3 . I g C = %d A ” , I _ g C ) ;

60   printf ( ”   \n Dynamo C r e c e i v e s %d A from t h ebus & h a s an a rm at ur e c u r r e nt o f %d A\n” , I _ L 3 ,

I _ a 3 ) ;

61

62   printf ( ”   \n b : 1 . Power d e l i v e r e d t o t he bus by

dynamo A i s : ”) ;

63   printf ( ”   \n P LA = %d W ” , P _ L A ) ;

64   printf ( ”   \n Power g e n e r a t e d by dynamo A i s   \nP gA = %d W   \n” , P _ g A ) ;

65

66   printf ( ”   \n 2 . S in ce dynamo B n e i t h e r d e l i v e r spower t o n or r e c e i v e s power fro m t he bus , ” ) ;

67   printf ( ”   \n P B = %d W ” , P _ L B ) ;

68   printf ( ”   \n Power g en er at ed by dynamo B , t oe x c i t e i t s f i e l d , i s ” ) ;

69   printf ( ”   \n P gB = %d W   \n ” , P _g B );

7071   printf ( ”   \n 3 . Power d e l i v e r e d by th e bus t o

dynamo C i s ” ) ;

72   printf ( ”   \n P LC = %d W ” , P _L C ) ;

73   printf ( ”   \n w h i l e t h e i n t e r n a l power d e l i v e r e d

105

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 107/412

i n t h e d i r e c t i o n o f r o t a t i o n ” ) ;

74   printf ( ”   \n o f i t s pr i m e mover t o a i d r o t a t i o ni s   \n P gC = %d W” , P_gC ) ;

Scilab code Exa 7.2  calculate all currents and power of the generator

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   / / Ch apt e r 7 : PARALLEL OPERATION7   / / E xa mp le 7−28

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   R_a = 0.1 ;   // Armature r e s i s t a n c e i n ohm13   R_f = 100 ;   // F i el d c kt r e s i s t a n c e i n ohm

14   V_L_b = 120 ;   // Bus v o l t a ge i n v o l t15   V_L_a = 140 ;   // V ol ta ge o f t h e g e n e ra t o r i n v o l t16   V _f = V _L _a ;   // V ol ta ge a c r o s s t he f i e l d i n v o l t17

18   / / C a l c u l a t i o n s19   / / c as e a20   I _ f _ a = V _ f / R _ f ;   // F i e l d c ur r e nt i n A21   I _a _a = I _f _a ;   // Armature c u r r e nt i n A22   E_g_a = V_L_a + I_a_a * R_a ;   / / G e n e r a t e d EMF i n

v o l t

23   P _g _a = E _g _a * I _a _a ;   / / G en er at ed p ower i n W24

25   / / c as e b26   I_a_b = ( E_g_a - V_L_b ) / R_a ;   // A r mat ur e

c u r r e n t i n A

106

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 108/412

27   I_f_b = V_L_b / R_f ;   // F i e l d c u r r e nt i n A

28   I_ Lg = I _a_ b - I _f _b ;   // G en er a te d l i n e c u r re n t i nA29   P_L = V_L_b * I_Lg ;   // Power g e n er a t ed a c r o s s t he

l i n e s i n W30   E _g _b = V _L _a ;

31   P _g _b = E _g _b * I _a _b ;   / / G en er at ed p ower i n W32

33   // D is pl ay t h e r e s u l t s34   disp ( ”E x ampl e 7−2 S o l u t i on : ” ) ;

35   printf ( ”   \n a : B ef o re i t i s c o nn ec t e d t o t h e bus ” ) ;

36   printf ( ”   \n I a = I f = %. 1 f A   \n E g = %. 2 f V

\n P g = %. 1 f W   \n” , I _a _a , E _ g_ a , P _ g_ a ) ;37

38   printf ( ”   \n b : A ft er i t i s c o nn ec t e d t o t h e bus ” ) ;

39   printf ( ”   \n I a = %. 1 f A   \n I f = %. 1 f A   \nI L g = %. 1 f A   \n” , I_ a_ b , I _f _b , I _L g ) ;

40   printf ( ”   \n P L = %. f W   \n P g = %. f W ” , P_L

, P_ g_ b ) ;

Scilab code Exa 7.3  calculate VL IL Pg and PL

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / Ch apt e r 7 : PARALLEL OPERATION7   / / E xa mp le 7−38

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .10

11   / / G iv en d a ta12   R_a = 0.1 ;   // Armature r e s i s t a n c e i n ohm o f 3 s hu nt

107

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 109/412

g e n e r a t o r s

13   R _ a1 = R _a ;14   R _ a2 = R _a ;

15   R _ a3 = R _a ;

16   R_L = 2 ;   // Load r e s i s t a n c e i n ohm17   E_g1 = 127 ;   // V ol ta ge g e n e ra t e d by g e n er a t o r 1 i n

v o l t18   E_g2 = 120 ;   // V ol ta ge g e n e ra t e d by g e n er a t o r 2 i n

v o l t19   E_g3 = 119 ;   // V ol ta ge g e n e ra t e d by g e n er a t o r 3 i n

v o l t20   / / N e g l e c t f i e l d c u r r e n t s

2122   / / C a l c u l a t i o n s23   / / c as e a24   / / T er mi na l bus v o l t a g e i n v o l t25   V_L = ( ( 12 7/ 0. 1) + ( 12 0/ 0. 1) + ( 11 9/ 0. 1) ) / (

( 1/ 0. 1) + ( 1/ 0. 1) + ( 1/ 0. 1) + 0 .5 ) ;

26

27   / / c as e b28   I_ L1 = ( E_g 1 - V_ L) / R_ a1 ;   // C ur re nt d e l i v e r e d by

g e n e r a to r 1 i n A29   I_ L2 = ( E_g 2 - V_ L) / R_ a2 ;

  // C ur re nt d e l i v e r e d byg e n e r a to r 2 i n A30   I_ L3 = ( E_g 3 - V_ L) / R_ a3 ;   // C ur re nt d e l i v e r e d by

g e n e r a to r 3 i n A31   I _ L_ 2o hm = V_L / R_L ;   // C ur re nt d e l i v e r e d by 2 ohm

l o ad i n A32

33   / / c as e c34   I _a1 = I_ L1 ;   // Armature c u r r e n t i n A f o r g e n e r a t or

135   I _a2 = I_ L2 ;   // Armature c u r r e n t i n A f o r g e n e r a t or

236   I _a3 = I_ L3 ;   // Armature c u r r e n t i n A f o r g e n e r a t or

337

38   P_g1 = E_g1 * I_a1 ;   // Power g e n e r a t ed by g e n e r a t o r

108

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 110/412

1 i n W

39   P_g2 = E_g2 * I_a2 ;   // Power g e n e r a t ed by g e n e r a t o r2 i n W40   P_g3 = E_g3 * I_a3 ;   // Power g e n e r a t ed by g e n e r a t o r

3 i n W41

42   / / c as e d43   P_L1 = V_L * I_L1 ;   // Power d e l i v e r e d t o o r

r e c e i v e d from g e n er a t or 1 i n W44   P_L2 = V_L * I_L2 ;   // Power d e l i v e r e d t o o r

r e c e i v e d from g e n er a t or 2 i n W45   P_L3 = V_L * I_L3 ;   // Power d e l i v e r e d t o o r

r e c e i v e d from g e n er a t or 3 i n W46   P_L = V_L * - I_ L_ 2o hm ;   // Power d e l i v e r e d t o o r

r e c e i v e d 2 ohm l oa d i n W47

48   // D is pl ay t h e r e s u l t s49   disp ( ”E x ampl e 7−3 S o l u t i on : ” ) ;

50   printf ( ”   \n a : C on ve rt in g e a ch v o l t a g e s o ur c e t o ac u r r e nt s o u r c e a nd a p p ly i n g ” ) ;

51   printf ( ”   \n Millman ‘ s t heo r em y i e l d s ” )

52   printf ( ”   \n V L = %d V   \n ” , V _ L ) ;

53

54   printf ( ”   \n b : I L 1 = %d A ( t o b us ) ” , I_L1 ) ;

55   printf ( ”   \n I L 2 = %d A ” , I_L2 ) ;

56   printf ( ”   \n I L3 = %d A ( from bus ) ” , I_L3 ) ;

57   printf ( ”   \n I L 2o hm =   −%d A ( f r om bus )   \n” ,

I _ L_ 2 oh m ) ;

58

59   printf ( ”   \n c : P g 1 = %d W ” , P _g 1 ) ;

60   printf ( ”   \n P g2 = %d W ( f l o a t i n g ) ” , P _g 2 ) ;

61   printf ( ”   \n P g3 = %d W   \n” , P _g 3 ) ;

62

63   printf ( ”   \n d : P L1 = %d W ” , P _L 1 ) ;64   printf ( ”   \n P L2 = %d W ” , P_L2 ) ;

65   printf ( ”   \n P L3 = %d W ” , P_L3 ) ;

66   printf ( ”   \n P L = %d W ” , P _ L ) ;

109

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 111/412

Scilab code Exa 7.4  calculate total load and kW output of each G

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / Ch apt e r 7 : PARALLEL OPERATION7   / / E xa mp le 7−48

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P 1 = 300 ;   // Power r a t i n g o f g e n er a t o r 1 i n kW13   P 2 = 600 ;   // Power r a t i n g o f g e n er a t o r 2 i n kW14   V = 220 ;   // V ol ta ge r a t i n g o f g e ne r a t or 1 a nd 2 i n

v o l t15   V_o = 250 ;   / / No−l oa d v o l t a ge a p pl i ed t o bot h t he

g e n e r a t o r s i n v o l t16   / / Assume l i n e a r c h a r a c t e r i s t i c s17   V_1 = 230 ;   // T e r mi na l v o l t a g e i n v o l t ( c a se a )18   V_2 = 240 ;   // T e r mi na l v o l t a g e i n v o l t ( c a se b )19

20   / / C a l c u l a t i o n s21   / / c as e a22   kW1_a = ( V_o - V_1 )/( V_o - V ) * P1 ;   / / kW c a r r i e d

by g e n er a t o r 123   kW2_a = ( V_o - V_1 )/( V_o - V ) * P2 ;   / / kW c a r r i e d

by g e n er a t o r 224

25   / / c as e b26   kW1_b = ( V_o - V_2 )/( V_o - V ) * P1 ;   / / kW c a r r i e d

by g e n er a t o r 1

110

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 112/412

27   kW2_b = ( V_o - V_2 )/( V_o - V ) * P2 ;   / / kW c a r r i e d

by g e n er a t o r 228

29   / / c as e c30   f ra c_ a = ( V_ o - V_1 ) /( V_o - V );   // F r a c t i o n o f r at ed

kW c a r r i e d by e ac h g e n e r a to r31   f ra c_ b = ( V_ o - V_2 ) /( V_o - V );   // F r a c t i o n o f r at ed

kW c a r r i e d by e ac h g e n e r a to r32

33   // D is pl ay t h e r e s u l t s34   disp ( ”E x ampl e 7−4 S o l u t i on : ” ) ;

35   printf ( ”   \n a : At 2 30 V, u s i ng Eq .( 7 − 3 ) be l o w : ” ) ;

36   printf ( ”   \n G e n e r a t o r 1 c a r r i e s = %d kW ” , k W1 _a) ;

37   printf ( ”   \n G e n e r a t o r 2 c a r r i e s = %d kW   \n” ,

k W2 _a ) ;

38

39   printf ( ”   \n b : At 2 40 V, u s i ng Eq .( 7 − 3 ) be l o w : ” ) ;

40   printf ( ”   \n G e n e r a t o r 1 c a r r i e s = %d kW ” , k W1 _b

) ;

41   printf ( ”   \n G e n e r a t o r 2 c a r r i e s = %d kW   \n” ,

k W2 _b ) ;

42

43   printf ( ”   \n c : Both g e n e ra t o r s c a rr y no−l oa d a t 250V ; ” ) ;

44   printf ( ”   \n %f r a t e d l o a d a t %d V ; ” , f ra c_ b ,

V _2 ) ;

45   printf ( ”   \n %f r a t e d l o a d a t %d V ; ” , f ra c_ a ,

V _1 ) ;

46   printf ( ”   \n and r a t e d l oa d a t %d V . ” , V ) ;

Scilab code Exa 7.5   calculate max and min E and frequency and Epeakand n

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

111

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 113/412

2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / Ch apt e r 7 : PARALLEL OPERATION7   / / E xa mp le 7−58

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   E_1 = 220 ;   // T e r m i n a l v o l t a ge o f a l t e r n a t o r 1 i n

v o l t13   E_2 = 222 ;   // T e r m i n a l v o l t a ge o f a l t e r n a t o r 2 i n

v o l t14   f_1 = 60 ;   // F r e q ue n cy o f a l t e r n a t o r 1 i n Hz15   f _2 = 59.5 ;   // F r e q u en cy o f a l t e r n a t o r 2 i n Hz16   // S wi tc h i s open17

18   / / C a l c u l a t i o n s19   / / c as e a20   E _m ax = ( E_1 + E_ 2) /2 ;   // Maximum e f f e c t i v e v o l t a g e

a c r o s s e ac h lamp i n v o l t21   E _m in = ( E_2 - E_ 1) /2 ;   // Minimum e f f e c t i v e v o l t a g ea c r o s s e ac h lamp i n v o l t

22

23   / / c as e b24   f = f_1 - f_2 ;   // F r e q ue nc y i n Hz o f t he v o l t a g e

a c r o s s t he l am ps25

26   / / c as e c27   E _p ea k = E _m ax / 0 .7 07 1 ;   // Peak v al u e o f t he

v o l t a ge i n v o l t a c r o s s e a c h lamp

2829   / / c as e d30   n = (1 /2 ) *f_1 ;   / / Number o f maximum l i g h t

p u l s a t i o n s p er m in ute31

112

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 114/412

32   // D is pl ay t h e r e s u l t s

33   disp ( ”E x ampl e 7−5 S o l u t i on : ” ) ;34   printf ( ”   \n a : E max / la mp = %d V ( r ms ) \n ” , E _m ax ) ;

35   printf ( ”   \n E min /lamp = %d V   \n ” , E _m in ) ;

36   printf ( ”   \n b : f = %. 1 f Hz   \n ” , f ) ;

37   printf ( ”   \n c : E p ea k = %. f V   \n ” , E _p ea k ) ;

38   printf ( ”   \n d : n = %d p u l s a t i o n s / min ” , n ) ;

Scilab code Exa 7.6  calculate max and min E and f and phase relations

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / Ch apt e r 7 : PARALLEL OPERATION7   / / E xa mp le 7−68

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

1011   / / G iv en d a ta12   E = 220 ;   // V ol ta ge g e ne r a t ed i n v o l t13   E_1 = E ;   // V ol ta ge g e n er at ed by a l t e r n a t o r 1 i n

v o l t14   E_2 = E ;   // V ol ta ge g e n er at ed by a l t e r n a t o r 2 i n

v o l t15   f_1 = 60 ;   // F r e q ue n cy i n Hz o f a l t e r n a t o r 116   f_2 = 58 ;   // F r e q ue n cy i n Hz o f a l t e r n a t o r 217   // S wi tc h i s open

1819   / / C a l c u l a t i o n s20   / / c as e a21   E _m ax = ( E_1 + E_ 2) /2 ;   // Maximum e f f e c t i v e v o l t a g e

a c r o s s e ac h lamp i n v o l t

113

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 115/412

22   f = f_1 - f_2 ;   // F r e q ue nc y i n Hz o f t he v o l t a g e

a c r o s s t he l am ps23

24   / / c as e c25   E _m in = ( E_2 - E_ 1) /2 ;   // Minimum e f f e c t i v e v o l t a g e

a c r o s s e ac h lamp i n v o l t26

27   // D is pl ay t h e r e s u l t s28   disp ( ”E x ampl e 7−6 S o l u t i on : ” ) ;

29   printf ( ”   \n a : E max / l am p = %d V   \n f = %d Hz   \n” , E _ m a x , f ) ;

30   printf ( ”   \n b : The v o l t a g e s a re e qu al and o p p o si t e

i n t h e l o c a l c i r c u i t .   \n ” ) ;31   printf ( ”   \n c : E min / lamp = %d V a t z e r o f r e q u e n cy   \

n ” , E _m in ) ;

32   printf ( ”   \n d : The v o l t a g e s a re i n p h a s e i n t h el o c a l c i r c u i t . ” ) ;

Scilab code Exa 7.7  calculate Is in both alternators

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / Ch apt e r 7 : PARALLEL OPERATION7   / / E xa mp le 7−78

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

1011   / / G ive n d at a a s p e r Ex . (7 − 5 )12   E 1 = 220 ;   // T e r m i n a l v o l t a ge o f a l t e r n a t o r 1 i n

v o l t13   E 2 = 222 ;   // T e r m i n a l v o l t a ge o f a l t e r n a t o r 2 i n

114

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 116/412

v o l t

14   f1 = 60 ;   // F re q u en cy o f a l t e r n a t o r 1 i n Hz15   f 2 = 59.5 ;   // F r eq u en cy o f a l t e r n a t o r 2 i n Hz16   // S wi tc h i s open17

18   / / G ive n d at a a s p e r Ex . (7 − 6 )19   E = 220 ;   // V ol ta ge g e ne r a t ed i n v o l t20   E_1 = E ;   // V ol ta ge g e n er at ed by a l t e r n a t o r 1 i n

v o l t21   E_2 = E ;   // V ol ta ge g e n er at ed by a l t e r n a t o r 2 i n

v o l t22   f_1 = 60 ;   // F r e q ue n cy i n Hz o f a l t e r n a t o r 1

23   f_2 = 58 ;   // F r e q ue n cy i n Hz o f a l t e r n a t o r 224   // S wi tc h i s open25

26   / / G ive n d at a a s p e r Ex . (7 − 7 )27   R_a1 = 0.1 ;   // a r m a t u r e r e s i s t a n c e o f a l t e r n a t o r 1

i n ohm28   R_a2 = 0.1 ;   // a r m a t u r e r e s i s t a n c e o f a l t e r n a t o r 2

i n ohm29   X_a1 = 0.9 ;   // a rm at u re r e a ct a n ce o f a l t e r n a t o r 1

i n ohm30   X_a2 = 0.9 ;

  // a rm at u re r e a ct a n ce o f a l t e r n a t o r 2i n ohm31

32   Z_1 = R _a1 + %i *X_a1 ;   // E f f e c t i v e i mpeda nce o f  a l t e r n a t o r 1 i n ohm

33   Z_2 = R _a1 + %i *X_a2 ;   // E f f e c t i v e i mpeda nce o f  a l t e r n a t o r 2 i n ohm

34   // S wi tc he s a re c l o se d a t t h e p ro pe r i n s t a n t f o rp a r a l l e l i n g .

35

36   / / C a l c u l a t i o n s

37   / / I n Ex .7 −5 ,38   E_r = E2 - E1 ;   // E f f e c t i v e v o l t a ge g en e r at ed i n

v o l t39   I_s = E_r / ( Z_1 + Z_2 );   // S y nc hr o ni z in g c u r r e nt i n

t he a rm at ur e i n A

115

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 117/412

40   I _ s_ m =   abs ( I _ s ) ; // I s m =m ag ni tu de o f I s i n A

41   I _ s_ a =   atan ( imag ( I _s ) / real ( I _ s ) ) * 1 8 0 / % p i ; // I s a =p h a s e a ng le o f I s i n d e g r e es42

43   / / I n Ex .7 −6 ,44   Er = E_2 - E_1 ;   // E f f e c t i v e v o l t a ge g en e r at ed i n

v o l t45   Is = Er / ( Z_1 + Z_2 );   // S y nc h ro n iz i ng c u r re n t i n

t he a rm at ur e i n A46

47   // D is pl ay t h e r e s u l t s48   disp ( ”E x ampl e 7−7 S o l u t i on : ” ) ;

49   printf ( ”   \n I n Ex .7 −5 , ” ) ;50   printf ( ”   \n E r = %d V ” , E _r ) ;

51   printf ( ”   \n I s = ” ) ; disp ( I _ s ) ;

52   printf ( ”   \n I s = %. 3 f    <%. 2 f A ” , I _s _m , I _ s_ a ) ;

53   printf ( ”   \n where %. 3 f i s m ag ni tu de i n A a nd %. 2 f i sp ha se a n gl e i n d e g re e s   \n” , I _ s _ m , I _ s _ a ) ;

54

55   printf ( ”   \n I n Ex .7 −6 , ” ) ;

56   printf ( ”   \n E r = %d V ” , Er ) ;

57   printf ( ”   \n I s = %d A” , I s ) ;

Scilab code Exa 7.8  calculate generator and motor action and P loss andterminal V and phasor diagram

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

56   / / Ch apt e r 7 : PARALLEL OPERATION7   / / E xa mp le 7−88

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

116

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 118/412

c o n s o l e .

1011   / / G iv en d a ta12   / / EMF’ s a r e o pp os ed e x a c t l y by 1 80 d e g r e e s13   E_gp1 = 200 ;   // T e r mi n a l v o l t a ge o f a l t e r n a t o r 1 i n

v o l t14   E_gp2 = 220 ;   // T e r mi n a l v o l t a ge o f a l t e r n a t o r 2 i n

v o l t15   R_a1 = 0.2 ;   // a r m a t u r e r e s i s t a n c e o f a l t e r n a t o r 1

i n ohm16   R_a2 = 0.2 ;   // a r m a t u r e r e s i s t a n c e o f a l t e r n a t o r 2

i n ohm

17   X_a1 = 2 ;   // a r m a t u r e r e a c ta n ce o f a l t e r n a t o r 1 i nohm

18   X_a2 = 2 ;   // a r m a t u r e r e a c ta n ce o f a l t e r n a t o r 2 i nohm

19

20   Z _p1 = R_a1 + %i *X_a1 ;   // E f f e c t i v e i mpe danc e o f  a l t e r n a t o r 1 i n ohm

21   Z _p2 = R_a1 + %i *X_a2 ;   // E f f e c t i v e i mpe danc e o f  a l t e r n a t o r 2 i n ohm

22   // S wi tc he s a re c l o se d a t t h e p ro pe r i n s t a n t f o r

p a r a l l e l i n g .23

24   / / C a l c u l a t i o n s25   / / c as e a26   E_r = ( E _gp 2 - E _g p1 ) ;   // E f f e c t i v e v o l t a ge

g e n e ra t ed i n v o l t27   I_s = E_r / ( Z_p1 + Z_p2 );   // S y n ch r o ni z i ng c u r r e nt

i n t he a rm at u re i n A28   I _ s_ m =   abs ( I _ s ) ; // I s m =m ag ni tu de o f I s i n A29   I _ s_ a =   atan ( imag ( I _s ) / real ( I _ s ) ) * 1 8 0 / % p i ; // I s a =

p h a s e a ng le o f I s i n d e g r e es

3031   P _ 2 = E _g p2 * I _s _m * c os d ( I_ s_ a );   // G e n er a t o r

a c ti o n d ev el op ed by a l t e r n a t o r 2 i n W32

33   / / c as e b

117

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 119/412

34   t he ta = I _s _a ;

35   // P 1 = E gp1   ∗   I s m   ∗   c o s d ( 1 8 0   −   t h e t a )36   // P 1 =   −E g p 1   ∗   I s m   ∗   cos d ( th et a ) ,37   P _1 = - E _g p1 * I _s _m * c os d ( th et a );   // S y n c h r o n i zi n g

power r e c e i v e d by a l t e r n a t o r 1 i n W38

39   / / c as e c40   / / b ut c o n s i d e r +ve v l au e f o r P 1 f o r f i n d i n g l o s s e s

, s o41   P1 =   abs ( P _ 1 ) ;

42   los ses = P_2 - P1 ;   // Power l o s s e s i n bot ha r ma t ur e s i n W

43   c he ck = E _r * I _s _m * c os d ( I_ s_ a );   // V e r i f y i n gl o s s e s by Eq.7 −7

44   d ou bl e_ ch ec k = ( I _s _m ) ^2 * ( R _a 1 + R _a 2 );   //V e r i f y i n g l o s s e s by Eq.7 −7

45

46   / / c as e d47   V _p2 = E_gp2 - I _s * Z_p1 ;   // G en er at or a c t i o n48   V _p1 = E_gp1 + I _s * Z_p1 ;   // Motor a c t i o n49

50   // D is pl ay t h e r e s u l t s51   disp (

”E x ampl e 7−8 S o l u t i on : ”) ;

52   printf ( ”   \n a : E r = %d V ” , E _ r ) ;

53   printf ( ”   \n I s = %. 2 f    <%. 2 f A ” , I _s _m , I _s _a ) ;

54   printf ( ”   \n P 2 = %. 1 f W ( t o t a l power d e l i v e r e dby a l t e r n a t o r 2 )   \n” , P _2 ) ;

55

56   printf ( ”   \n b : P 1 = %f W ( s y n c h r o n i z i n g po we rr e c e i v e d by a l t e r n a t o r 1 ) ”, P _ 1 ) ;

57   printf ( ”   \n Note : S c i l a b c o n s i d e r s p ha s e a ng le o f  I s a s %f i n s t e ad ” , I _ s _ a ) ;

58   printf ( ”   \n o f    −84.3 d e gr e es , s o s l i g h t

v a r i a t i o n i n t he an swe r P 1 . \ n” ) ;59

60   printf ( ”   \n c : C on si de r +ve v al ue o f P 1 f o rc a l c u l a t i n g l o s s e s ” ) ;

61   printf ( ”   \n L o s s e s : P 2   −   P 1 = %. 1 f W ” , l os se s )

118

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 120/412

;

62   printf ( ”   \n Check : E a ∗ I s ∗ c o s ( t h e t a ) = % . 1 f W ” ,c he ck ) ;

63   printf ( ”   \n Double c h e c k : ( I s ) ̂ 2 ∗ ( R a 1 + R a 2 ) =%. 1 f W a s g i v en i n Eq .( 7 − 1 ) ” , d o u b l e_ c h ec k ) ;

64

65   printf ( ” \n\n d : From F i g . 7 −1 4 , V p2 , t he t e rm i n alp h a se v o l t a ge o f ” ) ;

66   printf ( ”   \n a l t e r n a t o r 2 , i s , from Eq . ( 7 − 1 ) ” ) ;

67   printf ( ”   \n V p2 = %d V ( g e ne r a t or a c t i on ) \n\nFrom s e c t i o n 7 −2.1 ” , V _ p 2 ) ;

68   printf ( ”   \n V p1 = %d V ( motor a c t i o n ) \n” , V _ p 1 ) ;

6970   printf ( ”   \n e : The p ha so r d ia gr am i s shown i n F ig

. 7 − 1 4 . ” ) ;

Scilab code Exa 7.9  calculate synchronizing I and P and P losses

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / Ch apt e r 7 : PARALLEL OPERATION7   / / E xa mp le 7−98

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta

12   E _2 _m ag = 23 0 ;   // Ma gn itud e o f v o l t a g e g e n er a t ed bya l t e r n a t o r 2 i n v o l t13   E _1 _m ag = 23 0 ;   // Ma gn itud e o f v o l t a g e g e n er a t ed by

a l t e r n a t o r 1 i n v o l t14

119

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 121/412

15   t he ta _2 = 18 0 ;   // Phase a n gl e o f g e n e ra t e d v o l t a g e

by a l t e r n a t o r 2 i n d e g r e es16   t he ta _1 = 20 ;   // Phase a n gl e o f g e ne r a t ed v o l t a g eby a l t e r n a t o r 1 i n d e g r e es

17

18   R_a1 = 0.2 ;   // a r m a t u r e r e s i s t a n c e o f a l t e r n a t o r 1i n ohm

19   R_a2 = 0.2 ;   // a r m a t u r e r e s i s t a n c e o f a l t e r n a t o r 2i n ohm

20

21   / / w r i t i ng g i v en v o l t a ge i n e x po n e n t i a l form a sf o l l o w s

22   // %pi /180 f o r d e gr e e s t o r a d ia n s c o nv e r s i o n23   E_2 = E _2 _m ag *   expm ( % i * t he t a_ 2 * ( %p i / 18 0) ) ;   //

v o l t a ge g e n er at ed by a l t e r n a t o r 2 i n v o l t24   E_1 = E _1 _m ag *   expm ( % i * t he t a_ 1 * ( %p i / 18 0) ) ;   //

v o l t a ge g e n er at ed by a l t e r n a t o r 1 i n v o l t25

26   / / w r i t i n g g i v e n i mp ed an ce ( i n ohm ) i n e x p o n e n t i a lform a s f o l l o w s

27   Z _1 = 2.01 *   expm ( %i * 8 4. 3* ( %p i /1 80 ) ) ;   / / %pi / 1 8 0f o r d e g r ee s t o r a d i an s c o n v er s i o n

28   Z_2 = Z_1 ;

29   Z _ 1_ a =   atan ( imag ( Z _1 ) / real ( Z _ 1 ) ) * 1 8 0 / % p i ; / / Z 1 a =p h a se a n g l e o f Z 1 i n d e g r e e s

30

31   / / C a l c u l a t i o n s32   E_r = E_2 + E_1 ;   // T ot al v o l t a g e g e ne r a t ed by

A l t e r n at o r 1 and 2 i n v o l t33   E _ r_ m =   abs ( E _ r ) ; // E r m=m ag ni tu de o f E r i n v o l t34   E _ r_ a =   atan ( imag ( E _r ) / real ( E _ r ) ) * 1 8 0 / % p i ; / / E r a =

p h a s e a ng le o f E r i n d e g r e e s35

36   / / c as e a37   I_s = E_r / ( Z_1 + Z_2 );   // S yn ch ro n oz in g c u r r e nt i n

A38   I _ s_ m =   abs ( I _ s ) ; // I s m =m ag ni tu de o f I s i n A39   I _ s_ a =   atan ( imag ( I _s ) / real ( I _ s ) ) * 1 8 0 / % p i ; // I s a =

120

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 122/412

p h a s e a ng le o f I s i n d e g r e es

4041   / / c as e b42   E _ g p1 = E _1 _ ma g ;

43   P _ 1 = E _g p1 * I _s _m * c os d ( I_ s_ a - t he ta _1 ) ;   //S yn ch ro no z in g power d e ve l op e d by a l t e r n a t o r 1 i n

W44

45   / / c as e c46   E _ g p2 = E _2 _ ma g ;

47   P _ 2 = E _g p2 * I _s _m * c os d ( I_ s_ a - t he ta _2 ) ;   //S yn ch ro no z in g power d e ve l op e d by a l t e r n a t o r 2 i n

W48

49   / / c as e d50   / / b ut c o n s i d e r +ve v l au e f o r P 2 f o r f i n d i n g l o s s e s

, s o51   P2 =   abs ( P _ 2 ) ;

52   los ses = P_1 - P2 ;   // L o ss e s i n t he a rm at ur e i n W53

54   // E r a y i e l d s   −80 d e g r e es which i s e q u i v al e n t t o10 0 d e gr e es , s o

55   theta = 100 - I_s_a ;  // Pha se d i f f e r e n c e b et wee nE r and I a i n d e g r e e s

56

57   c he ck = E _r _m * I _s _m * c os d ( th et a );   // V e r i f y i n gl o s s e s by Eq.7 −7

58   R_aT = R_a1 + R_a2 ;   // t o t a l a r m a t u r e r e s i s t a n c e o f  a l t e r n a t o r 1 and 2 i n ohm

59   d o ub l e_ c he c k = ( I _ s_ m ) ^2 * ( R _a T ) ;   // V e r i f y i n gl o s s e s by Eq.7 −7

60

61   // D is pl ay t h e r e s u l t s

62   disp ( ”E x ampl e 7−9 S o l u t i on : ” ) ;63   printf ( ”   \n a : I s = ”) ; disp ( I _ s ) ;

64   printf ( ”   \n I s = %. 2 f    <%. 2 f A   \n ” , I _s _m , I _ s_ a

) ;

65

121

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 123/412

66   printf ( ”   \n b : P 1 = %. f W ( power d e l i v e r e d t o bus ) ”

, P _ 1 ) ;67   printf ( ”   \n S l i g h t v a r i a t i o n i n P 1 i s due s l i g h tv a r i a t i o n s i n ” )

68   printf ( ”   \n magni tud e o f I s ,& a ng l e btw ( E gp1 ,I s ) \n” )

69   printf ( ”   \n P 2 = %. f W ( power r e c e i v e d from bus )\n” , P _ 2 ) ;

70

71   printf ( ”   \n c : L o ss e s : P 1   −   P 2 = %d” , l o s s e s ) ;

72   printf ( ”   \n Check : E a ∗ I s ∗ c o s ( t h e t a ) = %d W ” ,

c he ck ) ;

73   printf ( ”   \n Double c h e c k : ( I s ) ̂ 2 ∗ ( R a 1 + R a 2 ) =%d W ” , d o u b l e_ c h ec k ) ;

Scilab code Exa 7.10  calculate synchronizing I and P and P losses

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   / / Ch apt e r 7 : PARALLEL OPERATION7   / / E xa mp le 7−108

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   E _2 _m ag = 23 0 ;   // Ma gn itud e o f v o l t a g e g e n er a t ed by

a l t e r n a t o r 2 i n v o l t13   E _1 _m ag = 23 0 ;   // Ma gn itud e o f v o l t a g e g e n er a t ed bya l t e r n a t o r 1 i n v o l t

14

15   t he ta _2 = 18 0 ;   // Phase a n gl e o f g e n e ra t e d v o l t a g e

122

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 124/412

by a l t e r n a t o r 2 i n d e g r e es

16   t he ta _1 = 20 ;   // Phase a n gl e o f g e ne r a t ed v o l t a g eby a l t e r n a t o r 1 i n d e g r e es17

18   / / w r i t i ng g i v en v o l t a ge i n e x po n e n t i a l form a sf o l l o w s

19   // %pi /180 f o r d e gr e e s t o r a d ia n s c o nv e r s i o n20   E_2 = E _2 _m ag *   expm ( % i * t he t a_ 2 * ( %p i / 18 0) ) ;   //

v o l t a ge g e n er at ed by a l t e r n a t o r 2 i n v o l t21   E_1 = E _1 _m ag *   expm ( % i * t he t a_ 1 * ( %p i / 18 0) ) ;   //

v o l t a ge g e n er at ed by a l t e r n a t o r 1 i n v o l t22

23   / / w r i t i n g g i v e n i mp ed an ce ( i n ohm ) i n e x p o n e n t i a lform a s f o l l o w s

24   Z_1 = 6 *   expm ( %i * 5 0* ( %p i /1 80 ) ) ;   // %pi / 18 0 f o rd e gr e e s t o r a d ia n s c o n ve r s io n

25   Z_2 = Z_1 ;

26   Z _ 1_ a =   atan ( imag ( Z _1 ) / real ( Z _ 1 ) ) * 1 8 0 / % p i ; / / Z 1 a =p h a se a n g l e o f Z 1 i n d e g r e e s

27

28   / / C a l c u l a t i o n s29   E_r = E_2 + E_1 ;   // T ot al v o l t a g e g e ne r a t ed by

A l t e r n at o r 1 and 2 i n v o l t30   E _ r_ m =   abs ( E _ r ) ; // E r m=m ag ni tu de o f E r i n v o l t31   E _ r_ a =   atan ( imag ( E _r ) / real ( E _ r ) ) * 1 8 0 / % p i ; / / E r a =

p h a s e a ng le o f E r i n d e g r e e s32

33   / / c as e a34   I_s = E_r / ( Z_1 + Z_2 );   // S yn ch ro n oz in g c u r r e nt i n

A35   I _ s_ m =   abs ( I _ s ) ; // I s m =m ag ni tu de o f I s i n A36   I _ s_ a =   atan ( imag ( I _s ) / real ( I _ s ) ) * 1 8 0 / % p i ; // I s a =

p h a s e a ng le o f I s i n d e g r e es

3738   / / c as e b39   E _ g p1 = E _1 _ ma g ;

40   P _ 1 = E _g p1 * I _s _m * c os d ( I_ s_ a - t he ta _1 ) ;   //S yn ch ro no z in g power d e ve l op e d by a l t e r n a t o r 1 i n

123

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 125/412

W

4142   / / c as e c43   E _ g p2 = E _2 _ ma g ;

44   P _ 2 = E _g p2 * I _s _m * c os d ( I_ s_ a - t he ta _2 ) ;   //S yn ch ro no z in g power d e ve l op e d by a l t e r n a t o r 2 i n

W45

46   / / c as e d47   / / b ut c o n s i d e r +ve v l au e f o r P 2 f o r f i n d i n g l o s s e s

, s o48   P2 =   abs ( P _ 2 ) ;

49   los ses = P_1 - P2 ;   // L o ss e s i n t he a rm at ur e i n W50

51   // E r a y i e l d s   −80 d e g r e es which i s e q u i v al e n t t o10 0 d e gr e es , s o

52   theta = 100 - I_s_a ;   // Pha se d i f f e r e n c e b et wee nE r and I s i n d eg re es

53

54   c he ck = E _r _m * I _s _m * c os d ( th et a );   // V e r i f y i n gl o s s e s by Eq.7 −7

55   R _a T = 1 2* c os d (5 0) ;   // t o t a l a r m a t u r e r e s i s t a n c e o f  

a l t e r n a t o r 1 and 2 i n ohm56   d o ub l e_ c he c k = ( I _ s_ m ) ^2 * ( R _a T ) ;   // V e r i f y i n gl o s s e s by Eq.7 −7

57

58   // D is pl ay t h e r e s u l t s59   disp ( ”E x ampl e 7−10 S o l u t i o n : ” ) ;

60   printf ( ”   \n a : I s = ”) ; disp ( I _ s ) ;

61   printf ( ”   \n I s = %. 2 f    <%. 2 f A   \n ” , I _s _m , I _ s_ a

) ;

62

63   printf ( ”   \n b : P 1 = %. f W ( power d e l i v e r e d t o bus ) ”

, P _ 1 ) ;64   printf ( ”   \n Note : S l i g h t v a r i a t i o n i n P 1 i s due

s l i g h t v a r i a t i o n s i n ” )

65   printf ( ”   \n p h a s e a n g l e o f I s ,& a n g l e btw (E g p1 , I s ) \n” )

124

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 126/412

66   printf ( ”   \n P 2 = %. f W ( power r e c e i v e d from bus )

\n” , P _ 2 ) ;67

68   printf ( ”   \n c : L o ss e s : P 1   −   P 2 = %. f W” , l o s s e s ) ;

69   printf ( ”   \n Check : E a ∗ I s ∗ c o s ( t h e t a ) = % . f W ” ,

c he ck ) ;

70   printf ( ”   \n Double c h e c k : ( I s ) ̂ 2 ∗ ( R a 1 + R a 2 ) =% . f W ” , d o u b l e_ c h e ck ) ;

Scilab code Exa 7.11  calculate mesh currents line currents phase voltagesphasor diagram

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / Ch apt e r 7 : PARALLEL OPERATION7   / / E xa mp le 7−118

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   / / w r i t i ng s up pl y v o l t a ge i n e x p o ne n ti a l form a s

f o l l o w s13   // %pi /180 f o r d e gr e e s t o r a d ia n s c o nv e r s i o n14   V_AB = 100 *   expm ( %i * 0 *( % pi / 18 0) ) ;   // v o l t a g e

s u pp l i e d a c r o s s A & B i n v o l t15   V_BC = 100 *   expm ( % i * - 12 0* ( % pi / 1 8 0) ) ;   // v o l t a g e

s u pp l i e d a c r o s s B & C i n v o l t16   V_CA = 100 *   expm ( %i * 1 20 *( % pi / 18 0) ) ;   // v o l t ag es u pp l i e d a c r o s s C & A i n v o l t

17

18   disp ( ”E x ampl e 7−11 : ” ) ;

125

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 127/412

19   printf ( ” \n W ri ti ng two mesh e q ua t i on s f o r I 1 and

I 2 i n f i g .7 −23 a y i e l d s f o l l o w i n g \n a r r ay : ” ) ;20   printf ( ”   \n I 1   \ t \ t I 2   \ t \ t V ” ) ;

21   printf ( ”   \n” ) ;

22   printf ( ”   \n 6 + j 0   \ t   −3 + j 0   \ t 100 + j 0 ” ) ;

23   printf ( ”   \n   −3 + j 0   \ t 3   −   j 4   \ t   −50   −   j 8 6 . 6 ” ) ;

24

25   / / C a l c u l a t i o n s26   A = [ ( 6+ % i *0 ) ( - 3+ %i * 0) ; ( - 3+ %i * 0) (3 - %i * 4) ];   //

M at ri x c o n t a i n i n g a bo ve mesh e qn s a r r a y27   d e lt a =   det ( A ) ;   // D et er mi na nt o f A

2829   / / c as e a30   I _1 =   det ( [ ( 10 0+ % i * 0) ( - 3+ % i * 0) ; ( - 50 - % i * 8 6. 6 0)

(3 - %i *4) ] ) / delta ;

31   // Mesh c u r r e n t I 1 i n A32   I _ 1_ m =   abs ( I _ 1 ) ; // I 1 m=m ag ni tu de o f I 1 i n A33   I _ 1_ a =   atan ( imag ( I _1 ) / real ( I _ 1 ) ) * 1 8 0 / % p i ; / / I 1 a =

p h a s e a ng le o f I 1 i n d e g r e e s34

35   I _2 =   det ( [ ( 6+ % i *0 ) ( 10 0+ % i *0 ) ; ( -3 + %i * 0) ( -50 - %i

*86.6 ) ] ) / delta ;

36   // Mesh c u r r e n t I 2 i n A37   I _ 2_ m =   abs ( I _ 2 ) ; // I 2 m=m ag ni tu de o f I 2 i n A38   I _ 2_ a =   atan ( imag ( I _2 ) / real ( I _ 2 ) ) * 1 8 0 / % p i ; / / I 2 a =

p h a s e a ng le o f I 2 i n d e g r e e s39

40   / / c as e b41   I_A = I_1 ;   // L i n e c ur r e n t I A i n A42   I _ A_ m =   abs ( I _ A ) ; // I A m=m ag ni tu de o f I A i n A43   I _ A_ a =   atan ( imag ( I _A ) / real ( I _ A ) ) * 1 8 0 / % p i ; / / I A a =

p h a se a n g l e o f I A i n d e gr e e s

4445   I_B = I_2 - I_1 ;   // L i n e c ur re nt I B i n A46   I _ B_ m =   abs ( I _ B ) ; // I B m=m ag ni tu de o f I B i n A47   I _ B_ a =   atan ( imag ( I _B ) / real ( I _B ) ) * 18 0/ % p i - 1 80 ; //

I B a=p h a s e a ng l e o f I B i n d e g r e e s

126

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 128/412

48

49   I _C = - I_2 ;   // L i n e c u r r en t I C i n A50   I _ C_ m =   abs ( I _ C ) ; // I C m=m ag ni tu de o f I C i n A51   I_C_a = 180 +   atan ( imag ( I _C ) / real ( I _ C ) ) * 1 8 0 / % p i ; //

I C a=p h a s e a ng l e o f I C i n d e g r e e s52

53   / / c as e c54   Z_A = 3 *   expm ( %i * 0 *( % pi / 18 0) ) ;   / / I mp ed an ce i n

l i n e A i n o h m55   Z_B = 3 *   expm ( %i * 0 *( % pi / 18 0) ) ;   / / I mp ed an ce i n

l i n e B i n o h m56   Z_C = 4 *   expm ( % i * - 90 *( % p i / 18 0) ) ;   // I mp ed an ce i n

l i n e C i n o h m57

58   V_AO = I_A * Z_A ;   // Phas e v o l t a g e V AO i n v o l t59   V _ A O_ m =   abs ( V _ A O ) ; //V AO m=magni t ude of V AO i n

v o l t60   V _ A O_ a =   atan ( imag ( V _A O ) / real ( V _ A O ) ) * 1 8 0 / % p i ; //

V AO a=p ha s e a n g l e o f V AO i n d e g r e e s61

62   V_BO = I_B * Z_B ;   // Phas e v o l t a g e V BO i n v o l t63   V _ B O_ m =   abs ( V _ B O ) ; //V BO m=magni t ude of V BO i n

v o l t64   V _ B O_ a =   atan ( imag ( V _B O ) / real ( V _B O ) ) * 18 0/ % p i - 1 80 ;

// V BO a=p ha se a n g l e o f V BO i n d e g r e e s65

66   V_CO = I_C * Z_C ;   // Phas e v o l t a g e V CO i n v o l t67   V _ C O_ m =   abs ( V _ C O ) ; //V CO m=magni t ude of V CO i n

v o l t68   V _ C O_ a =   atan ( imag ( V _C O ) / real ( V _ C O ) ) * 1 8 0 / % p i ; //

V CO a=p ha s e a n g l e o f V CO i n d e g r e e s69

70   // D is pl ay t h e r e s u l t s

71   disp ( ” S o l u t i o n : ” ) ;72   printf ( ”   \n a : I 1 i n A = ”) ; disp ( I _ 1 ) ;

73   printf ( ”   \n I 1 = %. 2 f    <%. 2 f A   \n ” , I _1 _m , I _ 1_ a

) ;

74   printf ( ”   \n I 2 i n A = ” ) ; disp ( I _ 2 ) ;

127

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 129/412

75   printf ( ”   \n I 2 = %. 2 f    <%. 2 f A\n ” , I_ 2_m , I _2 _a )

;76

77   printf ( ”   \n b : I A i n A = ” ) ; disp ( I _ 1 ) ;

78   printf ( ”   \n I A = %. 2 f    <%. 2 f A\n” , I _A _m , I _A _a ) ;

79

80   printf ( ”   \n I B i n A = ” ) ; disp ( I _ B ) ;

81   printf ( ”   \n I B = %. 2 f    <%. 2 f A\n” , I _B _m , I _B _a ) ;

82

83   printf ( ”   \n I C i n A = ” ) ; disp ( I _ C ) ;

84   printf ( ”   \n I C = %. 2 f    <%. 2 f A   \n” , I_C_m , I _C _a

) ;

8586   printf ( ”   \n c : V AO = % . 2 f    <%. 2 f V” , V _A O_ m , V _A O_ a )

;

87   printf ( ”   \n V BO = %. 2 f    <%. 2 f V” , V _B O_ m , V _B O_ a )

;

88   printf ( ”   \n V CO = %. 2 f    <%. 2 f V\n” , V _ CO _m , V _ CO _ a

) ;

89

90   printf ( ”   \n d : The p ha so r d ia gr am i s shown i n F ig.7 −23 b , w it h t he p ha se v o l t a g e s ” ) ;

91   printf (”   \n i n s c r i b e d i n s i d e t he ( e q u i l a t e r a l )t r i a n g l e o f g iv e n l i n e v o l t a ge s ” ) ;

128

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 130/412

Chapter 8

AC DYNAMO TORQUE

RELATIONS

SYNCHRONOUS MOTORS

Scilab code Exa 8.1  calculate alpha Er Ia Pp Pt Power loss Pd

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −SYNCHRONOUS MOTORS

7   / / E xa mp le 8−18

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   // 3−   p h a s e Y−c o n n e c te d s y n c h ro n o u s m ot or13   P = 2 0 ;   // No . o f p o l es14   hp = 40 ;   // power r a t i n g o f t he s yn ch ro no u s motor

i n hp

129

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 131/412

15   V_L = 660 ;   // L i n e v o l t a g e i n v o l t

16   beta = 0.5 ;   / / A t n o−l o a d , t h e r o t o r i s r e t a rd e d0 . 5 m e ch a ni c al d e gr e e from17   / / i t s s yn ch ro no us p o s i t i o n .18   X_s = 10 ;   // S yn ch ro no us r e a c t a n c e i n ohm19   R_a = 1.0 ;   // E f f e c t i v e a rm at ur e r e s i s t a n c e i n ohm20

21   / / C a l c u l a t i o n s22   / / c as e a23   funcprot ( 0 ) ;   // To a v o id t h i s m es sa ge ” Warning :

r e d e f i n i n g f u n c t i o n : b et a ”24   a lp ha = P * ( be ta / 2) ;   // The r o t o r s h i f t from t h e

s yn ch ro no us p o s i t i o n i n25   // e l e c t r i c a l d eg re es .26

27   / / c as e b28   V_p = V_L /   sqrt ( 3 ) ;   // Phase v o l t a ge i n v o l t29   E_gp = V_p ;   / / G en er at ed v o l t a g e / p h a se a t no−l o a d

i n v o l t ( g i ve n )30   E _r = ( V _p - E _g p * c os d ( a lp ha ) ) + % i *( E _ gp * s i nd ( a l ph a

) ) ;

31   // R e s u lt an t emf a c r o s s t he a rm at u re p er p ha se i n V

/ p h a s e32   E _ r_ m =   abs ( E _ r ) ; // E r m=m ag ni tu de o f E r i n v o l t33   E _ r_ a =   atan ( imag ( E _r ) / real ( E _ r ) ) * 1 8 0 / % p i ; / / E r a =

p h a s e a ng le o f E r i n d e g r e e s34

35   / / c as e c36   Z_s = R_a + %i *X_s ;   / / S y nc h ro n ou s i mp ed an ce i n ohm37   Z _ s_ m =   abs ( Z _ s ) ; / / Z s m=m ag ni tu d e o f Z s i n ohm38   Z _ s_ a =   atan ( imag ( Z _s ) / real ( Z _ s ) ) * 1 8 0 / % p i ; / / Z s a =

p h a s e a ng le o f Z s i n d e g r e e s39

40   I _a = E _r / Z _s ;   / / A rm at ur e c u r r e n t / p h a s e i n A/p h a s e

41   I _ a_ m =   abs ( I _ a ) ; // I a m=m ag ni tu de o f I a i n A42   I _ a_ a =   atan ( imag ( I _a ) / real ( I _ a ) ) * 1 8 0 / % p i ; / / I a a =

p h a s e a ng le o f I a i n d e g r e e s

130

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 132/412

43

44   / / c as e d45   t he ta = I _a _a ;   // Ph ase a n g l e b et we en V p and I ai n d e gr e e s

46   P _ p = V _p * I _a _m * c os d ( th et a );   // Power p e r p h as edrawn by t h e m oto r f ro m t h e b us

47   P_t = 3* P_p ;   // T o t a l p ow er drawn by t h e m ot or f ro mt h e b us

48

49   / / c sa e e50   P _ a = 3 * ( I _ a _ m ) ^ 2 * R _ a ;   // A rm at ur e p ow er l o s s

a t no−l oa d i n W

51   P_d = ( P_t - P _a ) /7 46 ;   // I n t e r n a l d ev el op edh o rs e po w er a t no−l o a d

52

53   // D is pl ay t h e r e s u l t s54   disp ( ”E x ampl e 8−1 S o l u t i on : ” ) ;

55   printf ( ”   \n a : a l p h a = %d d e g r e e s ( e l e c t r i c a ld e g r e e s ) \n” , a lp ha ) ;

56

57   printf ( ”   \n b : E gp = %d V a l so , a s g i ve n ” , E _ g p ) ;

58   printf ( ”   \n E r i n V/ p h a s e = ” ) ; disp ( E _ r ) ;

59   printf (”   \n E r = %. 1 f  

  <

% . 1 f V/ p h a s e   \n”, E _ r _ m ,

E _r _a ) ;

60

61   printf ( ”   \n c : Z s i n ohm/ p ha se = ” ) ; disp ( Z _ s ) ;

62   printf ( ”   \n Z s = %. 2 f    <%. 1 f ohm/pha se   \n” , Z _ s _ m ,

Z _s _a ) ;

63   printf ( ”   \n I a i n A/ p h a s e = ” ) ; disp ( I _ a ) ;

64   printf ( ”   \n I a = %. 2 f    <% . 2 f A/ p h a s e   \n ” , I _ a _ m ,

I _ a _ a ) ;

65

66   printf ( ”   \n d : P p = %. 2 f W/ p h a s e ” , P_ p ) ;

67   printf ( ”   \n P t = %. 2 f W ” , P _ t ) ;68   printf ( ”   \n Note : S l i g h t v a r i a t i o n s i n power

v al u e s i s due t o s l i g h t v a r i a t i o n s ” ) ;

69   printf ( ”   \n i n V p , I a and t h e t a v a l u e sfrom t ho s e o f t he t ex tb oo k \n” ) ;

131

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 133/412

70

71   printf ( ”   \n e : P a = %. f W ” , P_ a ) ;72   printf ( ”   \n P d = %d hp ” , P _ d ) ;

Scilab code Exa 8.2  calculate alpha Er Ia Pp Pt Power loss Pd

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −SYNCHRONOUS MOTORS

7   / / E xa mp le 8−28

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   // 3−   p h a s e Y−c o n n e c te d s y n c h ro n o u s m ot or

13   P = 2 0 ;   // No . o f p o l es14   hp = 40 ;   // power r a t i n g o f t he s yn ch ro no u s motor

i n hp15   V_L = 660 ;   // L i n e v o l t a g e i n v o l t16   beta = 5 ;   / / At no−l o a d , t h e r o t o r i s r e t a r d e d 0 . 5

m e ch a n ic a l d e g r e e f ro m17   / / i t s s yn ch ro no us p o s i t i o n .18   X_s = 10 ;   // S yn ch ro no us r e a c t a n c e i n ohm19   R_a = 1.0 ;   // E f f e c t i v e a rm at ur e r e s i s t a n c e i n ohm20

21   / / C a l c u l a t i o n s22   / / c as e a23   funcprot ( 0 ) ;   // To a v o id t h i s m es sa ge ” Warning :

r e d e f i n i n g f u n c t i o n : b et a ”24   a lp ha = P * ( be ta / 2) ;   // The r o t o r s h i f t from t h e

132

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 134/412

s yn ch ro no us p o s i t i o n i n

25   // e l e c t r i c a l d eg re es .26

27   / / c as e b28   V_p = V_L /   sqrt ( 3 ) ;   // Phase v o l t a ge i n v o l t29   E_gp = V_p ;   / / G en er at ed v o l t a g e / p h a se a t no−l o a d

i n v o l t ( g i ve n )30   E _r = ( V _p - E _g p * c os d ( a lp ha ) ) + % i *( E _ gp * s i nd ( a l ph a

) ) ;

31   E _ r_ m =   abs ( E _ r ) ; // E r m=m ag ni tu de o f E r i n v o l t32   E _ r_ a =   atan ( imag ( E _r ) / real ( E _ r ) ) * 1 8 0 / % p i ; / / E r a =

p h a s e a ng le o f E r i n d e g r e e s

3334   / / c as e c35   Z_s = R_a + %i *X_s ;   / / S y nc h ro n ou s i mp ed an ce i n ohm36   Z _ s_ m =   abs ( Z _ s ) ; / / Z s m=m ag ni tu d e o f Z s i n ohm37   Z _ s_ a =   atan ( imag ( Z _s ) / real ( Z _ s ) ) * 1 8 0 / % p i ; / / Z s a =

p h a s e a ng le o f Z s i n d e g r e e s38

39   I _a = E _r / Z _s ;   / / A rm at ur e c u r r e n t / p h a s e i n A/p h a s e

40   I _ a_ m =   abs ( I _ a ) ; // I a m=m ag ni tu de o f I a i n A41   I _ a_ a =   atan ( imag ( I _a ) / real ( I _ a ) ) * 1 8 0 / % p i ;

/ / I a a =p h a s e a ng le o f I a i n d e g r e e s42

43   / / c as e d44   t he ta = I _a _a ;   // Ph ase a n g l e b et we en V p and I a

i n d e gr e e s45   P _ p = V _p * I _a _m * c os d ( th et a );   // Power p e r p h as e

drawn by t h e m oto r f ro m t h e b us46   P_t = 3* P_p ;   // T o t a l p ow er drawn by t h e m ot or f ro m

t h e b us47

48   / / c sa e e49   P _ a = 3 * ( I _ a _ m ) ^ 2 * R _ a ;   // A rm at ur e p ow er l o s s

a t no−l oa d i n W50   P_d = ( P_t - P _a ) /7 46 ;   // I n t e r n a l d ev el op ed

h o rs e po w er a t no−l o a d

133

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 135/412

51

52   // D is pl ay t h e r e s u l t s53   disp ( ”E x ampl e 8−2 S o l u t i on : ” ) ;

54   printf ( ”   \n a : a l p h a = %d d e g r e e s ( e l e c t r i c a ld e g r e e s ) \n” , a lp ha ) ;

55

56   printf ( ”   \n b : E gp = %d V a l so , a s g i ve n ” , E _ g p ) ;

57   printf ( ”   \n E r i n V/ p h a s e = ” ) ; disp ( E _ r ) ;

58   printf ( ”   \n E r = %d   <% . 1 f V/ p h a s e   \n” , E _ r _ m ,

E _r _a ) ;

59

60   printf ( ”   \n c : Z s i n ohm/ p ha se = ” ) ; disp ( Z _ s ) ;

61   printf ( ”   \n Z s = %. 2 f    <%. 1 f ohm/pha se   \n” , Z _ s _ m ,Z _s _a ) ;

62   printf ( ”   \n I a i n A/ p h a s e = ” ) ; disp ( I _ a ) ;

63   printf ( ”   \n I a = %. 2 f    <% . 2 f A/ p h a s e   \n ” , I _ a _ m ,

I _ a _ a ) ;

64

65   printf ( ”   \n d : P p = %. 2 f W/ p h a s e ” , P_ p ) ;

66   printf ( ”   \n P t = %. 2 f W ” , P _ t ) ;

67   printf ( ”   \n Note : S l i g h t v a r i a t i o n s i n powerv al u e s i s due t o s l i g h t v a r i a t i o n s ” ) ;

68   printf (”   \n i n V p , I a and t h e t a v a l u e sfrom t ho s e o f t he t ex tb oo k \n” ) ;

69

70

71   printf ( ”   \n e : P a = %. f W ” , P_ a ) ;

72   printf ( ”   \n P d = %. 1 f hp ” , P _ d ) ;

Scilab code Exa 8.3  calculate Ia PF hp

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

134

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 136/412

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 137/412

33   I _ap1 = E _ra / Z_s ;   / / A rm at ur e c u r r e n t / p h a s e i n A

/ p h a s e34   I _ a p1 _ m =   abs ( I _ a p 1 ) ; / / I ap 1 m=m ag ni tu de o f I a p 1 i nA

35   I _ a p1 _ a =   atan ( imag ( I _ ap 1 ) / real ( I _ a p 1 ) ) * 1 8 0 / % p i ; //I a p 1 a=p h a s e a n g l e o f I a p 1 i n d e g r e e s

36

37   c o s _ t h et a _ a = c o sd ( I _ a p 1 _ a ) ;   // Power f a c t o r38   I a _m 1 =   abs ( I _ a p 1 _ m ) ;   // A b so u l te v a l u e o f m ag ni tu de

o f I a p 139

40   P _d 1 = 3 * ( E _g p_ a * Ia _m 1 ) * c os d (1 60 - I _a p1 _a ) ;   //

// I n t e r n a l d ev el op ed power i n W41   // 160 + I a p 1 a i s t he a ng l e be tw e en E g p a and

I a p 142   P d1 =   abs ( P _ d 1 ) ;   // C on si de r a b s o lu t e v al ue o f power

i n W f o r c a l c u l a t i n g hp43

44   H or se _p ow er 1 = Pd 1 / 746 ;   // H o rs e po w er d e v e l o p e dby t he a rm at ur e i n hp

45

46   / / c as e b47   E _r b = ( V _p - E _g p_ b * c os d ( al ph a )) + %i * ( E_ gp _b *

s i n d ( a l p h a ) ) ;

48   E _ r b_ m =   abs ( E _ r b ) ; / / E r b m=m ag n it ud e o f E rb i nv o l t

49   E _ r b_ a =   atan ( imag ( E _r b ) / real ( E _ r b ) ) * 1 8 0 / % p i ; //E rb a=p ha se a n gl e o f E rb i n d e gr e e s

50

51   I _ap2 = E _rb / Z_s ;   / / A rm at ur e c u r r e n t / p h a s e i n A/ p h a s e

52   I _ a p2 _ m =   abs ( I _ a p 2 ) ; / / I ap 2 m=m ag ni tu de o f I a p 2 i nA

53   I _ a p2 _ a =   atan ( imag ( I _ ap 2 ) / real ( I _ a p 2 ) ) * 1 8 0 / % p i ; //I a p 2 a=p h a s e a n g l e o f I a p 2 i n d e g r e e s

54

55   c o s _ t h et a _ b = c o sd ( I _ a p 2 _ a ) ;   // Power f a c t o r56   I a _m 2 =   abs ( I _ a p 2 _ m ) ;   // A b so u l te v a l u e o f m ag ni tu de

136

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 138/412

o f I a p 2

5758   P _d 2 = 3 * ( E _g p_ b * Ia _m 2 ) * c os d (1 60 - I _a p2 _a ) ;   //

// I n t e r n a l d ev el op ed power i n W59   / / 1 60 + I a p 2 a i s t he a ng l e be tw e en E g p b and

I a p 260   P d2 =   abs ( P _ d 2 ) ;   // C on si de r a b s o lu t e v al ue o f power

i n W f o r c a l c u l a t i n g hp61

62   H or se _p ow er 2 = Pd 2 / 746 ;   // H o rs e po w er d e v e l o p e dby t he a rm at ur e i n hp

63

64   / / c as e c65   E _r c = ( V _p - E _g p_ c * c os d ( al ph a )) + %i * ( E_ gp _c *

s i n d ( a l p h a ) ) ;

66   E _ r c_ m =   abs ( E _ r c ) ; // E rc m=m ag ni tu de o f E r c i nv o l t

67   E _ r c_ a =   atan ( imag ( E _r c ) / real ( E _ r c ) ) * 1 8 0 / % p i ; //E r c a=p h a se a ng l e o f E rc i n d e g r e e s

68

69   I _ap3 = E _rc / Z_s ;   / / A rm at ur e c u r r e n t / p h a s e i n A/ p h a s e

70   I _ a p3 _ m =   abs ( I _ a p 3 ) ;/ / I ap 3 m=m ag ni tu de o f I a p 3 i nA

71   I _ a p3 _ a =   atan ( imag ( I _ ap 3 ) / real ( I _ a p 3 ) ) * 1 8 0 / % p i ; //I a p 3 a=p h a s e a n g l e o f I a p 3 i n d e g r e e s

72

73   c o s _ t h et a _ c = c o sd ( I _ a p 3 _ a ) ;   // Power f a c t o r74   I a _m 3 =   abs ( I _ a p 3 _ m ) ;   // A b so u l te v a l u e o f m ag ni tu de

o f I a p 375

76   P _d 3 = 3 * ( E _g p_ c * Ia _m 3 ) * c os d (1 60 - I _a p3 _a ) ;   //// I n t e r n a l d ev el op ed power i n W

77   / / 1 60 + I a p 3 a i s t h e a ng le be tw e en E g p c andI a p 3

78   P d3 =   abs ( P _ d 3 ) ;   // C on si de r a b s o lu t e v al ue o f poweri n W f o r c a l c u l a t i n g hp

79

137

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 139/412

80   H or se _p ow er 3 = Pd 3 / 746 ;   // H o rs e po w er d e v e l o p e d

by t he a rm at ur e i n hp81

82   // D is pl ay t h e r e s u l t s83   disp ( ”E x ampl e 8−3 S o l u t i on : ” ) ;

84   disp ( ” S l i g h t v a r i a t i o n s i n power v a l ue s a re b ec au seo f non−a p p ro x i ma t i on o f I a & c o s ( E gp , I a )v a l u es d ur in g p ower c a l c u l a t i o n s i n s c i l a b ” )

85   printf ( ”   \n a : V p = %. f    <0 V   \n ” , V _ p ) ;

86   printf ( ”   \n E r i n V = ” ) ; disp ( E _ r a ) ;

87   printf ( ”   \n E r = %. 2 f    <%. 2 f V   \n ” , E _ r a _ m , E _ r a _ a

) ;

88   printf ( ”   \n I a p i n A = ” ) ; disp ( I _ a p 1 ) ;89   printf ( ”   \n I a p = %. 2 f    <%. 2 f A   \n” , I _a p1 _m ,

I _ ap 1 _a ) ;

90   printf ( ”   \n c os ( t he ta ) = %. 4 f l a g g i n g   \n ” ,

c o s _t h e t a_ a ) ;

91   printf ( ”   \n P d = %d W drawn f ro m b us ( mo to ro p e r a t i o n ) \n” , P_d1 ) ;

92   printf ( ”   \n H o r s ep o we r = %. 1 f hp   \n\n” ,

H o r se _ p o we r 1 ) ;

93

94   printf (”   \n b : E r i n V = ”

) ; disp ( E _ r b ) ;

95   printf ( ”   \n E r = %. 2 f    <%. 2 f V   \n ” , E _ r b _ m , E _ r b _ a

) ;

96   printf ( ”   \n I a p i n A = ” ) ; disp ( I _ a p 2 ) ;

97   printf ( ”   \n I a p = %. 2 f    <%. 2 f A   \n” , I _a p2 _m ,

I _ ap 2 _a ) ;

98   printf ( ”   \n c o s ( t h e t a ) = %. 4 f = %. f ( u n i t y PF )   \n” , c o s_ t he t a_ b , c o s _ th e t a _b ) ;

99   printf ( ”   \n P d = %d W drawn f ro m b us ( mo to ro p e r a t i o n ) \n” , P_d2 ) ;

100   printf ( ”   \n H o r s ep o we r = %. 1 f hp   \n\n” ,

H o r se _ p o we r 2 ) ;101

102   printf ( ”   \n c : E r i n V = ”) ; disp ( E _ r c ) ;

103   printf ( ”   \n E r = %. 2 f    <%. 2 f V   \n ” , E _ r c _ m , E _ r c _ a

) ;

138

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 140/412

104   printf ( ”   \n I a p i n A = ” ) ; disp ( I _ a p 3 ) ;

105   printf ( ”   \n I a p = %. 2 f    <

%. 2 f A   \n” , I _a p3 _m ,I _ ap 3 _a ) ;

106   printf ( ”   \n c os ( t he ta ) = %. 4 f l e ad i n g   \n ” ,

c o s _t h e t a_ c ) ;

107   printf ( ”   \n P d = %d W drawn f ro m b us ( mo to ro p e r a t i o n ) \n” , P_d3 ) ;

108   printf ( ”   \n H o r s ep o we r = %. 1 f hp   \n\n” ,

H o r se _ p o we r 3 ) ;

Scilab code Exa 8.4  calculate IL Iap Zp IaZp theta deba Egp

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −SYNCHRONOUS MOTORS

7   / / E xa mp le 8−4

89   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   // Y−c o n n e c t e d s y n c h r o n o u s dynamo13   P = 2 ;   // No . o f p o l e s14   h p = 1000 ;   // power r a t i n g o f t he s yn ch ro no u s motor

i n hp15   V _L = 6000 ;   // L i ne v o l t a ge i n v o l t

16   f = 6 0 ;   // F re qu en cy i n Hz17   R _a = 0.52 ;   // E f f e c t i v e a rm at u re r e s i s t a n c e i n ohm18   X_s = 4.2 ;   // S yn ch ro n ou s r e a c t a n c e i n ohm19   P_t = 811 ;   // I n p ut p ow er i n kW20   P F = 0.8 ;   // Power f a c t o r l e a d i ng

139

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 141/412

21

22   / / C a l c u l a t i o n s23   V_p = V_L /   sqrt ( 3 ) ;   // Phase v o l t a ge i n v o l t24

25   / / c as e a26   c o s_ th et a = P F ;   // Power f a c t o r l e a d i n g27   I_L = ( P_t * 10 00 ) / (   sqrt ( 3) * V _L * c os _t he ta ) ;   //

L in e a rm at ur e c u r r e n t i n A28   I_ap = I_L ;   // Pha se a rm at ur e c u r r e n t i n A29

30   / / c as e b31   Z_p = R_a + %i * X_s ;   // I mp ed an ce p e r p h as e i n ohm

32   Z _ p_ m =   abs ( Z _ p ) ; / / Z p m=m ag n it ud e o f Z p i n ohm33   Z _ p_ a =   atan ( imag ( Z _p ) / real ( Z _ p ) ) * 1 8 0 / % p i ; / / Z p a =

p h a se a n g l e o f Z p i n d e gr e e s34

35   / / c as e c36   Ia_Zp = I_L * Z_p_m ;

37   E_r = Ia_Zp ;

38

39   / / c as e d40   t he ta = a co sd ( 0 . 8) ;   // Power f a c t o r a n gl e i n d e g re e s41

42   / / c as e e43   funcprot ( 0 ) ;   // U se t o a vo i d t h i s m es sa ge ” W arning

: r e d e f i n i n g f u n c t i o n : b e t a ” .44   be ta = Z _p_ a ;   //45   de ba = be ta + th et a   // D i f f e r e n c e a ng le a t 0 . 8

l e a d i ng PF i n d e g re e s46

47   / / c as e f  48   / / G en er a te d v o l t a g e / p ha se i n v o l t49   E _ g p_ f =   sqrt ( ( E _r ) ^2 + ( V _p ) ^2 - 2* E _r * V _p * c os d (

d eb a ) ) ;50

51   / / c as e g52   / / G en er a te d v o l t a g e / p ha se i n v o l t53   E_g p_g = ( V_p + Ia_Zp * cosd (180 - deba ) ) + %i * (

140

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 142/412

I a_ Zp * s in d ( 18 0 - d e ba ) ) ;

54   E _ g p _g _ m =   abs ( E _ g p _ g ) ; / / E g p g m=m a g ni t ud e o f  E g p g i n v o l t55   E _ g p _g _ a =   atan ( imag ( E _ gp _g ) / real ( E _ g p _ g ) ) * 1 8 0 / % p i ;

// E g p g a=p ha se a n gl e o f E gp g i n d e g re e s56

57   / / c as e h58   Ia Zp = I a_Z p *   expm ( %i * Z _p _a * ( %pi / 18 0) ) ;   //

v o l t a ge g e n er at ed by a l t e r n a t o r 1 i n v o l t59   I a Z p_ m =   abs ( I a Z p ) ; / / Ia Zp m=m ag n it ud e o f I aZ p i n A60   I a Z p_ a =   atan ( imag ( I aZ p ) / real ( I a Z p ) ) * 1 8 0 / % p i ; //

I a Zp a=p ha se a n g l e o f Ia Zp i n d e g r e es

61   I a R a = I a Zp _ m * c o sd ( I a Z p _ a ) ;   // R e a l p ar t o f IaZp62   I a X s = I a Zp _ m * s i nd ( I a Z p _ a ) ;   // I ma gi ne ry p ar t o f  

IaZp63

64   c o s_ th et a = P F ;   //65   s i n _ th e t a =   sqrt ( 1 - ( c os _t he ta ) ^2 ) ;

66   / / G en er a te d v o l t a g e / p ha se i n v o l t67   E_g p_h = ( V_p * c os _t he ta - IaRa ) + %i * ( V_p *

s i n_ t he t a + I aX s ) ;

68   E _ g p _h _ m =   abs ( E _ g p _ h ) ; / / E g p h m=m a g ni t ud e o f  

E gp h i n v o l t69   E _ g p _h _ a =   atan ( imag ( E _ gp _h ) / real ( E _ g p _ h ) ) * 1 8 0 / % p i ;

// E g p h a=p ha se a n gl e o f E gp h i n d e g re e s70

71   // D is pl ay t h e r e s u l t s72   disp ( ”E x ampl e 8−4 S o l u t i on : ” ) ;

73   printf ( ”   \n a : I L = %. 2 f    \n I a p = %. 2 f A   \n” ,

I_L , I _a p ) ;

74

75   printf ( ”   \n b : Z p i n ohm = ” ) ; disp ( Z _ p ) ;

76   printf ( ”   \n Z p = %. 3 f    <%.2 f ohm   \n ” , Z_p_m ,

Z _p _a ) ;77

78   printf ( ”   \n c : I aZ p = %. 1 f V   \n E r = %. 1 f V   \n ”, Ia _Z p , E_r ) ;

79

141

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 143/412

80   printf ( ”   \n d : Power f a c t o r a ng le , \ n t h e t a = %. 2 f  

d e g re e s l e a d i ng   \n ” , t he ta ) ;81

82   printf ( ”   \n e : D i f f e r e n c e a ng le , \ n deba = %. 2 f  d e g r e e s   \n ” , deba ) ;

83

84   printf ( ”   \n f : E gp = %. f V   \n ” , E _g p_ f ) ;

85

86   printf ( ”   \n g : E gp i n V = ”) ; disp ( E _ gp _g ) ;

87   printf ( ”   \n E gp = %d   <%. 2 f V   \n” , E _ gp _g _ m ,

E _ gp _ g_ a ) ;

88

89   printf ( ”   \n h : E gp i n V = ” ) ; disp ( E _ g p _ h ) ;90   printf ( ”   \n E gp = %. f    <%. 2 f V” ,E_g p_h_m ,

E _ gp _ h_ a ) ;

Scilab code Exa 8.5   calculate torque angle

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −SYNCHRONOUS MOTORS

7   / / E xa mp le 8−58

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   // Y−c o n n e c t e d s y n c h r o n o u s dynamo13   P = 2 ;   // No . o f p o l e s14   h p = 1000 ;   // power r a t i n g o f t he s yn ch ro no u s motor

i n hp

142

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 144/412

15   V _L = 6000 ;   // L i ne v o l t a ge i n v o l t

16   f = 6 0 ;   // F re qu en cy i n Hz17   R _a = 0.52 ;   // E f f e c t i v e a rm at u re r e s i s t a n c e i n ohm18   X_s = 4.2 ;   // S yn ch ro n ou s r e a c t a n c e i n ohm19   P_t = 811 ;   // I n p ut p ow er i n kW20   P F = 0.8 ;   // Power f a c t o r l e a d i ng21

22   / / C a lc u la t ed v a l ue s23   E _gp = 36 87 ;   / / G en er at ed v o l t a g e / p ha se i n v o l t24   V_p = V_L /   sqrt ( 3 ) ;   // Phase v o l t a ge i n v o l t25   E_r = 412.8 ;   // R e s u l t a n t EMF a c r o s s a r ma t ur e / p h a s e

i n v o l t

26   de ba = 1 19 .8 1 ;   // D i f f e r e n c e a ng l e a t 0 . 8 l e a d i n gPF i n d e g r e es

27   t he ta = 3 6. 87 ;   // Power f a c t o r a n gl e i n d e g re e s28   Ia Xs = 4 09. 7 ;   // V o lt ag e d ro p a c r o s s s yn ch ro no u s

r e a c t a nc e i n v o l t29   Ia Ra = 5 0.7 4 ;   // V o lt ag e d ro p a c r o s s a rm at ur e

r e s i s t a n c e i n v o l t30

31   / / C a l c u l a t i o n s32

33  // Torque a n gl e a lp ha i n d e gr e e s c a l c u l a t e d byd i f f e r e n t Eqns

34   / / c as e a35   alp ha1 = acosd ( ( E_gp ^2 + V_p ^2 - E_r ^2 ) / ( 2*

E _g p * V_ p ) ) ;   // Eq . 8 −1236

37   / / c as e b38   alp ha2 = asind ( ( E_r * sind ( deba ) ) / ( E_gp ) ) ;

// Eq . 8 −1339

40   / / c as e c

41   a lp ha 3 = t he ta - a ta nd ( ( V_ p * si nd ( t he ta ) + I aX s ) / (V _p * c o sd ( t h et a ) - I aR a ) ) ; / / Eq . 8−14

42

43   // D is pl ay t h e r e s u l t s44   disp ( ”E x ampl e 8−5 S o l u t i on : ” ) ;

143

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 145/412

45   printf ( ”   \n a : U si ng Eq . (8 − 1 2 )   \n a l p h a = %. 2 f  

d e g r e e s   \n ” , a lp ha 1 ) ;46

47   printf ( ”   \n b : U s in g Eq . ( 8 − 1 3 )   \n a l p h a = %. 2 f  d e g r e e s   \n ” , a lp ha 2 ) ;

48

49   printf ( ”   \n c : U si ng Eq . (8 − 1 4 )   \n a l p h a = %. 2 f  d e g r e e s   \n ” , a lp ha 3 ) ;

50   printf ( ”   \n S l i g h t v a r i a t i o n i n c a s e c a l p h a i sdue t o t a n i n v e r s e v al ue ” ) ;

51   printf ( ”   \n whi ch was c a l u l a t e d t o be 42 .4 45 60 4d e g r ee s , i n s t e a d o f 4 2 . 4 4 d e g r e e s ( t e xt b o ok ) . ” )

Scilab code Exa 8.6  calculate Pp Pt hp internal and external torque andmotor efficiency

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

56   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −

SYNCHRONOUS MOTORS7   / / E xa mp le 8−68

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G ive n d at a a s p e r Example 8−412   // Y−c o n n e c t e d s y n c h r o n o u s dynamo

13   P = 2 ;   // No . o f p o l e s14   h p = 1000 ;   // power r a t i n g o f t he s yn ch ro no u s motori n hp

15   V _L = 6000 ;   // L i ne v o l t a ge i n v o l t16   f = 6 0 ;   // F re qu en cy i n Hz

144

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 146/412

17   R _a = 0.52 ;   // E f f e c t i v e a rm at u re r e s i s t a n c e i n ohm

18   X_s = 4.2 ;   // S yn ch ro n ou s r e a c t a n c e i n ohm19   P_t = 811 ;   // I n p ut p ow er i n kW20   P F = 0.8 ;   // Power f a c t o r l e a d i ng21

22   / / C a l c u l a t e d v a l u e s f ro m E xample 8−423   E _gp = 36 87 ;   / / G en er at ed v o l t a g e / p ha se i n v o l t24

25   I_a = 97.55 ;   // Phas e a rm at ur e c u r r e nt i n A26

27   p hi = ( 42 .4 5 - 0) ;   // P ha se a n g l e b et we en E g p andI a i n d eg r e es

28   / / where 4 2 .4 5 and 0 a r e p ha se a n g l es o f E gp andI a i n d e g r e e s r e s p e c t i v e l y .

29

30   / / C a l c u l a t i o n s31   / / c as e a32   P_p = E _g p * I _a * c osd ( phi ) / 1 00 0;   / / M e c ha n i c al

p ower d e v el o p e d p er p ha s e i n kW33

34   P_t_a = 3 * P_p ;   // T o ta l m e ch a n ic a l po werd e v e l o p e d i n kW

35

36   / / c as e b37   P _t _b = P _t _a / 0 .7 46 ;   // I n t e r n a l power d e ve l op e d

i n hp a t r at ed l oa d38

39   / / c as e c40   S = 120 * f / P ;   // Sp eed o f t he motor i n rpm41   T_int = ( P_t_b * 5252 ) / S ;   // I n t e r n a l t or qu e

d e ve l op e d i n l b− f t42

43   / / c as e d

44   T_ext = ( hp * 5252 ) / 3600 ;   // E x te r na l t o rq u ed e ve l op e d i n l b− f t

45   eta = ( T_ext / T_int ) * 100 ;   // Motor e f f i c i e n c y i np e r c e n t

46

145

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 147/412

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 148/412

12   P _o = 2000 ;   // T ot al power consumed by a f a c t o r y i n

kW fr om t h e t r a n s f o r m e r13   c os _t he ta = 0 .6 ;   // 0 . 6 l a g g i n g power f a c t o r a tw hi c h p ow er i s c on su me d   −

14   //   −   fro m t he t r a n s f or m e r15   s i n _ th e t a =   sqrt ( 1 - ( c o s _t h et a ) ^ 2) ;

16   t he ta = - a co sd ( 0 . 6) ;   // power f a c t o r a n gl e a t whichp ow er i s c on su me d   −

17   //   −   f rom t he t r an s f or m e r i n d e gr e e s18

19   V _L = 6000 ;   // Pr imary l i n e v o l t a ge o f at r an s f o r me r i n v o l t

2021   P = 750 ;   // kW e xp ec te d t o be d e l i v e r e d by t he dc

motor−g e n e r a t o r22

23   h p = 1000 ;   / / hp r a t i n g o f t he motor ( i n d u c t i o n o rs y n c h r o n o u s )

24   V _L _m = 60 00 ;   / / L in e v o l t a g e o f a s yn ch ro n ou s ( o ri n d u c t i on ) motor i n v o l t

25   c os _t he ta _s m = 0 .8 ;   // 0 . 8 l e ad i n g power f a c t o r o f  t h e s y n c h ro n o u s m ot or

26   t h et a_ s m = a co sd ( 0 . 8) ;  // power f a c t o r a ng l e o f t h es y nc h ro n o us m ot or i n d e g r e e s

27

28   c os _t he ta _i m = 0 .8 ;   // 0 . 8 l a g g i n g power f a c t o r o f  t he i n d u c t i o n motor

29   t h et a_ i m = - a co sd ( 0 . 8) ;   // power f a c t o r a ng l e o f t h ei n d u c t i o n motor i n d e g r e es

30

31   e ta = 0.92 ;   // E f f i c i e n c y o f e a ch motor32

33   / / C a l c u l a t i o n s

34   // c a s e a : u s i ng I n d u ct i o n Motor ( IM )35   P_m = ( hp * 746 ) / eta ;   / / I n d u c t i o n ( o r

s y nc h ro n o us ) m oto r l o a d i n W36   I_1 = P_m / (   sqrt ( 3) * V _L _m * c os _t he ta _i m ) ;   //

L ag g in g c u r r e n t drawn by IM i n A

147

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 149/412

37

38   I _1 _p ri me = P_o * 1 00 0 / (   sqrt ( 3) * V _L * c os _t he ta) ;   // O r i g i n al l a g g i n g   −39   //   −   f a c t o r y l oa d c u r r e n t i n A40

41   / / T ot al l oa d c u r r e nt i n A u si n g I n du c ti o n Motor :42   I _T M = I _1 * ( c os d ( t he t a_ i m ) + % i * si nd ( t h e ta _ im ) ) +

I _ 1 _p r i me * ( c o s d ( t h e ta ) + % i * s i nd ( t h e t a ) ) ;

43   I _ T M_ m =   abs ( I _ T M ) ; / /I TM m = m ag ni tu d e o f I TM i n A44   I _ T M_ a =   atan ( imag ( I _T M ) / real ( I _ T M ) ) * 1 8 0 / % p i ; //

I TM a=p ha se a n g l e o f I TM i n d e g r e es45

46   P F_ im = c os d ( I _T M_ a ) ;   // O v e ra l l PF u s i n g i n d u c t i o nmotor

47

48   // c a s e b : u s i ng s yn ch ro n ou s motor49   I_s1 = P_m / (   sqrt ( 3) * V _L _m * c os _t he ta _s m ) ;   //

L ag g in g c u r r e n t drawn by IM i n A50

51   / / T ot al l oa d c u r r e nt i n A u s i n g s yn ch ro no us motor :52   I _T SM = I _s 1 * ( co sd ( t h e ta _ sm ) + % i * si nd ( t h e ta _ sm ) ) +

I _ 1 _p r i me * ( c o s d ( t h e ta ) + % i * s i nd ( t h e t a ) ) ;

53   I _ T SM _ m =   abs ( I _ T S M ) ;/ / I TSM m = m a g ni t ud e o f I TSMi n A

54   I _ T SM _ a =   atan ( imag ( I _ TS M ) / real ( I _ T S M ) ) * 1 8 0 / % p i ; //I TSM a=p ha se a n g l e o f I TSM i n d e g r e e s

55

56   P F_ sm = c os d ( I _T S M_ a ) ;   // O v e ra l l PF u s i ngS y n c hr o n o u s m ot or

57

58   / / c as e c59   p er ce nt _I _L = ( I _T M_ m - I _T SM _m ) / I _T M_ m * 100 ;

// P er ce nt r e du c t io n i n   −

60   //   −   t o t a l l oa d c u rr e n t i n p e r c e nt61

62   // D is pl ay t h e r e s u l t s63   printf ( ” Note : c a se a , I 1 c a l c u l a t e d i s ar ound 9 7 .5 3

A i n s t e a d o f 4 7 . 5 3 A( t e x tb o o k ) . \ n” )

148

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 150/412

64   printf ( ” Note : c a se b , A ct ua l I s 1 i ma gi na ry p ar t i s

around 5 8. 5 2 i n s t e ad o f ” ) ;65   printf ( ”   \n 5 2 . 5 2 ( t e x t b o o k ) s o s l i g h tv a r i a t i o n i n I TSM and p e rc e n t ” )

66   printf ( ”   \n r e d u c t i o n i n t o t a l l o a d c u r r e n t . \n” )

67

68   disp ( ”E x ampl e 8−7 S o l u t i on : ” ) ;

69   printf ( ”   \n a : I n d u c t i o n ( o r s u nc h ro n ou s ) mo to r l o a d ”) ;

70   printf ( ”   \n P m = %. f W ” , P _ m ) ;

71   printf ( ”   \n L a g gi ng c u r r e n t drawn by t he IM = I 1 ”

) ;72   printf ( ”   \n I 1 = %. 2 f    <−%. 2 f A   \n” , I _ 1 , a c o s d (

c o s _ t h e t a _ s m ) ) ;

73   printf ( ”   \n I 1 i n A = ” ) ; disp ( I _ 1 * c o s d ( - 3 6 . 8 7 ) +

% i * I _ 1 * s i n d ( - 3 6 . 8 7 ) ) ;

74   printf ( ”   \n O r i g i n al l a g g i ng f a c t o r y l o a d c u r r e n t= I 1 p r i me ” ) ;

75   printf ( ”   \n I 1 p r i m e i n A = ” ) ; disp ( I _ 1 _ p r i m e *

c o s d ( t h e t a ) + % i * I _ 1 _ p r i m e * s i n d ( t h e t a ) ) ;

76   printf ( ”   \n I 1 p r i m e = %. 1 f    <−%. 2 f A   \n” ,

I _ 1 _ pr i m e , a c o s d ( c o s _ t h e t a ) ) ;

77   printf ( ”   \n T o t a l l o a d c ur re nt = motor l oa d +f a c t o r y l oa d ”) ;

78   printf ( ”   \n I TM = I 1 + I 1 p r i m e \n” ) ;

79   printf ( ”   \n I TM i n A = ” ) ; disp ( I _ T M ) ;

80   printf ( ”   \n I TM = %. 1 f    <%. 1 f A   \n ” , I _ TM _m ,

I _T M_ a ) ;

81   printf ( ”   \n O ve ra l l sy s t e m PF = %. 4 f l a g g i n g   \n ”, PF _i m ) ;

82

83   printf ( ”   \n b : S y nc h ro n o us m ot or l o a d \n I s 1 = %

. 2 f    <%. 2 f A\n” , I _ 1 , a c o s d ( c o s _ t h e t a _ s m ) ) ;84   printf ( ”   \n I s 1 i n A = ” ) ; disp ( I _ s 1 * c o s d ( 3 6 . 8 7 ) +

% i * I _ s 1 * s i n d ( 3 6 . 8 7 ) ) ;

85   printf ( ”   \n T o t a l l o a d c u rr e n t : I TSM = I s 1 +I 1 p r i m e   \n” ) ;

149

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 151/412

86   printf ( ”   \n I TSM i n A = ” ) ; disp ( I _ T S M ) ;

87   printf ( ”   \n I TSM = %. 1 f    <

%. 1 f A   \n ” , I _T S M_ m ,I _ TS M _a ) ;

88   printf ( ”   \n O ve ra l l sy s t e m PF = %. 1 f l a g g i n g   \n ”, PF _s m ) ;

89

90   printf ( ”   \n c : P er ce nt r e d u ct i o n i n t o t a l l oa dc u r r e n t = %. 1 f p e r c e n t   \n” , p e r c e n t _ I _ L ) ;

91

92   printf ( ”   \n d : PF i mp ro ve me nt : U s in g t h e s y n c h ro n o u smotor ( i n l i e u o f t he IM ) ” ) ;

93   printf ( ”   \n r a i s e s t h e t o t a l s y s t e m PF from %. 4 f  

l a g g i n g t o %. 1 f l a g g i n g . ” , P F _ i m , P F _ s m ) ;

Scilab code Exa 8.8  calculate Tp and hp

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

56   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −

SYNCHRONOUS MOTORS7   / / E xa mp le 8−88

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta f ro m Ex .8 −3 a12   // 3−   p h a s e Y−c o n n e c te d s y n c h ro n o u s m ot or

13   P = 6 ;   // No . o f p o l e s14   hp = 50 ;   // power r a t i n g o f t he s yn ch ro no u s motori n hp

15   V_L = 440 ;   // L i n e v o l t a g e i n v o l t16   X_s = 2.4 ;   // S yn ch ro n ou s r e a c t a n c e i n ohm

150

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 152/412

17   R_a = 0.1 ;   // E f f e c t i v e a rm at ur e r e s i s t a n c e i n ohm

18   alpha = 20 ;   // The r o t o r s h i f t from t he s yn ch ro no usp o s i t i o n i n19   // e l e c t r i c a l d eg re es .20   E_gp = 240 ;   // G en er at ed v o l t a g e / p h a se i n v o l t when

t h e m o to r i s u nd er −e x c i t e d21   f = 6 0 ;   // F re qu en cy i n Hz22

23   / / C a l c u l a t e d v a l u e s f ro m E xample 8−3a24   V_p = 254 ;   // Phase v o l t a g e i n v o l t25

26   / / C a l c u l a t i o n s

27   / / c as e a28   / / To rq ue d e v el o p ed p e r p ha s e U si ng Eq .( 8 −1 7 a )29   S = 120 * f / P ;   // Sp eed o f t he motor i n rpm30   T_p = ( 7.04 * E_gp * V_p ) / ( S *X_s ) * sind ( alpha )

;

31

32   / / c as e b33   / / T ot al h or se po we r d e ve l op e d u s i ng p a rt a34   H o rs e po w er = ( 3 * T_ p * S ) / 52 52 ;

35

36  // D is pl ay t h e r e s u l t s37   disp ( ”E x ampl e 8−8 S o l u t i on : ” ) ;

38   printf ( ”   \n From g i v en and c a l c u l a t e d d at a o f Ex.8 −3a , \ n” ) ;

39   printf ( ”   \n a : T p = %. 2 f l b−f t   \n ” , T _ p ) ;

40

41   printf ( ”   \n b : H o rs ep o we r = %. 1 f hp ” , H or se po we r ) ;

Scilab code Exa 8.9   calculate original kvar and kvar correction and kVAand Io and If and power triangle

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

151

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 153/412

3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −SYNCHRONOUS MOTORS

7   / / E xa mp le 8−98

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P _o = 2000 ;   // T ot al power consumed by a f a c t o r y i n

kW13   c os _t he ta = 0 .6 ;   // 0 . 6 power f a c t o r a t w hi ch

p ow er i s c on su me d14   s i n _ th e t a =   sqrt ( 1 - ( c os _t he ta ) ^2 ) ;

15   V = 6000 ;   // L i ne v o l t a ge i n v o l t16   / / S y n c h r o no u s c a p ac i t o r i s us e d t o r a i s e t he

o v e r a l l PF t o u ni t y17   P _l os s_ ca p = 2 75 ;   // S yn ch ro no us c a p a c i t o r l o s s e s

in kW18

19  / / C a l c u l a t i o n s20   / / c as e a

21   S _o _c on ju ga te = P _o / c os _t he ta ;   // a p p a r en tc o mp l ex p ow er i n kW

22   j Q_ o = S _o _c on ju ga te * s in _t he ta ;   // O r i g i na lk i l o v a r s o f l a g g i n g l oa d

23

24   / / c as e b25   jQ _c = - jQ_ o ;   // K i lo v ar s o f c o r r e c t i o n ne e d e d t o

b r i ng t he PF t o u n it y26

27   / / c as e c28   R = P _l os s_ ca p ;   // S yn ch ro no us c a p a c i t o r l o s s e s i n

kW29   S _c _c on ju ga te = R - %i * (   abs ( j Q _ c ) ) ;   / / kVA r a t i n g

o f t he s yn ch ro no us c a p a c i t o r

152

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 154/412

30   S _ c _ c o n j ug a t e _ m =   abs ( S _ c _ c o n j u g a t e ) ; //

S c c o nj u ga t e m = m agn itu de o f S c c o n j u ga t e i nkVA31   S _ c _ c o n j ug a t e _ a =   atan ( imag ( S _ c _ c o nj u g a te ) / real (

S _ c _ c o n j u g a t e ) ) * 1 8 0 / % p i ;

32   // S c c o n j u g a t e a =p ha se a n gl e o f S c c o n j u g a t e i nd e g r e e s

33   P F = c o sd ( S _ c _ co n j u ga t e _ a ) ;   // Power f a c t o r o f t hes y nc h ro n o us c a p a c i t o r

34

35   / / c as e d36   I_o = S _o _c on ju ga te * 1 000 / V ;   // O r i g i na l c u r r e nt

drawn f ro m t h e m ai ns i n A37

38

39   / / c as e e40   P_f = P_o + P _l os s_ ca p ;   // T o t a l p ow er i n kW41   S_f = P_f ;   // T o ta l a p pa r en t p ower i n kW42   S _ f_ m =   abs ( S _ f ) ; // S f m = magni t ude o f S f i n A43   S _ f_ a =   atan ( imag ( S _f ) / real ( S _ f ) ) * 1 8 0 / % p i ; / / S f a =

p h a s e a ng le o f S f i n d e g r e es44

45   I_f = S_f * 1000 / V ;  // F i n al c u r r e nt drawn fro mt h e mai ns a f t e r c o r r e c t i o n i n A

46

47   // D is pl ay t h e r e s u l t s48   disp ( ”E x ampl e 8−9 S o l u t i on : ” ) ;

49   printf ( ”   \n a : S∗ o = %d kVA   \n” , S _ o_ c on j ug a te ) ;

50   printf ( ”   \n +jQo i n k v a r = ” ) ; disp ( % i * j Q _ o ) ;

51

52   printf ( ”   \n b :   − jQc i n k v a r = ”   ) ; disp ( % i * j Q _ c ) ;

53

54   printf ( ”   \n c : S∗ c i n kVA = ”) ; disp ( S _ c _ c o n j u g a t e ) ;

55   printf ( ”   \n S∗ c = %. f    <%.1 f kVA   \n” ,S _ c _ co n j u ga t e _ m , S _ c _ co n j u ga t e _ a ) ;

56   printf ( ”   \n PF = %. 3 f l ea di ng   \n” , PF ) ;

57

58   printf ( ”   \n d : I o = %. 1 f A   \n ” , I_ o ) ;

153

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 155/412

59

60   printf ( ”   \n e : S f i n A = ”) ; disp ( S _ f ) ;61   printf ( ”   \n S f = %d   <%d kVA   \n”   , S _f _m , S_ f_ a

) ;

62   printf ( ”   \n I f = %. 1 f A   \n ” , I _f ) ;

63

64   printf ( ”   \n f : S ee F ig . 8 − 2 5 . ” ) ;

Scilab code Exa 8.10   calculate cost of raising PF to unity and point85

lagging

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −SYNCHRONOUS MOTORS

7   / / E xa mp le 8−108

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   k VA = 1 00 00 ;   // kVA r a t i n g o f a s ys te m13   c os _t he ta = 0 .6 5 ;   // power f a c t o r o f t he s ys te m14   s i n _ th e t a =   sqrt ( 1 - ( c os _t he ta ) ^2 ) ;

15   c os _t he ta _b = 0 .8 5 ;   / / R a i s ed PF16   s i n _ t h et a _ b =   sqrt ( 1 - ( c os _t he ta _b ) ^ 2 ) ;

17   cost = 60 ;   // c o st o f t h e s yn ch ro no us c a p a c i t o r t o

i m pr o ve t h e PF i n d o l l a r s /kVA18   // n e g l e c t t h e l o s s e s i n t he s yn ch ro no us c a p a c i t o r19

20   / / C a l c u l a t i o n s21   / / c as e a : For u ni ty PF

154

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 156/412

22   // a t t h e o r i g i n a l l oa d

23   kW _a = kVA * c os _t he ta ;   //24   t he ta = a co sd ( c o s _t h et a ) ;   // Power f a c t o r a n gl e o f  t he s ys te m i n d e g re e s

25   kv ar = kVA * si nd ( th et a) ;   // R e ac t iv e power i n k va r26   k VA _a = kv ar ;

27   c os t_ ca p_ a = kv ar * co st ;   // C ost o f r a i s i n g t h e PFt o u ni ty PF i n d o l l a r s

28

29   / / c as e b30   t h et a _b = a co sd ( c o s _t h et a _b ) ;   // Power f a c t o r a n g le

o f t he s ys te m i n d e gr e e s

31   k VA _b = k W_ a / c os _t he ta _b ;   / / kVA v a l u e r e d u c t i o n32   k va r_ b = k VA _b * s in d ( th et a_ b ) ;   // f i n a l k v a r v al ue

r e d u c e d33   k va r_ ad d = k va r - k va r_ b ;   // k v a r o f c o r r e c t i o n

added34

35   c os t_ ca p_ b = k va r_ ad d * c os t ;   // Cost o f r a i s i n gt h e PF t o 0 . 8 5 PF i n d o l l a r s

36

37   // D is pl ay t h e r e s u l t s38

39   disp ( ”E x ampl e 8−10 S o l u t i o n : ” ) ;

40   printf ( ”   \n Note : S l i g h t v a r i a t i o n s i n t h e kv a rand c o s t v a l ue s a re d ue t o ” ) ;

41   printf ( ”   \n non−a p pr o xi ma ti o n o f t h e ta v a l u e sw hi le c a l c u l a t i n g i n s c i l a b . \ n” ) ;

42   printf ( ”   \n a : At t h e o r i g i n a l l o a d , \ n” ) ;

43   printf ( ”   \n kW = %d kW a t t he t a = %. 1 f d e gr e e s   \n” , kW_a , theta ) ;

44   printf ( ”   \n k v a r = %. 3 f k v a r \n\n For u n i t y PF ,” , k v a r ) ;

45   printf ( ”   \n kVA o f s yn ch ro no us c a p a c i t o r = %. 3 f  kVA ( n e g l e c t i n g l o s s e s ) \n” , k V A _ a ) ;

46   printf ( ”   \n C ost o f s y n c h r o n o us c a p a c i t or = $% . f  \n\n” , c o s t _ ca p _ a ) ;

47

155

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 157/412

48   printf ( ”   \n b : F or %. 2 f , PF = c o s (%. 1 f ) , t h e t o t a l

power , ” , c o s _ t h e ta _ b , t h e t a _ b ) ;49   printf ( ”   \n %. f kW, r em ai ns t he same . T h er ef or e , \ n” , k W _ a ) ;

50   printf ( ”   \n kVA o f f i n a l sy s t e m r e d u c e d t o = %. f  kVA   \n” , k V A _ b ) ;

51   printf ( ”   \n k v a r o f f i n a l s y s t e m r e d u c e d t o = %. f  k v a r   \n T h e r e f o r e , ” , k v a r _ b ) ;

52

53   printf ( ”   \n k v a r o f c o r r e c t i o n added = %. 3 f k v a r \n ” , k v a r _ a d d ) ;

54   printf ( ”   \n kVA o f s yn ch ro no us c a p a c i t o r = %. 3 f  

kVA ( n e g l e c t i n g l o s s e s ) \n” , k v a r _ a d d ) ;55   printf ( ”   \n C ost o f s yn ch ro no us c a p ac i t or = $% . f ”

, c o s t _ ca p _ b ) ;

56   printf ( ”   \n o r l e s s t han h a l f t h e c o s t i n p ar t ( a )” ) ;

Scilab code Exa 8.11  calculate Po jQo and power triangle

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −SYNCHRONOUS MOTORS

7   / / E xa mp le 8−118

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   S _c on ju ga te = 1 00 0 ;   / / A pp ar en t c om pl ex p ow er i n

kVA

156

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 158/412

13   c os _t he ta = 0 .6 ;   // l a g g i n g PF

14   s i n _ th e t a =   sqrt ( 1 - ( c os _t he ta ) ^2 ) ;15

16   / / C a l c u l a t i o n s17   / / c as e a18   P _o = S _c on ju ga te * c os _t he ta ;   // A c t iv e p ower

d i s s i p a t e d by t he l oa d i n kW19

20   / / c as e b21   j Q_ o = S _c on ju ga te * s in _t he ta ;   // I n d u c t i v e

r e a c t i v e q u ad r at u re power   −22   //   −   drawn f ro m and r e t u r n e d t o t h e s u p pl y

2324   // D is pl ay t h e r e s u l t s25

26   disp ( ”E x ampl e 8−11 S o l u t i o n : ” ) ;

27   printf ( ”   \n a : A c t iv e p ower   \n P o = %d kW   \n ” ,

P _o ) ;

28

29   printf ( ”   \n b : I n d uc t i v e r e a c t i v e q ua dr at ur e power   \n +j Q o i n kv a r =   \n” ) ; disp ( % i * j Q _ o ) ;

30

31   printf (”   \n c : The o r i g i n a l power t r i a n g l e i s showni n F ig . 8 −26 a . ” ) ;

Scilab code Exa 8.12  calculate Pf jQf Pa jQa kVA and draw power tabu-lation grid

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −SYNCHRONOUS MOTORS

157

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 159/412

7   / / E xa mp le 8−12

89   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   S _c on ju ga te = 1 00 0 ;   / / A pp ar en t c om pl ex p ow er i n

kVA13   c os _t he ta _f = 0 .8 ;   // l a g g i n g PF14   s i n _ t h et a _ f =   sqrt ( 1 - ( c os _t he ta _f ) ^ 2 ) ;

15

16   / / C a l c ul a t e d v a l u e s fro m Ex.8 −11

17   P_o = 600 ;   // A ct iv e power d i s s i p a t e d by t he l oa din kW

18   Q_o = 800 ;   // I n d u c t i ve r e a c t i v e q u ad r at u re power   −19   //   −   drawn f ro m and r e t u r n e d t o t h e s u p pl y20

21   // C a l cu l a t i o n s :22

23   / / c as e a24   P _f = S _c on ju ga te * c os _t he ta _f ;   // A c t i v e p ow er

d i s s i p a t e d by t he l oa d i n kW25

26   / / c as e b27   Q _f = S _c on ju ga te * s in _t he ta _f ;   // R e a c ti v e

q u a d r a t u r e p ow er d ra wn f ro m   −28   //   −   and r e t ur n e d t o t he s u pp ly29

30   / / c as e c31   P_a = P_f - P_o ;   // A d d i ti o n a l a c t i v e power i n kW

t h at may b e s u p p l i e d t o   −32   //   −   new c u s t o m e r s33

34   / / c as e d35   jQ_a = %i * ( Q_f ) - %i * ( Q_o ) ;   // C o r r e ct i o n

k v a r r e q u i r e d t o r a i s e PF   −36   //   −fr om 0 . 6 t o o . 8 l a g g i n g37

158

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 160/412

38   / / c as e e

39   S _c _c on ju ga te = 0 - jQ _a ;   // R a ti ng o f c o r r e c t i o nc a p a c i t o r s n e e d ed f o r c as e d40

41   // D is pl ay t h e r e s u l t s42

43   disp ( ”E x ampl e 8−12 S o l u t i o n : ” ) ;

44   printf ( ”   \n a : P f = %d kW   \n ” , P _ f ) ;

45   printf ( ”   \n b : +j Q f i n k v a r = ” ) ; disp ( % i * Q _ f ) ;

46   printf ( ”   \n c : P a = %d kW   \n ” , P _ a ) ;

47   printf ( ”   \n d : j Q a i n k v a r = ” ) ; disp ( j Q _ a )

48   printf ( ”   \n e : S c c o n j u g a t e = %d kVA   \n ” ,   abs (

S _ c _ co n j u ga t e ) ) ;49   printf ( ”   \n f : The power t a b u l at i o n g r i d i s shown i n

F i g . 8 −26 b . ” ) ;

Scilab code Exa 8.13  calculate Pf jQf Pa jQa kVA and power tabulationgrid

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −SYNCHRONOUS MOTORS

7   / / E xa mp le 8−138

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

1011   / / Ex . 8 −12 PF12   c os _t he ta = 0 .6 ;   / / P F l a g g i n g13

14   / / G iv en d a ta

159

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 161/412

15   S _c on ju ga te = 1 00 0 ;   / / A pp ar en t c om pl ex p ow er i n

kVA16   c os _t he ta _f = 1 .0 ;   // u n i t y PF17   s i n _ t h et a _ f =   sqrt ( 1 - ( c os _t he ta _f ) ^ 2 ) ;

18

19   / / C a l c ul a t e d v a l u e s fro m Ex.8 −1120   P_o = 600 ;   // A ct iv e power d i s s i p a t e d by t he l oa d

in kW21   Q_o = 800 ;   // I n d u c t i ve r e a c t i v e q u ad r at u re power   −22   //   −   drawn f ro m and r e t u r n e d t o t h e s u p pl y23

24   // C a l cu l a t i o n s :

2526   / / c as e a27   P _f = S _c on ju ga te * c os _t he ta _f ;   // A c t i v e p ow er

d i s s i p a t e d by t he l oa d i n kW28

29   / / c as e b30   Q _f = S _c on ju ga te * s in _t he ta _f ;   // R e a c ti v e

q u a d r a t u r e p ow er d ra wn f ro m   −31   //   −   and r e t ur n e d t o t he s u pp ly32

33  / / c as e c34   P_a = P_f - P_o ;   // A d d i ti o n a l a c t i v e power i n kW

t h at may b e s u p p l i e d t o   −35   //   −   new c u s t o m e r s36

37   / / c as e d38   jQ_a = %i * ( Q_f ) - %i * ( Q_o ) ;   // C o r r e ct i o n

k v a r r e q u i r e d t o r a i s e PF   −39   //   −fr om 0 . 6 t o o . 8 l a g g i ng40   Q _a = - abs ( j Q _ a ) ;   //41

42   / / c as e e43   S _c _c on ju ga te = 0 - jQ _a ;   // R a ti ng o f c o r r e c t i o n

c a p a c i t o r s n e e d ed f o r c as e d44

45   // D is pl ay t h e r e s u l t s

160

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 162/412

46

47   disp ( ”E x ampl e 8−13 S o l u t i o n : ” ) ;48   printf ( ”   \n a : P f = %d kW   \n ” , P _ f ) ;

49   printf ( ”   \n b : +j Q f i n k v a r = ” ) ; disp ( % i * Q _ f ) ;

50   printf ( ”   \n c : P a = %d kW   \n ” , P _ a ) ;

51   printf ( ”   \n d : j Q a i n k v a r = ” ) ; disp ( j Q _ a )

52   printf ( ”   \n e : S c c o n j u g a t e = %d kVA   \n ” ,   abs (

S _ c _ co n j u ga t e ) ) ;

53   printf ( ”   \n f : The power t a b u l at i o n g r i d i s shownbelow . \ n” ) ;

54   printf ( ”   \n   \ t \ t P   \ t j Q   \ t S∗   ” ) ;

55   printf ( ”   \n   \ t \ t (kW)   \ t ( kv ar )   \ t (kVA)   \ t c o s ” )

;56   printf ( ”   \n

” ) ;

57   printf ( ”   \n O r i g i n a l :   \ t %d   \ t +j%d   \ t %d   \ t % . 1f ” , P _o , Q _o , S _ c on j ug a te , c o s _ t he t a ) ;

58   printf ( ”   \n Added :   \ t %d   \ t %dj   \ t   \ t ” ,P_a

, Q_ a ) ;

59   printf ( ”   \n F i n a l :   \ t %d   \ t +j%d   \ t %d   \ t %. 1 f ” ,

P _f , Q _f , S _ c on j ug a te , c o s _ t h et a _ f ) ;

Scilab code Exa 8.14  calculate original and final kVA kvar P and correc-tion kvar Sa

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −SYNCHRONOUS MOTORS7   / / E xa mp le 8−148

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

161

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 163/412

c o n s o l e .

1011   / / G iv en d a ta12   P _o = 2000 ;   / / l o ad i n kW drawn by a f a c t o r y13   c os _t he ta _o = 0 .6 ;   / / P F l a g g i n g14   s i n _ t h et a _ o =   sqrt ( 1 - ( c os _t he ta _o ) ^2 ) ;

15   c os _t he ta _f = 0 .8 5 ;   // f i n a l PF l a g g i ng r e qu i r e d16   s i n _ t h et a _ f =   sqrt ( 1 - ( c os _t he ta _f ) ^2 ) ;

17   P_a = 275 ;   // L o ss e s i n t he s yn ch ro no us c a p a c i t o rin kW

18

19   / / C a l c u l a t i o n s

20   / / c as e a21   S _ o _ co n ju g at e = P _o / c o s_ t he t a_ o ;   / / O r i g i n a l kVA

drawn f r om t he u t i l i t y22

23   / / c as e b24   Q _o = S _o _c on ju ga te * s in _t he ta _o ;   // O r i g i n al

l a g g i n g k va r25

26   / / c as e c27   P_f = P_o + P_a ;   // F i n al s ys te m a c t i v e power

c on su m ed f r o m t h e u t i l i t y i n kW28

29   / / c as e d30   S _ f _ co n ju g at e = P _f / c o s_ t he t a_ f ;   / / F i n a l kVA

drawn f r om t he u t i l i t y31   S _ f _ c o n j ug a t e _ a = a c os d ( c o s _ t h et a _ f ) ;   // P ha se a n g l e

o f S f c o n j u g a t e i n d e g r e es32

33   / / c as e e34   j Q _f = S _ f_ c on j ug a te * s i n_ t he t a_ f ;   // F i na l

l a g g i n g k va r

35   j Q_ a = % i *( j Q_ f ) - %i * ( Q_ o) ;   // C o r r ec t i o n k va rp ro du ce d b y t h e s y nc h ro n o us c a p a c i t o r

36   Q _a =   abs ( j Q _ a ) ;   // Ma gni tude o f j Q a i n k va r37

38   / / c as e f  

162

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 164/412

39   P = P_a ;

40   S _ a _ co n ju g at e = P - %i * ( abs ( j Q _ a ) ) ;   // kVA r a t i n g o f  t he s yn ch ro no u s c a p a c i t o r41   S _ a _ c o n j ug a t e _ m =   abs ( S _ a _ c o n j u g a t e ) ; //

S a c o nj ug a te m = magn itud e o f S a c o n ju g a t e i nkVA

42   S _ a _ c o n j ug a t e _ a =   atan ( imag ( S _ a _ c o nj u g a te ) / real (

S _ a _ c o n j u g a t e ) ) * 1 8 0 / % p i ;

43   // S a c o n j u ga t e a=p ha se a n gl e o f S a c o n ju g a t e i nd e g r e e s

44   P F _ f = c o sd ( S _ a _ co n j u ga t e _ a ) ;   // PF45

46   // D is pl ay t h e r e s u l t s47   disp ( ”E x ampl e 8−14 S o l u t i o n : ” ) ;

48   printf ( ”   \n a : S∗ o = %. 1 f kVA   \n” , S _ o _ c on j u g at e ) ;

49

50   printf ( ”   \n b : Q∗ o i n k v a r = ”   ) ; disp ( % i * Q _ o ) ;

51

52   printf ( ”   \n c : P∗ f = %. f kW   \n” , P_ f ) ;

53

54   printf ( ”   \n d : S∗ f = %. 1 f    <%.1 f kVA\n ” ,

S _ f _ c o nj u g a t e , S _ f _ c o n j u g a t e _ a ) ;

55

56   printf ( ”   \n e : j Q f i n k v a r = ”) ; disp ( % i * j Q _ f ) ;

57   printf ( ”   \n   − j Q a i n k v a r = ” ) ; disp ( j Q _ a ) ;

58

59   printf ( ”   \n f : S∗ a = % . f    <%. 2 f kVA ” ,

S _ a _ co n j u ga t e _ m , S _ a _ co n j u ga t e _ a ) ;

60   printf ( ”   \n ( c o s (%. 2 f ) = %. 3 f l e a d i n g ) \n” ,

S_a_conjugate_a ,PF_f);

61

62   printf ( ”   \n g : Power t a b u l a ti o n g r i d :   \n ” ) ;

63   printf ( ”   \n   \ t \ t P   \ t j Q   \ t S∗   ” ) ;

64   printf ( ”   \n   \ t \ t (kW)   \ t ( kv ar )   \ t (kVA)   \ t c o s ” );

65   printf ( ”   \n” ) ;

66   printf ( ”   \n O r i g i n a l :   \ t %d   \ t +j% . f %. 1 f %. 1 f  

163

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 165/412

l a g ” , P _ o , Q _ o , S _ o _c o n ju g a te , c o s _ t h et a _ o ) ;

67   printf ( ”   \n Added :   \ t %d   \ t   −%. f j %. f    \ t % . 3f l e a d ” , P _ a , Q _a , S _ a _ c o n j u g a t e _ m , c o s d (

S _ a _ co n j u ga t e _ a ) ) ;

68   printf ( ”   \n F i n a l :   \ t %d   \ t +j% . f %. 1 f %. 2 f  l a g ” , P _ f , j Q _f , S _ f _c o nj u g at e , c o s _ t h et a _ f ) ;

Scilab code Exa 8.15  calculate kVA added Pa and Qa and Pf Qf and PF

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −SYNCHRONOUS MOTORS

7   / / E xa mp le 8−158

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

1011   / / G iv en d a ta12   P _o = 2275 ;   / / O r i g i n a l kVA13   Q _o = 1410 ;   // O r i g i na l k va r14   S _ f _ co n ju g at e = 3 33 3. 3 ;   // f i n a l kVA o f t h e l oa d15   S _o _c on ju ga te = P _o + % i* Q_ o ;   // Load o f t he

a l t e r n a t o r i n kVA16   S _ o _ c o n j ug a t e _ m =   abs ( S _ o _ c o n j u g a t e ) ; //

S o c o nj ug a te m = magn itud e o f S o c o n ju g a t e i nkVA

17   S _ o _ c o n j ug a t e _ a =   atan ( imag ( S _ o _ c o nj u g a te ) / real (S _ o _ c o n j u g a t e ) ) * 1 8 0 / % p i ;

18   // S o c o n j u ga t e a=p ha se a n gl e o f S o c o n ju g a t e i nd e g r e e s

19

164

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 166/412

20   disp ( ”E x ampl e 8−15 ” ) ;

21   printf ( ”   \n Power t a b u l a t i o n g r i d :   \n ” ) ;22   printf ( ”   \n   \ t \ t P   \ t \ t j Q   \ t \ t S∗   ” ) ;

23   printf ( ”   \n   \ t \ t (kW)   \ t \ t ( kv ar )   \ t \ t (kVA)   \ t \ tc o s ” ) ;

24   printf ( ”   \n

” ) ;

25   printf ( ”   \n O r i g i n a l :   \t%d   \ t \ t j% . f    \ t \ t %. 1 f    \t%. 2 f l a g ” , real ( S _ o _ c o n ju g a t e ) , imag ( S _ o _ c o n j u g a t e )

, S _ o _ c o n j u g a te _ m , c o s d ( S _ o _ c o n j u g a t e _ a ) ) ;

26   printf ( ”   \n Added :   \ t0 . 8 x   \ t \ t j 0 . 6 x   \ t \ t x   \ t \ t 0

. 8 0 l a g ”   ) ;27   printf ( ”   \n F i n a l : (%d + 0 . 8 x )   \ t j (%. f + 0 . 6 x )

%.1 f    \ t 0 . 8 4 1 l a g \n” , real ( S _ o _ c o n ju g a t e ) , imag (

S _ o _ co n j u ga t e ) , S _ f _ c o n ju g a t e ) ;

28

29   / / C a l c u l a t i o n s30   / / c as e a31   // Assume x i s t he a d d i t i o n a l kVA l o ad . Then r e a l

and q u a dr a t ur e p ow er s a r e 0 . 8 x and j 0 . 6 x32   / / r e s p e c t i v e l y , a s sho wn . A dd in g e a ch c ol um n

v e r t i c a l l y and u s i ng t he P yt ha go re an theorem ,33   // we may w r i t e ( 22 75 + 0 . 8 x ) ˆ2 + ( 1 4 10 + 0 . 6 x ) ˆ2 =( 3 3 3 3 . 3 ) ̂ 2 , and s o l v i n g t h i s e q ut i on y i e l d s

34   / / t he q u a d r at i c x ˆ2 + 53 52 x   −3 94 71 63 = 0 . A p p l yi n gt he q u a d r a ti c y i e l d s t he added kVA l o ad :

35   x =   poly (0 , ’ x ’ ) ;   // D e f in i n g a p o ly n om i al w it hv a r i a b l e ’ x ’ w i t h r o ot a t 0

36   p = -3 94 716 3 + 5 35 2* x + x ^2

37   a = 1 ;   // c o e f f i c i e n t of xˆ238   b = 5332 ;   // c o e f f i c i e n t o f x39   c = -3 94 716 3 ;   // c o n st a n t

4041   / / R oots o f p42   x1 = ( - b +   sqrt   ( b^2 -4* a* c ) ) / (2 * a );

43   x 2 =( -b -   sqrt   ( b^2 -4* a* c ) ) / (2 * a );

44

165

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 167/412

45   / / c as e b

46   P _a = 0 .8 * x1 ;   // Added a c t i v e power o f t hea d d i t i o n a l l oa d i n kW47   Q _a = 0 .6 * x1 ;   // Added r e a c t i v e power o f t he

a d d i t i o n a l l oa d i n k v a r48

49   / / c as e c50   P_f = P_o + P_a ;   // F in a l a c t i v e power o f t h e

a d d i t i o n a l l oa d i n kW51   Q_f = Q_o + Q_a ;   // F in a l r e a c t i v e power o f t he

a d d i t i o n a l l oa d i n k v a r52

53   / / c as e d54   PF = P_ f / S _f _c on ju ga te ;   // F i na l power f a c t o r55   / / V a l i d i t y c he ck56   S _c on ju ga te _f = P _f + % i* Q_ f ;   // F i n al kVA o f t he

l o a d57   S _ c o n j u g at e _ f _ m =   abs ( S _ c o n j u g a t e _ f ) ; //

S c o nj u g at e f m = magni tud e o f S c o n j u g a t e f i nkVA

58   S _ c o n j u g at e _ f _ a =   atan ( imag ( S _ c o n j ug a t e _f ) / real (

S _ c o n j u g a t e _ f ) ) * 1 8 0 / % p i ;

59  / / S c o n j u g a t e f a=p ha se a n gl e o f S c o n j u g a t e f i nd e g r e e s

60

61   // D is pl ay t h e r e s u l t s62

63   disp ( ” S ol ut i on : ” )

64

65   printf ( ”   \n a : The g i ve n d at a i s shown i n t he a bo vep ow er t a b u l a t i o n g r i d . Assume ”) ;

66   printf ( ”   \n x i s t h e a d d i t i o n a l kVA l oa d . Thenr e a l and q u ad r at u re p ow er s a r e ” ) ;

67   printf ( ”   \n 0 . 8 x and j 0 . 6 x r e s p e c t i v e l y , a s shown .Ad ding e ac h col umn v e r t i c a l l y ” ) ;

68   printf ( ”   \n and u s i ng t he P y t ha go re a n theorem , wemay w r i t e ” ) ;

69   printf ( ”   \n ( 2 2 7 5 + 0 . 8 x ) ˆ2 + ( 1 4 1 0 + 0 . 6 x ) ˆ2 =

166

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 168/412

( 3 3 3 3 . 3 ) ̂ 2 , and s o l v i n g t h i s ” ) ;

70   printf ( ”   \n e q u a t i o n y i e l d s th e qu a d r a ti c a sf o l l o w s :   \n” ) ;

71   printf ( ”   \n x ˆ2 + 5332 x   −3 9 4 7 1 6 3 = 0 .   \n ” )

72   printf ( ”   \n A p p l y i n g t h e q u ad ra t i c y i e l d s th eadded kVA lo ad : ” ) ;

73   printf ( ”   \n Roo ts o f q u ad ra ti c Eqn p a r e   \n ” ) ;

74   printf ( ”   \n x1 = %. 2 f    \n x2 = %. 2 f ” , x1 , x2 )

;

75   printf ( ”   \n C on si de r +ve v a l ue o f x f o r added kVAs o ” ) ;

76   printf ( ”   \n x = S∗ a = %. 2 f kVA   \n ” , x1 ) ;

7778   printf ( ”   \n b : P a = %. 1 f kW   \n ” , P _ a ) ;

79   printf ( ”   \n Q a i n k v a r =   \n” ) ; disp ( % i * Q _ a ) ;

80

81   printf ( ”   \n c : P f = %. 1 f kW   \n ” , P _ f ) ;

82   printf ( ”   \n Q f i n k v a r =   \n” ) ; disp ( % i * Q _ f ) ;

83

84   printf ( ”   \n d : PF = c o s f = %. 3 f l a g g i n g   \n ” , PF

) ;

85   printf ( ”   \n V a l i d i t y c h e c k \n S∗ f = ” ) ; disp (

S _ c o n j u g a t e _ f ) ;

86   printf ( ”   \n S∗ f = %. 1 f    <%.2 f kVA   \n” ,

S _ c o n j u g at e _ f _ m , S _ c o n j u g a t e _ f _ a ) ;

87   printf ( ”   \n PF = c o s (%. 1 f ) = %. 3 f l a g g i n g ” ,

S _ c o nj u g a te _ f _ a , c o sd ( S _ c o nj u g a te _ f _ a ) ) ;

Scilab code Exa 8.16  Verify tellegens theorem for kVAs found in Ex 8 15

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

167

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 169/412

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −

SYNCHRONOUS MOTORS7   / / E xa mp le 8−168

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   / / C a lc u la t ed v a l ue s a s p er Ex .8 −15 a re a s f o l l o w s13   S _ o _ c o nj u g a te = 2 6 7 6. 5 * exp ( % i * 3 1 . 7 9 * ( % p i / 1 8 0 ) ) ;   //

O r i g i n a l k V A r a t i n g14   S _ o _ c o n j ug a t e _ m =   abs ( S _ o _ c o n j u g a t e ) ; //

S o c o nj ug a te m = magn itud e o f S o c o n ju g a t e i nkVA

15   S _ o _ c o n j ug a t e _ a =   atan ( imag ( S _ o _ c o nj u g a te ) / real (

S _ o _ c o n j u g a t e ) ) * 1 8 0 / % p i ;

16   // S o c o n j u ga t e a=p ha se a n gl e o f S o c o n ju g a t e i nd e g r e e s

17

18   S _ a _ c o nj u g a te = 6 5 8 .8 6 * exp ( % i * 3 6 . 8 7 * ( % p i / 1 8 0 ) ) ;   //A dded kVA r a t i ng

19   S _ a _ c o n j ug a t e _ m =   abs ( S _ a _ c o n j u g a t e ) ; //

S a c o nj ug a te m = magn itud e o f S a c o n ju g a t e i nkVA20   S _ a _ c o n j ug a t e _ a =   atan ( imag ( S _ a _ c o nj u g a te ) / real (

S _ a _ c o n j u g a t e ) ) * 1 8 0 / % p i ;

21   // S a c o n j u ga t e a=p ha se a n gl e o f S a c o n ju g a t e i nd e g r e e s

22

23   S _ f _ c o nj u g a te = - 3 33 3 .3 * exp ( % i * 3 2 . 7 9 2 6 8 7 * ( % p i / 1 8 0 ) ) ;

/ / F i n a l kVA r a t i n g24   S _ f _ c o n j ug a t e _ m =   abs ( S _ f _ c o n j u g a t e ) ; //

S f c o nj u g at e m = magni tud e o f S f c o n j u g a t e i n

kVA25   S _ f _ c o n j ug a t e _ a =   atan ( imag ( S _ f _ c o nj u g a te ) / real (

S _ f _ c o n j u g a t e ) ) * 1 8 0 / % p i ;

26   / / S f c o n j u g a t e a=p ha se a n gl e o f S f c o n j u g a t e i nd e g r e e s

168

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 170/412

27

28   / / C a l c u l a t i o n s29   k V A_ t ot a l = S _ o_ c on j ug a te + S _ a_ c on j ug a te +

S _ f _ co n j u ga t e ;   / / T e l l e g an ’ s t he or em30   k V A _ t o ta l _ m =   abs ( k V A _ t o t a l ) ; / / k V A t o t a l m =

m a gn it ud e o f k V A t o t al i n kVA31   k V A _ t o ta l _ a =   atan ( imag ( k V A _t o ta l ) / real ( k V A _ t o t a l ) )

* 1 8 0 / % p i ;

32   // k V A to t al a=p ha se a n g l e o f k VA to ta l i n d e g r e es33

34   / / D is pl ay t h e r e s u l t35   disp ( ”E x ampl e 8−16 S o l u t i o n : ” ) ;

36   printf ( ”   \n From t he s o l u t i o n t o Ex .8 −1 5 , we h ave ” );

37   printf ( ”   \n S∗ o = % . 1 f    <%.2 f kVA   \n ” ,

S _ o _ c o n j ug a t e _ m , S _ o _ c o n j u g a t e _ a ) ;

38   printf ( ”   \n S∗ a = % . 1 f    <%.2 f kVA   \n ” ,

S _ a _ c o n j ug a t e _ m , S _ a _ c o n j u g a t e _ a ) ;

39   printf ( ”   \n S∗ f = %. 1 f    <%.2 f kVA   \n ” ,

S _ f _ c o n j ug a t e _ m , S _ f _ c o n j u g a t e _ a ) ;

40

41   printf ( ”   \n V a l i d i t y c h ec k ” ) ;

42   printf (”   \n S∗ o + S∗ a + S∗ f = ”

) ;

43   disp ( S _ o _ c o n j u g a t e ) , printf ( ” +” ) , disp ( S _ a _ c o n j u g a t e

) , printf ( ” +”) , disp ( S _ f _ c o n j u g a t e ) ;

44   printf ( ”   \n = %d ” , k V A _ to t a l ) ;

45   printf ( ”   \n Hence , T e l le g e n ‘ s t he or em i s p ro ve d ” ) ;

Scilab code Exa 8.17  calculate overall PF using unity PF SM

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

169

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 171/412

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −

SYNCHRONOUS MOTORS7   / / E xa mp le 8−178

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   k W = 40000 ;   // Load on a f a c t o r y i n kW13   P F = 0.8 ;   // power f a c t o r l a g gi n g o f t h e l oa d14   c o s _t h et a = P F ;

15   s i n _ th e t a =   sqrt ( 1 - ( c os _t he ta ) ^2 ) ;

16   h p = 7500 ;   // power r a t i n g o f t he i n d uc t i o n motori n hp

17   P F_ IM = 0. 75 ;   // power f a c t o r l a g g i n g o f t hei n d u c t i o n m oto r

18   c o s_ t he t a_ I M = P F_ IM ;

19   s i n _ t h et a _ I M =   sqrt ( 1 - ( c o s_ th et a_ IM ) ^ 2 ) ;

20   e t a = 9 1* (1 /1 00 ) ;   // E f f i c i e n c y o f IM21   PF_SM = 1 ;   // power f a c t o r o f t he s yn ch ro no us

motor22

23  / / C a l c u l a t i o n s24   k VA _o ri gi na l = kW / PF ;   / / O r i g i n a l kVA

25   k v ar _ or i gi n al = k V A_ o ri g in a l * s i n_ t he t a ;   //O r i g i n a l k va r

26

27   kW_IM = ( hp * 746 ) / ( 1000 * eta ) ;   // I n d u ct i o nmotor kW

28   k VA _I M = k W_ IM / P F_ IM ;   / / I n d u c t i o n m ot or kVA29   k va r_ IM = k VA _I M * s in _t he ta _I M ;   // I n d u c t i o n m oto r

k v a r30

31   k v a r _f i na l = k v ar _ or i gi n al - k v ar _I M ;   // f i n a l k v a r32   k VA _f in al = k W + % i *( abs ( k v a r _ f i n a l ) ) ;   // f i n a l kVA33   k V A _ f i na l _ m =   abs ( k V A _ f i n a l ) ; // k V A f i n al m =

m ag ni tu de o f k V A f in a l i n kVA34   k V A _ f i na l _ a =   atan ( imag ( k V A _f i na l ) / real ( k V A _ f i n a l ) )

170

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 172/412

* 1 8 0 / % p i ;

35   // k V A f in a l a=p ha se a n g l e o f k V A f i na l i n d e g r e es36

37   P F _ f in a l = c o sd ( k V A _ f i n al _ a ) ;   // F i na l power f a c t o r38

39   / / D is pl ay t h e r e s u l t40   disp ( ”E x ampl e 8−17 S o l u t i o n : ” ) ;

41   printf ( ”   \n The s yn ch ro no u s motor o p e r a t e s a t t hesame e f f i c i e n c y a s t he IM” ) ;

42   printf ( ”   \n t ha t ha s bee n r e p l ac ed , and t h e r e f o r et he t o t a l power o f t he s ys te m ” ) ;

43   printf ( ”   \n i s unchanged . The s o l u t i o n i n v o l v e s

c o n s t r uc t i o n o f t a b l e t ha t shows ” )44   printf ( ”   \n t h e o r i g i n a l c o n d i t i o n o f t h e syst em ,

t he change , and t he f i n a l c o n d i t i o n . \ n” ) ;

45   printf ( ”   \n O r i g i n a l kVA = %d kVA   \n ” , k V A _ or i g i na l

) ;

46   printf ( ”   \n O r i g i n al k v a r =   \n”   ) ; disp ( % i *

k v a r _ o r i g i n a l ) ;

47

48   printf ( ”   \n I n d u c t i o n m o to r kW = %d kW   \n ” , kW_IM )

;

49   printf (”   \n I n d u c t i o n m ot or kVA = % . f kVA   \n ”

,

k VA _I M ) ;

50   printf ( ”   \n I n d u ct i o n motor k va r = ”) ; disp ( % i *

k v a r _ I M )

51

52   printf ( ”   \n F i n a l k v a r = ”) ; disp ( % i * k v a r _ f i n a l ) ;

53   printf ( ”   \n F i n a l kVA = ”   ) ; disp ( k V A _ f i n a l ) ;

54   printf ( ”   \n F i n a l kVA = %f    <%.2 f kVA   \n ” ,

k V A _ f in a l _ m , k V A _ f i n a l _ a ) ;

55

56   printf ( ”   \n F i n a l PF = %. 3 f l a g g i n g   \n ” , P F_ fi na l )

;57

58   printf ( ”   \n

” ) ;

171

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 173/412

59   printf ( ”   \n Power t a b u l at i o n g r i d :   \n ” ) ;

60   printf ( ”   \n   \ t \ t P   \ t \ t j Q   \ t \ t S∗   ” ) ;61   printf ( ”   \n   \ t \ t (kW)   \ t \ t ( kv ar )   \ t \ t (kVA)   \ t \ t c o s” ) ;

62   printf ( ”   \n

” ) ;

63   printf ( ”   \n O r i g i n a l :   \t%d   \ t \ tj% . f    \ t \t % . 1 d   \ t \ t %. 1 f l a g ” , k W , k v a r _ or i g i na l , k V A _o r ig i na l , P F ) ;

64   printf ( ”   \n Removed :   \ t−%. f    \ t \ t −(+j% . f )   \t% . f    \ t \t %. 2 f l a g ” , k W _I M , k v a r _ IM , k V A _ IM , P F _ I M ) ;

65   printf ( ”   \n Added :   \ t+%. f    \ t \ t 0   \t% . 1 f    \

t \ t 1 . 0 ” , k W _ I M , k W _ I M ) ;66   printf ( ”   \n F i n a l :   \t%d   \ t \ tj% . f    \ t \t% . 1 f    \ t % . 3

f l a g ” , k W , k v a r _ fi n a l , k V A _f i na l _m , P F _ f i na l ) ;

67   printf ( ”   \n

” ) ;

Scilab code Exa 8.18  calculate overall PF using point8 PF leading SM

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −SYNCHRONOUS MOTORS

7   / / E xa mp le 8−188

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .10

11   / / G iv en d a ta12   k W = 40000 ;   // Load on a f a c t o r y i n kW

172

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 174/412

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 175/412

f i n a l k v a r

43   k VA _f in al = k W + % i *( abs ( k v a r _ f i n a l ) ) ;   // f i n a l kVA44   k V A _ f i na l _ m =   abs ( k V A _ f i n a l ) ; // k V A f i n al m =m ag ni tu de o f k V A f in a l i n kVA

45   k V A _ f i na l _ a =   atan ( imag ( k V A _f i na l ) / real ( k V A _ f i n a l ) )

* 1 8 0 / % p i ;

46   // k V A f in a l a=p ha se a n g l e o f k V A f i na l i n d e g r e es47

48   P F _ f in a l = c o sd ( k V A _ f i n al _ a ) ;   // F i na l power f a c t o r49

50   / / D is pl ay t h e r e s u l t51   disp ( ”E x ampl e 8−18 S o l u t i o n : ” ) ;

5253   printf ( ”   \n O r i g i n a l kVA = %d kVA   \n ” , k V A _ or i g i na l

) ;

54   printf ( ”   \n O r i g i n al k v a r =   \n”   ) ; disp ( % i *

k v a r _ o r i g i n a l ) ;

55   printf ( ”   \n a : ” ) ;

56   printf ( ”   \n Sy nc hr o nous mot or kW = %d kW   \n ” , k W_ SM

) ;

57   printf ( ”   \n S y n c h r o n o u s m o to r kVA = %. f kVA   \n ” ,

k VA _S M ) ;

58   printf (”   \n S yn ch ro no u s m ot or k va r = ”

) ; disp ( - % i *

k v a r _ S M )

59

60   printf ( ”   \n F i n a l k v a r = ”) ; disp ( % i * k v a r _ f i n a l ) ;

61   printf ( ”   \n F i n a l kVA = ”   ) ; disp ( k V A _ f i n a l ) ;

62   printf ( ”   \n F i n a l kVA = %f    <%.2 f kVA   \n ” ,

k V A _ f in a l _ m , k V A _ f i n a l _ a ) ;

63

64   printf ( ”   \n F i n a l PF = %. 3 f l a g g i n g   \n ” , P F_ fi na l )

;

65

66   printf ( ”   \n

” ) ;

67   printf ( ”   \n Power t a b u l at i o n g r i d :   \n ” ) ;

68   printf ( ”   \n   \ t \ t P   \ t \ t j Q   \ t \ t S∗   ” ) ;

174

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 176/412

69   printf ( ”   \n   \ t \ t (kW)   \ t \ t ( kv ar )   \ t \ t (kVA)   \ t \ t c o s

” ) ;70   printf ( ”   \n

” ) ;

71   printf ( ”   \n O r i g i n a l :   \t%d   \ t \ tj% . f    \ t \t % . 1 d   \ t \ t %. 1 f l a g ” , k W , k v a r _ or i g i na l , k V A _o r ig i na l , P F ) ;

72   printf ( ”   \n Removed :   \ t−%. f    \ t \ t −(+j% . f )   \t% . f    \ t \t %. 2 f l a g ” , k W _I M , k v a r _ IM , k V A _ IM , P F _ I M ) ;

73   printf ( ”   \n Added :   \ t+%. f    \ t \ t− j% . 2 f    \t% . 1 f  \ t \ t %. 1 f l e a d ” , k W _ S M , abs ( k v a r _ S M ) , k V A _ S M , P F _ S M )

;

74   printf ( ”   \n F i n a l :   \t%d   \ t \ tj% . 2 f    \t% . 1 f    \ t %. 3 f  l a g ” , k W , k v a r _f i n a l , k V A _f i na l _m , P F _ f i na l ) ;

75   printf ( ”   \n

\n\n” ) ;

76

77   printf ( ”   \n b : ” ) ;

78   printf ( ”   \n I n Ex .8 −1 7 , a 6 14 8 kVA , u n i t y PF , 7 50 0hp s y n c h ro n o u s m ot or i s n ee d ed . ” ) ;

79   printf ( ”   \n I n Ex .8 −1 8 , a 7 68 5 kVA , 0 . 8 PF l e a d i n g ,

7 50 0 hp s y nc h ro n ou s m oto r i s n ee de d . \ n”) ;

80   printf ( ”   \n   \ t Ex . 8 −18 b s ho ws t h at a 0 . 8 PF l e a di n g, 7 5 0 0 hp s y nc h ro n o us m oto r ” ) ;

81   printf ( ”   \n must be p h y s i c a l l y l a r g e r than a u ni tyPF , 7 5 0 0 hp s y n c h ro n o u s m ot or ” ) ;

82   printf ( ”   \n b ec au se o f i t s h i g he r kVA r a t i n g . ” ) ;

Scilab code Exa 8.19  calculate kVA and PF of system and same for SM

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

175

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 177/412

5

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −SYNCHRONOUS MOTORS7   / / E xa mp le 8−198

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   k V A_ lo ad = 5 00 ;   / / Load o f 5 00 kVA13   P F _l oa d = 0 .6 5 ;   // Load o p e r a t e s a t t h i s PF l a g g i ng14   c o s_ t he t a_ l oa d = P F _l o ad ;

15   s i n _ t h e ta _ l o ad =   sqrt ( 1 - ( c o s _t h et a _l o ad ) ^ 2 ) ;16   h p = 200 ;   // power r a t i n g o f t he s ys te m i n hp17   e t a = 8 8 *( 1 /1 0 0) ;   // E f f i c i e n c y o f t h e s y s t e m a f t e r

a dd in g t he l o ad18   P F _ fi na l = 0 .8 5 ;   // F i n a l l a g g i n g PF a f t e r a dd in g

t he l o ad19

20   / / C a l c u l a t i o n s21   k W _o r ig i na l = k V A_ l oa d * c o s_ t he t a_ l oa d ;   //

O r i g i n a l kW22   k v ar _ or i gi n al = k V A_ l oa d * s i n_ t he t a_ l oa d ;

  //O r i g i n a l k va r23

24   kW_SM = ( hp * 746 ) / ( 1000 * eta ) ;   //S y n c h r o n o u s m o to r kW

25

26   / / c as e a27   k W_ fi na l = k W_ or ig in al + k W_ SM ;   // f i n a l kW o f t h e

s y st e m w i th t h e m ot or a dd ed28   k VA _f in al = k W_ fi na l / P F_ fi na l ;   // f i n a l kVA o f  

t h e s ys te m w it h t h e m oto r a dd ed

29   P F_ sy st em = k W_ fi na l / k VA _f in al ;   // F i na l PF o f  t h e s ys te m w it h t h e m oto r a dd ed

30   c o s_ t he t a_ s ys t em = P F _s y st e m ;   // F i na l PF o f t hes y st e m w i th t h e m ot or a dd ed

31   s in _t he ta _s ys te m =   sqrt ( 1 - ( c o s _t h et a _s y st e m ) ^ 2) ;

176

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 178/412

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 179/412

k V A _ S M ) ;

59   printf ( ”   \n S yn ch ro no us motor kVA = %. f    <

%.1 f kVA\n ” , k VA _S M_ m , k VA _S M_ a ) ;

60   printf ( ”   \n S yn ch ro no u s m oto r PF = c o s (%. 1 f ) = %. 3 f l e a d i ng   \n ” , k V A _ SM _ a , P F _ S M ) ;

61

62   printf ( ”   \n”

) ;

63   printf ( ”   \n Power t ab ul a t i o n g ri d :   \n ” ) ;

64   printf ( ”   \n   \ t \ t P   \ t j Q   \ t S∗   ” ) ;

65   printf ( ”   \n   \ t \ t (kW)   \ t ( kv ar )   \ t (kVA)   \ t c o s ” )

;66   printf ( ”   \n

”) ;

67   printf ( ”   \n O r i g i n a l :   \ t %d   \ t +j% . f %. 1 d   \ t %. 2 f l a g ” ,kW_original ,kvar_ original ,kVA_load ,

P F _ l o a d ) ;

68   printf ( ”   \n Added :   \ t %. 1 f    \ t   −%. 1 f j %. f    \ t%. 4 f l e a d ” , k W_ SM , abs ( k v a r _ S M ) , k V A _S M _ m , P F _ S M ) ;

69   printf ( ”   \n F i n a l :   \ t %. 1 f    \ t +j% . f %. f  

%. 2 f l a g ”,kW_final ,kvar_final ,kVA_final ,

P F _ f i n a l ) ;

70   printf ( ”   \n”

) ;

Scilab code Exa 8.20  calulate speeds and poles for alternator and motor

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

178

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 180/412

6   // Ch apt e r 8 : AC DYNAMO TORQUE RELATIONS   −

SYNCHRONOUS MOTORS7   / / E xa mp le 8−208

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   f_a = 400 ;   // F r eq u en cy o f t he a l t e r n a t o r i n Hz13   f_m = 60 ;   // F re qu en cy o f t he motor i n Hz14

15   / / C a l c u l a t i o n s

16   P ol e_ ra ti o = f _a / f_m ;   // R a t i o o f no . o f p o l e s i na l t e r n a t o r t o t ha t o f motor

17   // S u b sc r i p t 1 be l o w i n d i c a t e s 1 s t c om bi na ti on18   P_a1 = 40 ;   // f i r s t c o mb i na t io n must h av e 4 0 p o l e s

on t he a l t e r n a t o r19   P_m1 = 6 ;   / / f i r s t c o mb i n at i on must h av e 6 p o l e s on

t he s yn ch ro n ou s motor a t a s pe ed20   S_ m1 = ( 120 * f_m ) / P _m 1 ;   // Sp eed o f t he motor i n

rpm21

22  // S u b sc r i p t 2 be l o w i n d i c a t e s 2 nd c om bi na ti on23   P_a2 = 80 ;   // s e co n d c o mb i na t io n must h av e 40 p o l e s

on t h e a l t e r n a t o r24   P_m2 = 12 ;   // s e co n d c o mb i na t io n must h av e 12 p o l e s

on t he s yn ch ro no u s motor a t a s pe ed25   S_ m2 = ( 120 * f_m ) / P _m 2 ;   // Sp eed o f t he motor i n

rpm26

27   // S u b sc r i p t 13 b el o w i n d i c a t e s 3 rd c om bi na ti on28   P_a3 = 120 ;   // t h i r d c om bi na ti o n must ha ve 40 p o l e s

on t h e a l t e r n a t o r

29   P_m3 = 18 ;   // t h i r d c om bi na ti on must h ave 18 p o l e son t he s yn ch ro n ou s motor a t a s pe ed

30   S_ m3 = ( 120 * f_m ) / P _m 3 ;   // Sp eed o f t he motor i nrpm

31

179

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 181/412

32   / / D is pl ay t h e r e s u l t

33   disp ( ”E x ampl e 8−20 S o l u t i o n : ” ) ;34

35   printf ( ”   \n S i n c e P a /P m = f a / f m = %d/%d , o r %d/%d, t he r a t i o o f ” , f _ a , f _ m , f _ a / 2 0 , f _ m / 2 0 ) ;

36   printf ( ”   \n f a / f m d e t e r mi ne s t he c om bi na ti on s o f  p o l e s and s p ee d . \ n” ) ;

37   printf ( ”   \n Only e v en m u l t i p l es o f t he abov e r a t i oa re p o s si b l e , s i n c e p o l e s ” ) ;

38   printf ( ”   \n a r e a lw ay s i n p a i rs , h en ce f i r s t t h r e ec om bi na t i on s a re a s f o l l o w s   \n” ) ;

39

40   printf ( ”   \n The f i r s t c o m b i na t i o n must h av e %d p o l e son t h e a l t e r n a t o r and ” , P _ a 1 ) ;

41   printf ( ”   \n %d p o l e s on t he s y ch r on o us motor a t as p e e d = % d r p m . \ n” , P _ m 1 , S _ m 1 ) ;

42

43   printf ( ”   \n The s e c o nd c o m b i na t i o n mus t h av e %dp o l es on t h e a l t e r n a t o r and ” , P _ a 2 ) ;

44   printf ( ”   \n %d p o l e s on t he s y ch r on o us motor a t as p e e d = % d r p m . \ n” , P _ m 2 , S _ m 2 ) ;

45

46   printf (”   \n T he t h i r d c o mb i na t io n must h av e %d p o l e son t h e a l t e r n a t o r and ” , P _ a 3 ) ;

47   printf ( ”   \n %d p o l e s on t he s y ch r on o us motor a t as p e e d = % d r p m . \ n” , P _ m 3 , S _ m 3 ) ;

48

49   printf ( ”   \n

” ) ;

50   printf ( ”   \n C o m b i na t i o n   \ t A l t e r na t o r P o le s   \ tM ot or P o l e s   \ t S pe ed ( rpm ) ” ) ;

51   printf ( ”   \n   \ t P a   \ t

P m   \ t S ” ) ;52   printf ( ”   \n

” ) ;

53   printf ( ”   \n F i r s t   \ t \ t : \ t %d\ t \ t %d   \ t %d”

180

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 182/412

, P _ a 1 , P _ m 1 , S _ m 1 ) ;

54   printf ( ”   \n S e co n d \ t \ t : \ t %d\ t \ t %d   \ t %d”, P _ a 2 , P _ m 2 , S _ m 2 ) ;

55   printf ( ”   \n T hi rd   \ t \ t : \ t %d\ t \ t %d   \ t %d”, P _ a 3 , P _ m 3 , S _ m 3 ) ;

56   printf ( ”   \n

” ) ;

181

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 183/412

Chapter 9

POLYPHASE INDUCTION

OR ASYNCHRONOUS

DYNAMOS

Scilab code Exa 9.1  calculate poles and synchronous speed

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 9 : POLYPHASE INDUCTION (ASYNCHRONOUS)DYNAMOS

7   / / E xa mp le 9−18

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   phase = 3 ;   // Number o f p h a s e s13   n = 3 ;   // S l o t s p er p ol e p e r p h a s e14   f = 6 0 ;   // L in e f r eq u en c y i n Hz15

182

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 184/412

16   / / C a l c u l a t i o n s

17   / / c as e a18   P = 2 * n ;   // Number o f p o l e s p r od u ce d19   To tal _sl ots = n * P * phase ;   // T o t a l number o f  

s l o t s on t h e s t a t o r20

21   / / c as e b22   S _ b = ( 12 0* f ) /P ;   // Speed i n rpm o f t he r o t a t i n g

magn e t i c f i e l d23

24   / / c as e c25   f_c = 50 ;   // Changed l i n e f r e qu e n cy i n Hz

26   S _c = ( 12 0* f _c ) /P ;   // Speed i n rpm o f t he r o t a t i n gmagn e t i c f i e l d

27

28   // D is pl ay t h e r e s u l t s29   disp ( ”E x ampl e 9−1 S o l u t i on : ” ) ;

30   printf ( ”   \n a : P = %d p o l e s   \n T o t a l s l o t s = %ds l o t s   \n” , P , T ot al _s lo ts ) ;

31

32   printf ( ”   \n b : S = %d rpm @ f = %d Hz   \n ” , S_b , f

) ;

33

34   printf ( ”   \n c : S = %d rpm @ f = %d Hz ” , S_c , f_c )

;

Scilab code Exa 9.2  calculate rotor speed

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 9 : POLYPHASE INDUCTION (ASYNCHRONOUS)DYNAMOS

183

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 185/412

7   / / E xa mp le 9−2

89   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12

13   s _ a = 5 * (1 / 10 0 ) ;   // S l i p ( c as e a )14   s _ b = 7 * (1 / 10 0 ) ;   // S l i p ( c as e b )15

16   / / Given d at a and c a l c u l a t e d v a l u e s fro m Ex.9 −117   f_a = 60 ;   // L in e f r e q ue n cy i n Hz ( c a se a )

18   f_b = 50 ;   / / L in e f r e q ue n cy i n Hz ( c a se b )19   S _a = 1200 ;   // Speed i n rpm o f t he r o t a t i n g

m a g ne t i c f i e l d ( c a s e a )20   S _b = 1000 ;   // Speed i n rpm o f t he r o t a t i n g

m a g ne t i c f i e l d ( c a s e b )21

22   / / C a l c u l a t i o n s23

24   / / c as e a25   S_r_a = S_a * ( 1 - s_a ) ;   // R ot or s p ee d i n rpm

when s l i p i s 5% ( c a se a )26

27   / / c as e b28   S_r_b = S_b * ( 1 - s_b ) ;   // R ot or s p ee d i n rpm

when s l i p i s 7% ( c a se b )29

30   // D is pl ay t h e r e s u l t s31   disp ( ”E x ampl e 9−2 S o l u t i on : ” ) ;

32

33   printf ( ”   \n a : S r = %. f rpm @ s = %. 2 f     \n ” ,

S _r _a , s_ a ) ;

3435   printf ( ”   \n b : S r = %. f rpm @ s = %. 2 f ” , S_r_b ,

s _b ) ;

184

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 186/412

Scilab code Exa 9.3  calculate rotor frequency

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 9 : POLYPHASE INDUCTION (ASYNCHRONOUS)DYNAMOS

7   / / E xa mp le 9−38

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P = 4 ;   // Number o f p o l e s i n I n d u ct i o n motor13   f = 6 0 ;   // F re qu en cy i n Hz14   s _ f = 5 *( 1/ 10 0) ;   // F ul l −l oa d r o t o r s l i p15

16   / / C a l c u l a t i o n s17

18   / / c as e a19   // s l i p , s = ( S   −S r ) / S ;20   / / wh ere S = Speed i n rpm o f t he r o t a t i n g m ag ne ti c

f i e l d and21   // S r = Speed i n rpm o f th e r o t o r22   s = 1 ;   // S l i p = 1 , a t t h e i n s t a nt o f s t a r ti n g ,

s i n c e S r i s z e r o23   f_r_a = s * f ;   // R ot or f r eq u en c y i n Hz a t t he

i n s t a n t o f s t a r t i n g24

25   / / c as e b26   f_r_b = s_f * f ; // F u ll −l oa d r o t o r f r e q ue n cy i n Hz27

185

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 187/412

28   // D is pl ay t h e r e s u l t s

29   disp ( ”E x ampl e 9−3 S o l u t i on : ” ) ;30

31   printf ( ”   \n a : At t h e i n s t a n t o f s t a r t i n g , s l i p s =( S   −S r ) /S ; ” ) ;

32   printf ( ”   \n wher e S r i s t h e r o t o r s pe e d . S i n c et h e r o t o r s p e e d a t t h e ” ) ;

33   printf ( ”   \n i n s t a n t o f s t a r t i n g i s z e r o , s = ( S   −0 ) /S = 1 , o r u ni ty s l i p . ” ) ;

34   printf ( ”   \n\n The r o t o r f r e q u e n c y i s   \n f r =%d Hz   \n\n ” , f _r _a ) ;

35

36   printf ( ”   \n b : At f u l l −l oa d , t he s l i p i s 5 p e r ce n t ( a sg i v e n ) , and t h e r e f o r e ” ) ;

37   printf ( ”   \n s = %. 2 f    \n f r = %d Hz ”   , s_f ,

f _ r _ b ) ;

Scilab code Exa 9.4   calculate starting torque and current

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 9 : POLYPHASE INDUCTION (ASYNCHRONOUS)DYNAMOS

7   / / E xa mp le 9−48

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

1011   / / G iv en d a ta12   P = 4 ;   // Number o f p o l e s i n t he IM13   hp = 50 ;   // r a t i n g o f t h e IM i n hp14   V_o = 208 ;   // V ol ta ge r a t i n g o f t h e IM i n v o l t

186

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 188/412

15   T _o ri g = 225 ;   // S t a r t i n g t or qu e i n l b − f t

16   I _o ri g = 700 ;   // I n s t a n t a n e o u s s t a r t i g n c u rr e n t i nA a t r at ed v o l t a ge17   V_s = 120 ;   / / R ed uc ed 3−p ha se v o l t a g e s u p pl i e d i n

v o l t18

19   / / C a l c u l a t i o n s20   / / c as e a21   T _ s = T _o ri g * ( V _s / V_ o )^2 ;   // S t a r t i n g t or qu e i n

l b − f t a f t e r a p p l i c a t i o n o f V s22

23   / / c as e b

24   I_s = I _o ri g * ( V_s / V_ o) ;   // S t a r t i n g c u r r e n t i n Aa f t e r a p p l i c a t i o n o f V s

25

26   // D is pl ay t h e r e s u l t s27   disp ( ”E x ampl e 9−4 S o l u t i on : ” ) ;

28   printf ( ”   \n a : S t a r t i n g t or qu e : \ n T s = %. f l b −f t   \n” , T_ s ) ;

29

30   printf ( ”   \n b : S t a r t i n g c u r r e n t : \ n I s = %d A   \n” , I_ s ) ;

Scilab code Exa 9.5  calculate s Xlr fr Sr

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 9 : POLYPHASE INDUCTION (ASYNCHRONOUS)DYNAMOS7   / / E xa mp le 9−58

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

187

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 189/412

c o n s o l e .

1011   / / G iv en d a ta12   P = 8 ;   // Number o f p o l e s i n t h e SCIM13   f = 6 0 ;   // F re qu en cy i n Hz14   R_r = 0.3 ;   // Ro to r r e s i s t a n c e p er p ha se i n ohm15   S_r = 650 ;   / / S p ee d i n rpm a t w h ic h m ot or s t a l l s16

17   / / C a l c u l a t i o n s18   / / c as e a19   S = (1 20 * f) /P ;   // Speed i n rpm o f t he r o t a t i n g

magn e t i c f i e l d

20   s_b = ( S - S_r )/ S ;   // B re ak do wn S l i p21

22   / / c as e b23   X_lr = R_r / s_b ;   // Lo cked r o t o r r e a c t a nc e i n ohm24

25   / / c as e c26   f_r = s_b * f ;   // R ot or f r eq u en c y i n Hz , a t t he

maximum t o r q u e p o i n t27

28   / / c as e d29   s = 5 *( 1/ 10 0) ;

// Rated s l i p30   S_r = S * (1 - s );   // F u ll −l o ad i n rpm s pe ed a tr at ed s l i p

31

32   // D is pl ay t h e r e s u l t s33   disp ( ”E x ampl e 9−5 S o l u t i on : ” ) ;

34   printf ( ”   \n a : S = %d rpm   \n s b = %. 3 f    \n” , S ,

s _b ) ;

35

36   printf ( ”   \n b : X b = %. 2 f ohm   \n ” , X_lr ) ;

37

38   printf ( ”   \n c : f r = %. 1 f Hz   \n ” , f _ r ) ;39

40   printf ( ”   \n d : S = %d rpm   \n ” , S _ r ) ;

188

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 190/412

Scilab code Exa 9.6  calculate full load S and Tf 

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 9 : POLYPHASE INDUCTION (ASYNCHRONOUS)DYNAMOS

7   / / E xa mp le 9−68

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P = 8 ;   // Number o f p o l e s i n t h e SCIM13   f = 6 0 ;   // F re qu en cy i n Hz14   R_r = 0.3 ;   // r o t o r r e s i s t a n c e p er p ha se i n ohm/

p h a s e

15   R_x = 0.7 ;   // Added r e s i s t a n c e i n ohm/ p h a se16   R _r _t ot al = R_r + R _x ;   // T ot a l r e s i s t a n c e p er

p h a se i n ohm17   S_r = 875 ;   // F u ll −l o a d S pe ed i n rpm18

19

20   / / C a l c ul a t e d v a l u e s fro m Ex.9 −621   S = 900 ;   // Speed i n rpm o f t he r o t a t i n g m ag ne ti c

f i e l d22   X _lr = 1. 08 ;   // Lo cked r o t o r r e a c t a nc e i n ohm23

24   / / C a l c u l a t i o n s25   / / c as e a26   s = ( S - S_r )/ S ;   // F ul l −l oa d s l i p , s h or t c i r c u i t e d27   s_r = R _r_ to ta l / R_r * s ;   // New f u l l  −l oa d s l i p

189

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 191/412

w i th added r e s i s t a n c e

2829   S _ r_ n ew = S * (1 - s _ r ) ;   / / New f u l l  − l o ad s pe ed i n rpm30

31   / / c as e b32   // N e g le c t i n g c on s ta n t Kn t , s i n c e we a r e t a ki n g

t or qu e r a t i o s33   T_o = ( R _r / (( R_r ) ^2 + ( X_l r) ^2) ) ;   // O r i g i na l

t o r q u e34   T _f = ( R_r + R_x ) / ( ( R_r + R_x )^2 + ( X_lr )^2 ) ;

// O r i g i na l t or qu e35

36   t or qu e_ ra ti o = T_ f / T_o ;   // R a t i o o f f i n a l t o rq uet o o r i g i n a l t or qu e

37   T _ fi n al = 2 * t or q ue _ ra t io ;

38

39   // D is pl ay t h e r e s u l t s40   disp ( ”E x ampl e 9−6 S o l u t i on : ” ) ;

41   printf ( ”   \n a : The f u l l − l oa d s l i p , s h o rt c i r c u i t e d , i s” ) ;

42   printf ( ”   \n s = %. 4 f    \n” , s ) ;

43   printf ( ”   \n S i n c e s l i p i s p r o p o r t i o n a l to r o t o r

r e s i s t a n c e and s i n c e t h e ”) ;

44   printf ( ”   \n i n cr e a se d r o to r r e s i s t a n c e i s R r = %. 1 f + %. 1 f = %d , ” , R _ x , R _ r , R _ r _ t o t a l ) ;

45   printf ( ”   \n t h e new f u l l − l oa d s l i p w i th addedr e s i s t a n c e i s : ” ) ;

46   printf ( ”   \n s r = %. 4 f    \n” , s _ r ) ;

47   printf ( ”   \n The new f u l l − l o a d s pe e d i s : ”   ) ;

48   printf ( ”   \n S(1− s ) = %. f rpm   \n” , S _r _ ne w ) ;

49

50   printf ( ”   \n b : The o r i g i n a l s t a r t i n g t or qu e T o wast wi ce t h e f u l l −l o ad t o rq u e ” ) ;

51   printf ( ”   \n w i t h a r o t o r r e s i s t a n c e o f %. 1 f ohmand a r o t o r r e a c t a nc e o f %. 2 f ohm” , R _ r , X _ l r ) ;

52   printf ( ”   \n ( Ex . 9 −5 ) . The new s t a r t i n g t o r q u ec o n d i t i o n s may be s ummari zed by t h e ” ) ;

53   printf ( ”   \n f o l l o w i n g t a b l e and compared from Eq

190

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 192/412

. ( 9 − 1 4 ) , w he r e T o ” ) ;

54   printf ( ”   \n i s t h e o r i g i n a l t o r q u e and T f i s t h enew t o r q u e . ” ) ;

55

56   printf ( ”   \n” ) ;

57   printf ( ”   \n C o n d i t i o n   \ t R r   \ t X l r   \ tT s t ar t i ng ” ) ;

58   printf ( ”   \n   \ t ohm   \ t ohm   \ t ” ) ;

59   printf ( ”   \n” ) ;

60   printf ( ”   \n O r i g i n a l :   \ t %. 1 f    \ t %. 2 f    \ t 2∗ T n ”

, R _ r , X _ l r ) ;61   printf ( ”   \n New :   \ t %. 1 f    \ t %. 2 f    \ t ? ”

,R_r_total ,X_lr );

62   printf ( ”   \n\n” ) ;

63

64   printf ( ”   \n T o = %. 2 f    ∗   K n t ” , T _ o ) ;

65   printf ( ”   \n T f = %. 3 f    ∗   K n t ” , T _ f ) ;

66   printf ( ”   \n T f / T o = %. 2 f and T f = %. 2 f    ∗   T o \n” , t o r q u e _ r at i o , t o r q u e _ r a t i o ) ;

67   printf (”   \n T h e r e f o r e , \ n T f = %. 3 f    ∗   T n ”

,

T _ f i n a l ) ;

Scilab code Exa 9.7  calculate rotor I and PF and same with added Rr

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   // Ch apt e r 9 : POLYPHASE INDUCTION (ASYNCHRONOUS)DYNAMOS

7   / / E xa mp le 9−7

191

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 193/412

8

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .10

11   / / G iv en d a ta12   P = 8 ;   // Number o f p o l e s i n t h e SCIM13   f = 6 0 ;   // F re qu en cy i n Hz14   R_r = 0.3 ;   // Ro to r r e s i s t a n c e p er p ha se i n ohm15   R_x = 0.7 ;   // Added r e s i s t a n c e i n ohm/ p h a se16   R _r _t ot al = R_r + R _x ;   // T ot a l r e s i s t a n c e p er

p h a se i n ohm17   X _lr = 1. 08 ;   // Lo cked r o t o r r e a c t a nc e i n ohm

18   S_r = 650 ;   / / S p ee d i n rpm a t w h ic h m ot or s t a l l s19   E_lr = 112 ;   // I nd uc ed v o l t a g e p er p ha se20

21   / / C a l c u l a t i o n s22   / / c as e a23   Z_ lr = R_r + %i * X_l r ;   // L oc ke d r o t o r i mp ed an ce p e r

p h a s e24   Z _ l r_ m =   abs ( Z _ l r ) ; // Z l r m = magni tud e o f Z l r i n

ohm25   Z _ l r_ a =   atan ( imag ( Z _l r ) / real ( Z _ l r ) ) * 1 8 0 / % p i ; //

Z l r a=p h a se a ng l e o f Z l r i n d e g r e e s26

27   I_r = E_lr / Z_ lr_m ;   // Ro to r c u r r e n t p er p ha se28   c o s _ t h et a _ r = c o sd ( Z _ l r _ a ) ;   // r o t o r power f a c t o r

w i th t he r o t o r s ho rt −c i r c u i t e d29   c o s_ th et a = R _r / Z _l r_ m ;   // r o t o r power f a c t o r

w i th t he r o t o r s ho rt −c i r c u i t e d30

31   / / c as e b32   / / 1 a t t h e end o f Z l r 1 i s j u s t us e d f o r s h o w i n g

i t s d i f f e r e n t form Z l r

33   // and f o r e as e i n c a l c u l a t i o n s34   Z _l r1 = R _r _t ot al + % i* X _l r ;   // L oc ke d r o t o r

i m pe da n ce p e r p h as e35   Z _ l r1 _ m =   abs ( Z _ l r 1 ) ; // Z l r 1 m = m a gn it ud e o f Z l r 1

i n ohm

192

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 194/412

36   Z _ l r1 _ a =   atan ( imag ( Z _ lr 1 ) / real ( Z _ l r 1 ) ) * 1 8 0 / % p i ; //

Z l r 1 a=p h a s e a n g l e o f Z l r 1 i n d e g r e e s37

38   I_ r1 = E_ lr / Z _l r1 _m ;   // R ot or c u r r e n t p er p ha se39   c o s _ t h et a _ r 1 = c o sd ( Z _ l r 1 _ a ) ;   // r o t o r power f a c t o r

w i th t he r o t o r s ho rt −c i r c u i t e d40   c os _t he ta 1 = R _r _t ot al / Z _l r1 _m ;   // r o t o r power

f a c t o r w i t h t h e r o t o r s ho rt −c i r c u i t e d41

42   // D is pl ay t h e r e s u l t s43   disp ( ”E x ampl e 9−7 S o l u t i on : ” ) ;

44   printf ( ”   \n a : The l o ck e d −r o t o r i mp ed an ce p e r p ha s e

i s : ” ) ;45   printf ( ”   \n Z l r i n ohm = ” ) , disp ( Z _ l r ) ;

46   printf ( ”   \n Z l r = %. 2 f    <%.1 f ohm   \n” , Z _ l r _ m ,

Z _ l r _ a ) ;

47   printf ( ”   \n I r = %. f A   \n” , I _ r ) ;

48   printf ( ”   \n c o s r = c os (%. 1 f ) = %. 3 f o r   \nc o s = R r / Z l r = %. 3 f ” ,Z_lr_a,cos_theta_r ,

c o s _ t h e t a ) ;

49

50   printf ( ”   \n\n\n b : The l o c k ed −r o t o r i mp ed an ce w it h

added r o t o r r e s i s t a n c e p e r p h a s e i s : ”) ;

51   printf ( ”   \n Z l r i n ohm = ” ) , disp ( Z _ l r 1 ) ;

52   printf ( ”   \n Z l r = %. 2 f    <%.1 f ohm   \n” ,Z_lr1_m ,

Z _ l r 1 _ a ) ;

53   printf ( ”   \n I r = %. 1 f A   \n” , I _ r 1 ) ;

54   printf ( ”   \n c o s r = c os (%. 1 f ) = %. 3 f o r   \nc o s = R r / Z l r = %. 3 f ” ,Z_lr1_a ,cos_theta_r1 ,

c o s _ t h e t a 1 ) ;

Scilab code Exa 9.8  calculate Rx and rotor PF and starting current

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

193

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 195/412

3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   // Ch apt e r 9 : POLYPHASE INDUCTION (ASYNCHRONOUS)DYNAMOS

7   / / E xa mp le 9−88

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   // G iven d a ta ( Exs .9 −5 t hr ou gh 9 −7)12   P = 8 ;   // Number o f p o l e s i n t h e SCIM

13   f = 6 0 ;   // F re qu en cy i n Hz14   R_r = 0.3 ;   // Ro to r r e s i s t a n c e p er p ha se i n ohm15   X _lr = 1. 08 ;   // Lo cked r o t o r r e a c t a nc e i n ohm16   S_r = 650 ;   / / S p ee d i n rpm a t w h ic h m ot or s t a l l s17   E_lr = 112 ;   // I nd uc ed v o l t a g e p er p ha se18

19   disp ( ”E x ampl e 9−8 : ” ) ;

20   printf ( ”   \n The new and t he o r i g i n a l c o n d i t i o n s maybe summarized i n t he f o l l o w i n g t a b l e \n” ) ;

21   printf ( ”   \n

” ) ;

22   printf ( ”   \n C o n d i t i o n   \ t R r   \ t \ t X l r   \ t \ tT s t ar t i ng ” ) ;

23   printf ( ”   \n   \ t ohm   \ t \ t ohm   \ t ” ) ;

24   printf ( ”   \n

” ) ;

25   printf ( ”   \n O r i g i n a l :   \ t %. 1 f    \ t \ t %. 2 f    \ t \ t T o= 2∗ T n ” , R _ r , X _ l r ) ;

26   printf ( ”   \n New : \ t (%. 1 f+R x )   \ t %. 2 f    \ t \ t

T n = 2∗ T n ” , R _ r , X _ l r ) ;27   printf ( ”   \n

\n” ) ;

28

194

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 196/412

29   / / C a l c u l a t i n g

30   / / c as e a31   // N e g le c t i n g c on s ta n t Kn t , s i n c e we a r e e qu a ti n gt o rq u e T o and T n

32   T_o = ( R _r / (( R_r ) ^2 + ( X_l r) ^2) ) ;   // O r i g i na lt o r q u e

33

34   // T o = K n t ∗ ( 0 . 3 / ( ( 0 . 3 ) ̂ 2 + ( 1 . 0 8 ) ̂ 2) ) ;35   // T n = K n t ∗ ( 0 . 3 + R x ) / ( ( 0 . 3 + R x ) ˆ2 +

( 1 . 0 8 ) ̂ 2 ) ;36   // T n = T o37   // S i m pl y i f i n g y i e l d s

38   // 0 . 3 + R x = 0 . 2 4 [ ( 0 . 3 + R x ) ˆ 2 + ( 1 . 0 8 ) ̂ 2 ]39   / / E xp an di ng and c om bi ni n g t h e t er ms y i e l d s40   / / 0 . 24 ∗ ( R x ) ˆ 2   −   0 . 8 5 6 ∗ R x = 041   / / T hi s i s a q u ad r a ti c e q u a ti o n h av in g two r oo t s ,

w hi ch may b e f a c t o r e d a s42   // R x ∗ ( 0 . 2 4 ∗ R x   −   0 . 8 5 6 ) = 0 , y i e l d i n g43   // R x = 0 and R x = 0 . 85 6 /0 , 2 4 = 3 . 5744   R _x =   poly (0 , ’ R x ’ ) ;   // D e f i ni n g a p o ly n om i al w it h

v a r i a b l e ’ R x ’ w i t h r o ot a t 045   a = 0.24 ;   // c o e f f i c i e n t of xˆ246   b = -0.856 ;

  // c o e f f i c i e n t o f x47   c = 0 ;   // c o n st a n t48

49   / / R oots o f p50   R_x1 = ( -b +   sqrt   ( b ^2 -4* a* c ) ) /( 2* a );

51   R_ x2 =( - b -   sqrt   ( b^2 -4* a* c ) ) / (2 * a );

52   // C o ns i de r R x>0 v a l ue ,53   R _x = R _x 1 ;

54

55   R_T = R_r + R_x ;   // T o ta l r o t o r r e s i s t a n c e i n ohm56

57   / / c as e b58   Z_T = R_T + %i * X_lr ;   // T o t a l i mp ed an ce i n ohm59   Z _ T_ m =   abs ( Z _ T ) ; // Z T m = m ag ni tu de o f Z T i n ohm60   Z _ T_ a =   atan ( imag ( Z _T ) / real ( Z _ T ) ) * 1 8 0 / % p i ; / / Z T a =

p h a se a n g l e o f Z T i n d e g r e e s

195

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 197/412

61

62   c os _t he ta = R_T / Z _T _m ;   // R ot or PF t h at w i l lp ro du ce t he same s t a r t i n g t o rq u e63

64   / / c as e c65   Z_r = Z_T_m ;   / / I m pe da n ce i n ohm66   I_r = E_lr / Z_r ;   // S t a r t i n g c u rr e n t i n A67

68   // D is pl ay t h e r e s u l t s69   disp ( ” S o l u t i o n : ” ) ;

70

71   printf ( ”   \n a : T o = %. 2 f    ∗   K n t ” , T_ o ) ;

72   printf ( ”   \n T n = %. 2 f    ∗   K n t   \n” , T_ o ) ;73   printf ( ”   \n S i m pl y i f i n g y i e l d s ” ) ;

74   printf ( ”   \n 0 .3 + R x = 0 . 2 4 [ ( 0 . 3 + R x ) ˆ2 + ( 1 . 0 8 )ˆ2 ] ” ) ;

75   printf ( ”   \n Expanding and co mb in in g th e te rm sy i e l d s ” ) ;

76   printf ( ”   \n 0 . 2 4 ∗ ( R x ) ˆ 2   −   0 . 8 5 6 ∗ R x = 0 ”) ;

77   printf ( ”   \n T hi s i s a q ua dr at i c e q u a t i on ha v i n gtwo r o o t s , w hi ch may be f a c t o r e d a s ” ) ;

78   printf ( ”   \n R x ∗ ( 0 . 2 4 ∗ R x   −   0 . 8 5 6 ) = 0 , y i e l d i n g ” )

;

79   printf ( ”   \n R x = 0 ohm and R x = 0 . 8 56 / 0 . 2 4 =3 . 5 7 ohm\n\n T h i s p r o v e s t h a t ” ) ;

80   printf ( ”   \n O r i g i n a l t o r q u e i s p r o d u c e d wi t h ane x t e r n a l r e s i s t a n c e o f e i t h e r ” ) ;

81   printf ( ”   \n z e r o o r 12 ti m e s t h e o r i g i a n l r o t o rr e s i s t a n c e . T h e re f o re , \ n” ) ;

82   printf ( ”   \n R T = R r + R x = %. 2 f ohm   \n” , R _ T ) ;

83

84   printf ( ”   \n b : Z T i n ohm = ” ) ; disp ( Z _ T ) ;

85   printf ( ”   \n Z T = %. 2 f    <% . 1 f ohm ” , Z _ T _ m , Z _ T _ a ) ;

86   printf ( ”   \n c o s = R T / Z T = %. 3 f o r   \nc o s = c o s d (%. 1 f ) = %. 3 f   \n” ,cos_theta ,Z_T_a ,cosd

( Z _ T _ a ) ) ;

87

88   printf ( ”   \n c : I r = E l r / Z r = %. f A   \n\n T h i s

196

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 198/412

p r o v e s t h at , ” , I _ r ) ;

89   printf ( ”   \n Ro to r c ur r en t at s t a r t i n g i s now o n l y28 p e r ce nt o f t he o r i g i n a l ” ) ;

90   printf ( ”   \n s t a r t i n g c u rr e n t i n p a r t ( a ) o f Ex.9 −7” ) ;

Scilab code Exa 9.9  calculate Sr with added Rx

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 9 : POLYPHASE INDUCTION (ASYNCHRONOUS)DYNAMOS

7   / / E xa mp le 9−98

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P = 8 ;   // Number o f p o l e s i n t h e SCIM13   f = 6 0 ;   // F re qu en cy i n Hz14   S_r = 875 ;   // F u ll −l o ad S peed i n rpm w it h r o t o r

s h o r t −c i r c u i t e d15   R_r = 0.3 ;   // r o t o r r e s i s t a n c e p er p ha se i n ohm/

p h a s e16   R_x = 0.7 ;   // Added r e s i s t a n c e i n ohm/ p h a se17   R_x_a = 1.7 ;   / / Added r e s i s t a n c e i n ohm/ p h as e ( c a s e

a )

18   R_x_b = 2.7 ;   / / Added r e s i s t a n c e i n ohm/ p h as e ( c a s eb )19   R_x_c = 3.7 ;   / / Added r e s i s t a n c e i n ohm/ p h as e ( c a s e

c )20   R_x_d = 4.7 ;   / / Added r e s i s t a n c e i n ohm/ p h as e ( c a s e

197

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 199/412

d )

2122   / / C a l c u l a t i o n s23   S = (1 20 * f) /P ;   // Speed i n rpm o f t he r o t a t i n g

magn e t i c f i e l d24   s_o = ( S - S_r )/ S ;   // S l i p a t r o to r s p e e d 875 rpm25

26   / / c as e a27   s _r _a = s _o * ( R_ r + R _x _a ) /R _r ;   // Rated s l i p28   S_r_a = S * (1 - s_r_a );   // F u ll −l o ad s pe ed i n rpm

f o r added r e s i s t a n c e R x a29

30   / / c as e b31   s _r _b = s _o * ( R_ r + R _x _b ) /R _r ;   // Rated s l i p32   S_r_b = S * (1 - s_r_b );   // F u ll −l o ad s pe ed i n rpm

f o r added r e s i s t a n c e R x b33

34   / / c as e c35   s _r _c = s _o * ( R_ r + R _x _c ) /R _r ;   // Rated s l i p36   S_r_c = S * (1 - s_r_c );   // F u ll −l o ad s pe ed i n rpm

f o r added r e s i s t a n c e R x c37

38  / / c as e d39   s _r _d = s _o * ( R_ r + R _x _d ) /R _r ;   // Rated s l i p

40   S_r_d = S * (1 - s_r_d );   // F u ll −l o ad s pe ed i n rpmf o r added r e s i s t a n c e R x d

41

42   // D is pl ay t h e r e s u l t s43   disp ( ”E x ampl e 9−9 S o l u t i on : ” ) ;

44

45   printf ( ”   \n S l i p s r = s o ∗ ( R r+R x ) / R r   \n R ot ors p e e d S r = S o ∗(1 − s ) \n” ) ;

46

47   printf ( ”   \n C a l c u l a t e d v al u e o f s o = %f ,i n s t e a d o f 0 . 0 2 7 8 ( t ex t bo o k ) ” , s _ o )

48   printf ( ”   \n s o s l i g h t v a r i a t i o n s i n th e an s w e r sbelow . \ n” ) ;

49

198

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 200/412

50   printf ( ”   \n a : When R x = % . 1 f ohm ” , R _ x _ a ) ;

51   printf ( ”   \n s r = %. 3 f    \n S r = %. 1 f rpm   \n” ,s _r _a , S _ r _a ) ;

52

53   printf ( ”   \n b : When R x = % . 1 f ohm ” , R _ x _ b ) ;

54   printf ( ”   \n s r = %. 3 f    \n S r = %. 1 f rpm   \n” ,

s _r _b , S _ r _b ) ;

55

56   printf ( ”   \n c : When R x = % . 1 f ohm ” , R _ x _ c ) ;

57   printf ( ”   \n s r = %. 3 f    \n S r = %. 1 f rpm   \n” ,

s _r _c , S _ r _c ) ;

58

59   printf ( ”   \n d : When R x = % . 1 f ohm ” , R _ x _ d ) ;60   printf ( ”   \n s r = %. 3 f    \n S r = %. 1 f rpm   \n” ,

s _r _d , S _ r _d ) ;

61

62   printf ( ”   \n T hi s example , v e r i f i e s t h at s l i p i sp r o po r t i o n a l t o r o t o r r e s i s t a n c e ” ) ;

63   printf ( ”   \n a s s ummari zed be l ow . ” ) ;

64

65   printf ( ”   \n

”) ;

66   printf ( ”   \n R T (ohm ) = R r+R x   \ t \ t S l i p   \ t \ tF u l l −l o a d S p e ed ( rpm ) ” ) ;

67   printf ( ”   \n

” ) ;

68   printf ( ”   \n Given   \ t \ t \ t G iv en   \ t \ t G iv en   \ t \   ”) ;

69   printf ( ”   \n 0 . 3   \ t \ t \ t 0 . 0 27 8   \ t 875 ” ) ;

70   printf ( ”   \n 0 . 3 + 0 . 1 = 1 . 0   \ t \ t 0 . 09 2 6   \ t 817 ” ) ;

71   printf ( ”   \n

” ) ;

72   printf ( ”   \n Given   \ t \ t \ t C a l c ul a t e d   \ tC a l c u l a t e d   \ t \   ” ) ;

73   printf ( ”   \n a . %. 1 f + %. 1 f = %. 1 f    \ t \ t %. 3 f    \ t \ t %

199

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 201/412

. 1 f ” , R _ r , R _ x _ a , R _ r + R _ x _ a , s _ r _ a , S _ r _ a ) ;

74   printf ( ”   \n b . %. 1 f + %. 1 f = %. 1 f    \ t \ t %. 3 f    \ t \ t %. 1 f ” , R _ r , R _ x _ b , R _ r + R _ x _ b , s _ r _ b , S _ r _ b ) ;

75   printf ( ”   \n c . %. 1 f + %. 1 f = %. 1 f    \ t \ t %. 3 f    \ t \ t %. 1 f ” , R _ r , R _ x _ c , R _ r + R _ x _ c , s _ r _ c , S _ r _ c ) ;

76   printf ( ”   \n d . %. 1 f + %. 1 f = %. 1 f    \ t \ t %. 3 f    \ t \ t %. 1 f ” , R _ r , R _ x _ d , R _ r + R _ x _ d , s _ r _ d , S _ r _ d ) ;

77   printf ( ”   \n

” ) ;

Scilab code Exa 9.10  calculate Elr Ir Pin RCL RPD torques

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 9 : POLYPHASE INDUCTION (ASYNCHRONOUS)DYNAMOS

7   / / E xa mp le 9−108

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P = 4 ;   / / N umber o f p o l e s i n WRIM13   f = 6 0 ;   // F re qu en cy i n Hz14   V = 220 ;   // L i n e v o l t a g e i n v o l t15   V_p = 220 ;   // Phase v o l t a g e i n v o l t ( d e l t a

c o n n e c t i o n )16   h p_WR IM = 1 ;   / / Power r a t i n g o f WRIM i n hp17   S _r = 1740 ;   // F ul l −l o ad r a t ed s pe ed i n rpm18   R_r = 0.3 ;   // r o t o r r e s i s t a n c e p er p ha se i n ohm/

p h a s e

200

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 202/412

19   R_x = 0.7 ;   // Added r e s i s t a n c e i n ohm/ p h a se

20   X _lr =1 ;   // Lo cked r o t o r r e a c t a n ce i n ohm21

22   / / C a l c u l a t i o n s23   S = (1 20 * f) /P ;   // Speed i n rpm o f t he r o t a t i n g

magn e t i c f i e l d24   / / c as e a25   E_lr = V_p / 4 ;   / / L o ck ed−r o t o r v o l t a g e p er p ha se26

27   / / c as e b28   s = ( S - S_r ) / S ;   // s l i p29   I _r = E_lr /   sqrt ( ( R_ r /s ) ^2 + ( X _l r )^ 2 ) ;   / / R ot or

c u r r e nt p er p ha se a t r a te d s pe ed30

31   / / c as e c32   P_ in = (( I_r ) ^2 * R_r ) /s ;   // Ra ted r o t o r p ower

i n pu t p er p ha se33

34   / / c as e d35   P_ RL = ( I_r ) ^2 * R_r ;   // Rated c op pe r l o s s p er

p h a s e36

37  / / c as e e38   P_d_W = P_in - P_RL ;   // R ot or po we r d e v el o p ed p e r

p ha se i n W39   P _d _h p = P _d _W / 7 46 ;   // R ot or p ower d e v el o p e d p e r

p ha se i n hp40

41   / / c as e f  42   h p = P_d _hp ;   // R ot or power d e ve l op e d p er p ha se i n

hp43   T _d 1 = ( hp * 52 52 ) / S_ r ;   // R ot or t o rq u e d e ve l op e d i n

l b − f t p er p ha se by method 1

44   T _d 2 = 7 .0 4* ( P _i n /S ) ;   // R ot or t o rq u e d e ve l op e d i nl b − f t p er p ha se by method 2

45

46   T_ dm = 3* T _d 1 ;   // T o ta l r o t o r t or qu e i n l b −f t47

201

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 203/412

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 204/412

DYNAMOS

7   / / E xa mp le 9−118

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   // 3−p h a s e WRIM13   V_L = 208 ;   // V ol t ag e r a t i n g o f t he WRIM i n v o l t14   P = 6 ;   / / N umber o f p o l e s i n WRIM15   f = 6 0 ;   // F re qu en cy i n Hz16   P_o = 7.5 ;   / / Power r a t i n g o f WRIM i n hp

17   S _r = 1125 ;   // F ul l −l oa d r o t o r s pe ed i n rpm18   R _r = 0.08 ;   // R ot or r e s i s t a n c e i n ohm/ p ha se19   X_lr = 0.4 ;   // L ocked r o t o r r e s i s t a n c e i n ohm/ p ha se20

21   / / C a l c u l a t i o n s22   S = (1 20 * f) /P ;   // Speed i n rpm o f t he r o t a t i n g

magn e t i c f i e l d23   / / c as e a24   E_lr = ( V_L /   sqrt ( 3) ) / 2 ;   // Lo cked r o t o r v o l t a g e

p e r p ha se25

26   / / c as e b27   s = ( S - S_r )/ S ;   // F ul l −l oa d r at ed s l i p28   I _r = E_lr /   sqrt ( ( R_ r /s ) ^2 + ( X _l r )^ 2 ) ;   / / R ot or

c u r r e nt i n A pe r p ha se a t r a te d s pe ed29

30   / / c as e c31   P_in = ( ( I_r )^2 * R_r ) /s ;   // Ra ted r o t o r p ower

i n p u t p e r p h a se i n (W/ p h a s e )32

33   / / c as e d

34   P_RL = ( ( I_r )^2 * R_r ) ;   // Rated r o t o r c op pe r l o s sp e r p h a s e ( i n W/ p h a s e )

35

36   / / c as e e37   // S u b s c r i pt W i n P d i n d i c a t e s c a l c u l a t i n g P d i n W

203

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 205/412

38   P_d_W = P_in - P_RL ;   // R ot or po we r d e v el o p ed p e r

p h a s e ( i n W/ p h a s e )39   / / S u b s c r i pt hp i n P d i n d i c a t e s c a l c u l a t i n g P d i nhp

40   P _d _h p = P _d _W / 7 46 ;   // R ot or p ower d e v el o p e d p e rp h a s e ( i n hp / p h a s e )

41

42   / / c as e f  43   / / s u b s c r i p t 1 i n T d i n d i c a t e s method 1 f o r

c a l c u l a t i n g T d44   h p = P_d _hp ;

45   T _d 1 = ( hp * 52 52 ) / S_ r ;   // R ot or t o rq u e d e ve l op e d p er

p ha se i n l b − f t46

47   / / s u b s c r i p t 2 i n T d i n d i c a t e s method 2 f o rc a l c u l a t i n g T d

48   T _d 2 = 7 .0 4* ( P _ in / S ) ;   // Ro to r t o rq u e d ev e lo p ed p erp ha se i n l b −f t

49

50   / / c as e g51   T_ dm = 3* T _d 1 ;   // T o ta l r o t o r t or qu e i n l b −f t52

53  / / c as e h54   T _ o = 7 .0 4* ( P _o * 7 4 6) / S _r ;   // T ot al o ut pu t r o t o r

t or qu e i n l b − f t55

56   // D is pl ay t h e r e s u l t s57   disp ( ”E x ampl e 9−11 S o l u t i o n : ” ) ;

58

59   printf ( ”   \n Note : S l i g h t v a r i a t i o n s i n t h ea n s w e r s I r , P i n , P RL , P d , T d ” ) ;

60   printf ( ”   \n a r e b e c a u s e o f non−a p pr o x im a t io n o f E l r and ( R r / s ) ˆ 2 + ( X l r ) ˆ 2 ” ) ;

61   printf ( ”   \n w h i l e c a l u l a t i n g i n s c i l a b . \ n” );

62

63   printf ( ”   \n a : Locked r o t o r v o l t ag e p er p ha se : \ nE l r = %d V\n” , E _ l r ) ;

204

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 206/412

64

65   printf ( ”   \n b : s l i p : \ n s = %. 4 f ”, s ) ;66   printf ( ”   \n\n R ot o r c u rr en t pe r ph a s e at r a te ds pe ed : \ n I r = %. 2 f A/ ph a s e \n” , I _ r ) ;

67

68   printf ( ”   \n c : Rated r o t o r power i np ut p er p ha se : \ nP i n = %. f W/ p h a s e \n” , P _ i n ) ;

69

70   printf ( ”   \n d : Rated r o t o r c op pe r l o s s p er p h a s e : \ nP RL = %. 1 f W/ phase \n” , P _ R L ) ;

71

72   printf ( ”   \n e : Ro to r power d e ve l op e d p er p ha se ” ) ;

73   printf ( ”   \n P d = %. f W/ ph a s e   \n P d = %. 2 f hp/ p h a s e \n” , P _ d _ W , P _ d _ h p ) ;

74

75   printf ( ”   \n f : Ro to r t or qu e d ev el op ed p er p ha se : ” )

;

76   printf ( ”   \n ( method 1 ) \n T d = %. 1 f l b − f t /p h a s e ” , T _ d 1 ) ;

77   printf ( ”   \n\n ( method 2 ) \n T d = %. 1 f l b − f t /p h a s e \n” , T _ d 2 ) ;

78

79   printf (”   \n g : T ot a l r o t o r t or qu e :   \n T dm = %dl b − f t \ n” , T _ d m ) ;

80

81   printf ( ”   \n h : T ot al o ut pu t r o t o r t or qu e :   \n T o= % d l b − f t ” , T _ o ) ;

Scilab code Exa 9.12  calculate s and Sr for Tmax

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

205

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 207/412

6   // Ch apt e r 9 : POLYPHASE INDUCTION (ASYNCHRONOUS)

DYNAMOS7   / / E xa mp le 9−128

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G ive n d at a a s p e r Ex .9 −1012   P = 4 ;   / / N umber o f p o l e s i n WRIM13   f = 6 0 ;   // F re qu en cy i n Hz14   V = 220 ;   // L i n e v o l t a g e i n v o l t15   V_p = 220 ;   // Phase v o l t a g e i n v o l t ( d e l t a

c o n n e c t i o n )16   h p_WR IM = 1 ;   / / Power r a t i n g o f WRIM i n hp17   S _r = 1740 ;   // F ul l −l o ad r a t ed s pe ed i n rpm18   R_r = 0.3 ;   // r o t o r r e s i s t a n c e p er p ha se i n ohm/

p h a s e19   R_x = 0.7 ;   // Added r e s i s t a n c e i n ohm/ p h a se20   X_lr = 1 ;   // Locked r o t o r r e a c t a nc e i n ohm21

22   / / C a l c u l a t i o n s fro m Ex.9 −1023   E_lr = V_p / 4 ;   / / L o ck ed−r o t o r v o l t a g e p er p ha se24   S = (1 20 * f) /P ;

  // Speed i n rpm o f t he r o t a t i n gmagn e t i c f i e l d25

26   // C a l c u l a t i o n s ( Ex .9 −12)27   P _i n = ( E _l r ) ^2 / ( 2* X _l r );   / / r o t o r p ow er i n p u t ( RPI

) i n W/ p h a s e28   P _i n_ to ta l = P_ in * 3 ;   // T ot al 3−p ha se r o t o r p ower

i n p u t ( RPI ) i n W29

30   T _ m a x = 7 . 0 4* ( P _ i n _ t ot a l / S ) ;   // Maximum to rq ued e ve l op e d i n l b− f t

3132   s_b = R_r / X_lr ;   // S l i p33

34   s = s_b ;

35   S_r = S *(1 - s );   // Ro to r s pe ed i n rpm f o r T max

206

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 208/412

36

37   // D is pl ay t h e r e s u l t s38   disp ( ”E x ampl e 9−12 S o l u t i o n : ” ) ;

39

40   printf ( ”   \n R ot o r p ower i np ut ( RPI ) p er p ha se i s : ”) ;

41   printf ( ”   \n P i n = %. 1 f W/ p h a s e   \n” , P _ i n ) ;

42

43   printf ( ”   \n The t o t a l 3−p ha s e r o t o r po we r i n p u t ( RPI) i s : ” ) ;

44   printf ( ”   \n P i n = %. 1 f W\n” , P _ i n _ t o t a l ) ;

45

46   printf ( ”   \n S u b s t i t ut i n g i n Eq .( 9 − 19) , \ n T max = %. 2f l b − f t \ n” , T _ m a x ) ;

47   printf ( ”   \n Then , s b = %. 1 f    \n a nd S r = %d rpm ”,

s _ b , S _ r ) ;

Scilab code Exa 9.13   calculate starting torque

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 9 : POLYPHASE INDUCTION (ASYNCHRONOUS)DYNAMOS

7   / / E xa mp le 9−138

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

1011   / / G ive n d at a a s p e r Ex .9 −1012   P = 4 ;   / / N umber o f p o l e s i n WRIM13   f = 6 0 ;   // F re qu en cy i n Hz14   V = 220 ;   // L i n e v o l t a g e i n v o l t

207

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 209/412

15   V_p = 220 ;   // Phase v o l t a g e i n v o l t ( d e l t a

c o n n e c t i o n )16   h p_WR IM = 1 ;   / / Power r a t i n g o f WRIM i n hp17   S _r = 1740 ;   // F ul l −l o ad r a t ed s pe ed i n rpm18   R_r = 0.3 ;   // r o t o r r e s i s t a n c e p er p ha se i n ohm/

p h a s e19   R_x = 0.7 ;   // Added r e s i s t a n c e i n ohm/ p h a se20   X_lr = 1 ;   // Locked r o t o r r e a c t a nc e i n ohm21

22   / / C a l c u l a t i o n s23   E_lr = V_p / 4 ;   / / L o ck ed−r o t o r v o l t a g e p er p ha se24   S = (1 20 * f) /P ;   // Speed i n rpm o f t he r o t a t i n g

magn e t i c f i e l d25

26   / / T ot al 3−p ha se r o t o r p ower i n p u t ( RPI ) i n W27   P_in = 3 * ( ( E_lr ) ^2 ) / ( ( R_r ) ^2 + ( X_lr ) ^2 ) *

R_r ;

28

29   T _ s = 7 .0 4 * ( P _i n /S );   // S t a r t i n g t o rq u e d e ve l op e di n l b − f t

30

31   // D is pl ay t h e r e s u l t s32   disp (

”E x ampl e 9−13 S o l u t i o n : ”) ;

33

34   printf ( ”   \n P i n = %. f W   \n” , P _ i n ) ;

35   printf ( ”   \n From Eq . ( 9  − 1 9) , s t a r t i n g t or qu e i s :   \nT s = %. 2 f l b− f t ” , T _ s ) ;

Scilab code Exa 9.14  calculate full load and starting torques

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

208

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 210/412

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 211/412

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 212/412

36   printf ( ”   \n

” ) ;

37   printf ( ”   \n I 1 (A)   \ t \ t I 2 (A)   \ t \ t V( v o l t ) ” ) ;

38   printf ( ”   \n

” ) ;

39   printf ( ”   \n ( 0 . 4 + j 1 6 . 35 )   \ t   −(0 + j 1 6 )   \ t \ t ( 12 7+ j 0 ) ” ) ;

40   printf ( ”   \n   −(0 + j 1 6 )   \ t \ t ( 4 . 6 7 + j 16 . 3 5 )   \ t0 ” ) ;

41   printf ( ”   \n

” ) ;

42

43   A = [ (0.4 + %i * 16.3 5) - %i *16 ; ( -%i *16) (4.67 + %i

* 1 6 .3 5 ) ] ;   // M at ri x c o n t a i n i n g a bo ve mesh e qn sa r r a y

44   d e lt a =   det ( A ) ;   // D et er mi na nt o f A45

46   / / c as e a : S t a t o r a r m a t u r e c ur r e nt I p i n A47   I _p =   det ( [ ( 12 7+ %i *0 ) ( -%i * 16 ) ; 0 ( 4. 67 + %i

*1 6.3 5) ] ) / delta ;

48   I _ p_ m =   abs ( I _ p ) ; // I p m=m ag ni tu de o f I p i n A49   I _ p_ a =   atan ( imag ( I _p ) / real ( I _ p ) ) * 1 8 0 / % p i ; / / I p a =

p h a s e a ng le o f I p i n d e g r e e s50   I_1 = I_p ;   // S t at o r a rm at ur e c u r re n t i n A51

52   / / c as e b : R ot o r c ur r e nt I r p e r p h a s e i n A53   I _r =   det ( [ ( 0. 4 + %i * 1 6. 35 ) ( 12 7+ % i *0 ) ; ( - %i * 16 )

0 ] ) / delta ;

54   I _ r_ m =   abs ( I _ r ) ; // I r m =m ag ni tu de o f I r i n A55   I _ r_ a =   atan ( imag ( I _r ) / real ( I _ r ) ) * 1 8 0 / % p i ; // I r a =

p h a s e a ng le o f I r i n d e g r e e s56

57   / / c as e c58   t he ta _1 = I _p _a ;   // Motor PF a n g l e i n d e g r e es59   c o s _ t he t a 1 = c o sd ( t h e t a _1 ) ;   / / M ot or PF

211

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 213/412

60

61   / / c as e d62   I _p = I _p _m ;   // S t at o r a rm at u re c u r r e n t i n A63   S PI = V_p * I_p * c os _t he ta 1 ;   // S t a t o r Power I n pu t

i n W64

65   / / c as e e66   SCL = ( I_p ) ^2 * R_a ;   // S t a t or Copper L os s i n W67

68   / / c as e f  69   / / S u b s c r i p t s 1 and 2 f o r RPI i n d i c a t e s two methods

o f c a l c u l a t i n g RPI

70   RPI_1 = SPI - SCL ;   / / R ot or Power I n pu t i n W71   R PI _2 = ( I _r _m ) ^2 * ( R _r / s) ;   // R ot or Power I n pu t i n

W72   R P I = R PI _1 ;

73

74   / / c as e g75   / / S u b s c r i p t s 1 , 2 and 3 f o r RPD i n d i c a t e s t h r e e

m eth od s o f c a l c u l a t i n g RPD76   RPD_1 = RPI * ( 1 - s ) ;   // R ot or Power D e ve l op e d i n

W77   R CL = s *( R PI ) ;

  // R ot or c o pp er l o s s e s i n W78   RPD_2 = RPI - RCL ;   / / R ot or Power D e ve l op e d i n W79   R PD _3 = ( I _r _m ) ^2 * R _r * (( 1 -s ) /s ) ;   / / R o to r P ower

D e ve l op e d i n W80   RPD = RPD_1 ;

81

82   / / c as e h83   P_r = P _r_ to ta l / 3 ;   // R o ta t i on a l L o ss e s p er p ha se

i n W84   P_o = RPD - P_r ;   // R ot or power p er p ha se i n W85   P_ to = 3* P_o ;   // T ot al r o t o r power i n W

8687   / / c as e i88   T = 7 .0 4 * ( P_ to / S_r ) ;   // T ot al 3−p ha se t or q u e i n l b

− f t89

212

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 214/412

90   / / c as e j

91   P _t = P_to ;92   h p = P_t / 746 ;   // O ut pu t h o r s e p o w e r93

94   / / c as e k95   P_in = SPI ;   // I np ut power t o s t a t o r i n W96   eta = P_o / P_in * 100 ;   // Motor e f f i c i e n c y a t

r a t ed l o ad97

98   // D is pl ay t h e r e s u l t s99   disp ( ” S o l u t i o n : ” ) ;

100   printf ( ”   \n P r e l i mi n a r y c a l c u l a t i o n s \ n” ) ;

101   printf ( ”   \n S l i p : s = %. 2 f    \n R r / s = %. 2 f ohm   \n” ,s , R _ r / s ) ;

102

103   printf ( ”   \n D e t e r m i n a n t = ” ) ; disp ( d e l t a ) ;

104

105   printf ( ”   \n a : S t at o r a rm at ur e c u r re n t : \ n I p i nA = ” ) ; disp ( I _ 1 ) ;

106   printf ( ”   \n I p = I 1 = %. 2 f    <%. 2 f A   \n ” , I _p _m ,

I _p _a ) ;

107

108   printf (”   \n b : Ro to r c u r r e n t p er p ha se : \ n I r i nA = ” ) ; disp ( I _ r ) ;

109   printf ( ”   \n I r = I 2 = %. 3 f    <%. 2 f A   \n ” , I _r _m ,

I _r _a ) ;

110

111   printf ( ”   \n c : Mot or PF : \ n c o s 1 = %. 4 f    \n” ,

c o s _ t h e t a 1 ) ;

112

113   printf ( ”   \n d : S t a t or Power I np ut : \ n SPI = %d W\n” , S P I ) ;

114

115   printf ( ”   \n e : S t at o r Copper L os s : \ n SCL = %. f W\n” , S C L ) ;

116

117   printf ( ”   \n f : Ro to r Power I np ut : \ n RPI = %d W(m etho d 1 ) ” , R PI _1 ) ;

213

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 215/412

118   printf ( ”   \n RPI = %. f W ( method 2 ) \n” , R P I _ 2 ) ;

119   printf ( ”   \n Note : RPI c a l c u l a t e d by 2nd methods l i g h t l y v a r i e s from t ha t o f ” ) ;

120   printf ( ”   \n t e x t b o o k v a l u e b e c a u s e o f non−a pp ro x im a ti on o f I r w h i le ” ) ;

121   printf ( ”   \n c a l c u l a t i n g i n s c i l a b . \ n” )

122

123   printf ( ”   \n g : R ot or Power D e ve l op e d : \ n RPD = %.f W   \n” , R P D _ 1 ) ;

124   printf ( ”   \n Ro to r c o p p e r l o s s : \ n RCL = %d W\n” , R C L ) ;

125   printf ( ”   \n RPD = %. f W   \n RPD = %d W   \n ” ,

R P D _ 2 , R P D _ 3 ) ;126

127   printf ( ”   \n h : Ro to r power p er p ha se : \ n P o / =%f W/ ” , P _ o ) ;

128   printf ( ”   \n\n T o t a l r o t or power : \ n P t o = %f W\n” , P _ t o ) ;

129   printf ( ”   \n Above P o / and P t o v a l u e s a re no ta pp ro xi ma te d w h il e c a l c u l a t i n g i n ” ) ;

130   printf ( ”   \n SCILAB . So , t he y v ar y s l i g h t l y fromt e xt b o ok v a l u e s . \ n” ) ;

131

132   printf ( ”   \n i : T o t a l 3−p ha se o ut pu t t o rq u e : \ n T= % . f l b− f t \ n” , T ) ;

133

134   printf ( ”   \n j : Output h o rs e po w er :   \n hp = %. 1 f  hp   \n” , h p ) ;

135

136   printf ( ”   \n k : Motor e f f i c i e n c y a t r at ed l oa d : \ n= %. 1 f p e r c e n t   \n” , e t a )

137

138   printf ( ”   \n Power f l o w d ia g ra m ( p e r p h as e ) \n” ) ;

139   printf ( ”   \n SPI−−−−−−−−−−>   RPI−−−−−−−−−>   RPD−−−−−−−−−−>   P o ” ) ;

140   printf ( ”   \n (%d W)   |   (%d W)   |   (%d W)   |   (%dW) ” , S P I , R P I _ 1 , R P D _ 3 , P _ o ) ;

141   printf ( ”   \n   | | |

214

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 216/412

” ) ;

142   printf ( ”   \n SCL RCLP r ” ) ;

143   printf ( ”   \n (%. f W) (%d W) (%dW) ” , S C L , R C L , P _ r ) ;

Scilab code Exa 9.16  calculate Ism IL Ts and percent IL and percent Ts

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 9 : POLYPHASE INDUCTION (ASYNCHRONOUS)DYNAMOS

7   / / E xa mp le 9−168

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   / / t h r ee −pha se SCIM13   V = 208 ;   // Rated v o l t a g e i n v o l t14   P_o = 15 ;   // Rat ed p ower i n hp15   I = 4 2 ;   // Rated c u r r e nt i n A16   I_st = 252 ;   // S t a rt i n g c u r r e n t i n A17   T_st = 120 ;   // F ul l −v o lt a g e s t a r t i n g t or qu e i n l b−

f t18   t a p = 6 0* (1 /1 00 ) ;   / / T ap pi ng i n % e mp lo ye d by

c o m p e n s a t o r

1920   / / C a l c u l a t i o n s21   / / c as e a22   I_sm = tap * I_st ;   // Motor s t a r t i n g c u r r e n t i n A

a t r ed uc ed v o l t a g e

215

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 217/412

23

24   / / c as e b25   I_L = tap * I_sm ;   // Motor l i n e c u r r e nt i n A(n e g l e c t i n g t a r n s f o r m e r e x c i t i n g

26   // c u r r e nt and l o s s e s )27

28   / / c as e c29   T_s = ( tap ) ^2 * T_st ;   // Motor s t a r t i n g t or qu e a t

r ed uc ed v o l t a g e i n l b −f t30

31   / / c as e d32   p er ce nt _I _L = I_L / I_ st * 100 ;   // P er ce nt l i n e

c u r r e n t a t s t a r t i n g33

34   / / c as e e35   p er ce nt _T _s t = T_ s / T _s t * 1 00 ;   // P e r c e nt m ot or

s t a r t i n g t or qu e36

37   // D is pl ay t h e r e s u l t s38   disp ( ”E x ampl e 9−16 S o l u t i o n : ” ) ;

39

40   printf ( ”   \n a : Motor s t a r t i n g c u r r e nt a t r ed uc ed

v ol t a g e : ”) ;

41   printf ( ”   \n I s m = %. 1 f A t o t h e motor . \ n” , I _ s m ) ;

42

43   printf ( ”   \n b : Motor l i n e c u r re n t n e g l e c t i n gt a r n s f o r m e r e x c i t i n g c u r r e n t and l o s s e s : ” ) ;

44   printf ( ”   \n I L = %. 2 f A drawn from t h e mai ns . \ n”, I _ L ) ;

45

46   printf ( ”   \n c : Motor s t a r t i n g t or q u e a t r ed uc edv o l t a ge : \ n T s = %. 1 f l b − f t \ n” , T _ s ) ;

47

48   printf ( ”   \n d : P e r c e n t l i n e c ur r e n t a t s t a r t i n g : ” );

49   printf ( ”   \n = %. f p er c e n t o f l i n e c ur re nt a t f u l lv o l t a g e . \ n” , p e r c e n t _ I _ L ) ;

50

216

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 218/412

51   printf ( ”   \n e : P er ce nt motor s t a r t i n g t or qu e : ” ) ;

52   printf ( ”   \n = %d p e r c e n t o f s t a r t i n g t o r q u e a tf u l l v o l t a g e . \ n” , p e r c e n t _ T _ s t ) ;

Scilab code Exa 9.17  calculate T s Sr for different V

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   // Ch apt e r 9 : POLYPHASE INDUCTION (ASYNCHRONOUS)DYNAMOS

7   / / E xa mp le 9−178

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   / / t h r ee −pha se SCIM

13   V_o = 220 ;   // Rated v o l t a g e i n v o l t14   P = 4 ;   // Number o f p o l e s i n SCIM15   P_o = 10 ;   // Rat ed p ower i n hp16   f = 6 0 ;   / / F r e qu e n cy i n Hz ( a ss um e , n o t g i v e n )17   T_o = 30 ;   // Rated t o rq u e i n l b− f t18   S _r = 1710 ;   // Rated r o t o r s pe ed i n rpm19   V_n1 = 242 ;   // I mp re s se d s t a t o r v o l t a ge i n v o l t (

c a s e a )20   V_n2 = 198 ;   // I mp re s se d s t a t o r v o l t a ge i n v o l t (

c a s e b )

2122   / / C a l c u l a t i o n s23   S = (1 20 * f) /P ;   // Speed i n rpm o f t he r o t a t i n g

magn e t i c f i e l d24   / / c as e a : I mp re ss ed s t a t o r v o l t a ge = 242 V

217

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 219/412

25   s _o = ( S - S_r )/ S ;   // Rated s l i p

2627   T_ n1 = T_o * ( V_ n1 / V_o ) ^2 ;   // New t o rq u e i n l b− f t28

29   s _n 1 = s _o * ( T _o / T _n 1 );   / / New s l i p30

31   S _r n1 = S *(1 - s_ n1 ) ;

32

33   / / c as e b : I mp re ss ed s t a t o r v o l t a ge = 198 V34   T_ n2 = T_o * ( V_ n2 / V_o ) ^2 ;   // New t o rq u e i n l b− f t35

36   s _n 2 = s _o * ( T _o / T _n 2 );   / / New s l i p

3738   S _r n2 = S *(1 - s_ n2 ) ;

39

40   / / c as e c41   / / S u bs c r i pt a i n p e r c e n t s l i p and p e rc e n t s p ee d

i n d i c a t e s p ar t a42   p er ce nt _s li p_ a = ( s _o - s _n 1 )/ s_ o * 1 00 ;   // P e rc e nt

c h a ng e i n s l i p i n p ar t ( a )43

44   p er ce nt _s pe ed _a = ( S _r n1 - S _r ) / S_ r * 1 00 ;   //

P er ce nt c ha ng e i n s pe ed i n p a rt ( a )45

46   / / c as e d47   / / S u bs c r i pt b i n p e r c e n t s l i p and p e rc e n t sp e ed

i n d i c a t e s p ar t b48   p er ce nt _s li p_ b = ( s _n 2 - s _o ) / s_ o * 1 00 ;   // P e rc e nt

c h a ng e i n s l i p i n p ar t ( b )49

50   p er ce nt _s pe ed _b = ( S _r - S _r n2 ) / S_ r * 1 00 ;   //P er ce nt c ha ng e i n s pe ed i n p a rt ( b )

51

52   // D is pl ay t h e r e s u l t s53   disp ( ”E x ampl e 9−17 S o l u t i o n : ” ) ;

54

55   printf ( ”   \n a : Rated s l i p : \ n s = %. 2 f   \n” , s _ o ) ;

56   printf ( ”   \n For i mp re ss ed s t a t o r v o l t a g e = %d V   \

218

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 220/412

n ” , V _ n 1 ) ;

57   printf ( ”   \n New t o r q u e : \ n T n = %. 1 f l b − f t   \n” , T _ n 1 ) ;

58   printf ( ”   \n New s l i p : \ n s n = %f    \n ” , s _ n 1 ) ;

59   printf ( ”   \n New r o t o r s p e e d : \ n S r = %f rpm   \n” , S _ r n 1 ) ;

60

61   printf ( ”   \n b : For i mp re ss ed s t a t o r v o l t a g e = %d V   \n ” , V _ n 2 ) ;

62   printf ( ”   \n New t o r q u e : \ n T n = %. 1 f l b − f t   \n” , T _ n 2 ) ;

63   printf ( ”   \n New s l i p : \ n s n = %f    \n ” , s _ n 2 ) ;

64   printf ( ”   \n New r o t o r s p e e d : \ n S r = %f rpm   \n” , S _ r n 2 ) ;

65

66   printf ( ”   \n c : P er ce nt c h a ng e i n s l i p i n p ar t ( a ) ” ) ;

67   printf ( ”   \n = %. 1 f p er ce n t d e c re as e . \ n” ,

p e r c e n t _ s l i p _ a ) ;

68   printf ( ”   \n P e r c e n t c h a ng e i n s pe e d i n p a rt ( a ) ”) ;

69   printf ( ”   \n = %. 2 f p e r c e n t i n c r e a s e   \n” ,

p e r c e n t _ s p e e d _ a ) ;

70

71   printf (”   \n d : P er ce nt c h ang e i n s l i p i n p ar t ( b ) ”

) ;

72   printf ( ”   \n = %. 2 f p er ce n t i n c r e a s e . \ n” ,

p e r c e n t _ s l i p _ b ) ;

73   printf ( ”   \n P e r c e n t c ha ng e i n s pe e d i n p ar t ( b ) ” ) ;

74   printf ( ”   \n = %. 2 f p er ce n t d e cr ea s e \n” ,

p e r c e n t _ s p e e d _ b ) ;

75

76   printf ( ”   \n SLIGHT VARIATIONS IN PERCENT CHANGE INSLIP AND SPEED ARE DUE TO”) ;

77   printf ( ”   \n NON−APPROXIMATION OF NEW SLIPS AND NEWSPEEDS CALCULATED IN SCILAB . ” )

Scilab code Exa 9.18  calculate T s Sr for different impressed stator V

219

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 221/412

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 222/412

31   s _o = ( S - S_r )/ S ;   // Rated s l i p

3233   T_ n1 = T_o * ( V_ n1 / V_o ) ^2 ;   // New t o rq u e i n l b− f t34

35   s _n 1 = s _o * ( T _o / T _n 1 ) * ( R _r n / R_ ro ) ;   // New s l i p36

37   S _r n1 = S *(1 - s_ n1 ) ;

38

39   / / c as e b : I mp re ss ed s t a t o r v o l t a ge = 208 V40   T_ n2 = T_o * ( V_ n2 / V_o ) ^2 ;   // New t o rq u e i n l b− f t41

42   s _n 2 = s _o * ( T _o / T _n 2 ) * ( R _r n / R_ ro ) ;   // New s l i p

4344   S _r n2 = S *(1 - s_ n2 ) ;

45

46   / / c as e c : I mp re ss ed s t a t o r v o l t a ge = 110 V47   T_ n3 = T_o * ( V_ n3 / V_o ) ^2 ;   // New t o rq u e i n l b− f t48

49   s _n 3 = s _o * ( T _o / T _n 3 ) * ( R _r n / R_ ro ) ;   // New s l i p50

51   S _r n3 = S *(1 - s_ n3 ) ;

52

53  // D is pl ay t h e r e s u l t s54   disp ( ”E x ampl e 9−18 S o l u t i o n : ” ) ;

55

56   printf ( ”   \n a : Rated s l i p : \ n s = %f  \n” , s _ o ) ;

57   printf ( ”   \n For i mp re ss ed s t a t o r v o l t a g e = %d V   \n ” , V _ n 1 ) ;

58   printf ( ”   \n New t o r q u e : \ n T n = %. 1 f l b − f t   \n” , T _ n 1 ) ;

59   printf ( ”   \n New s l i p : \ n s n = %f    \n ” , s _ n 1 ) ;

60   printf ( ”   \n New r o t o r s p e e d : \ n S r = %f rpm   \n” , S _ r n 1 ) ;

6162   printf ( ”   \n b : For i mp re ss ed s t a t o r v o l t a g e = %d V   \

n ” , V _ n 2 ) ;

63   printf ( ”   \n New t o r q u e : \ n T n = %. 2 f l b − f t   \n” , T _ n 2 ) ;

221

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 223/412

64   printf ( ”   \n New s l i p : \ n s n = %f    \n ” , s _ n 2 ) ;

65   printf ( ”   \n New r o t o r s p e e d : \ n S r = %f rpm   \n” , S _ r n 2 ) ;

66

67   printf ( ”   \n c : For i mp re ss ed s t a t o r v o l t a g e = %d V   \n ” , V _ n 3 ) ;

68   printf ( ”   \n New t o r q u e : \ n T n = %. 1 f l b − f t   \n” , T _ n 3 ) ;

69   printf ( ”   \n New s l i p : \ n s n = %f    \n ” , s _ n 3 ) ;

70   printf ( ”   \n New r o t o r s p e e d : \ n S r = %f rpm   \n” , S _ r n 3 ) ;

Scilab code Exa 9.19  calculate fcon and Scon

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 9 : POLYPHASE INDUCTION (ASYNCHRONOUS)

DYNAMOS7   / / E xa mp le 9−198

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P = 8 ;   / / N umber o f p o l e s i n WRIM13   f = 6 0 ;   // O p e r at i n g f r e q u e n c y o f t h e WRIM i n Hz14   / / / WRIM i s d r i v e n by v a r i a b l e −s p e ed p ri m e m over a s

a f r eq u e nc y c ha ng er15   S _ c on _a 1 = 1 80 0 ;   // Speed o f t he c o n ve r t o r i n rpm16   S _ co n_ a2 = 4 50 ;   // Speed o f t he c o nv e rt o r i n rpm17

18   f _c on _b 1 = 25 ;   // F re qu en cy o f an i n d u c t i o n

222

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 224/412

c o n v e r t e r i n Hz

19   f _ co n_ b2 = 4 00 ;   // F re qu en cy o f an i n d u c t i o nc o n v e r t e r i n Hz20   f _ co n_ b3 = 1 20 ;   // F re qu en cy o f an i n d u c t i o n

c o n v e r t e r i n Hz21

22   / / C a l c u l a t i o n s23   S = (1 20 * f) /P ;   // Speed i n rpm o f t he r o t a t i n g

magn e t i c f i e l d24

25   / / c as e a26   // S u b s c r i pt a1 i n f c o n i n d i c a t e s c as e a 1 s t

f r eq u e cy i n Hz27   f _ c on _ a1 = f * (1 + S _ co n _a 1 / S ) ;   // F re qu en cy o f an

i n d uc t i on c o n v e r t er i n Hz28

29   / / S u b s c r i pt a2 i n f c o n i n d i c a t e s c as e a 2 ndf r e qu e n cy i n Hz

30   f _ c on _ a2 = f * (1 - S _ co n _a 2 / S ) ;   // F re qu en cy o f ani n d uc t i on c o n v e r t er i n Hz

31

32   / / c as e b33

  / / S u bs c r i pt b1 i n S−con i n d i c a t e s c as e b 1 s t s pe e do f c o n v e r t er i n rpm34   S _c on_ b1 = ( -1 + f_ con _b 1/ f) * S ;   // Speed o f t he

c o n v er t o r i n rpm35

36   / / S u bs c r i pt b2 i n S−con i n d i c a t e s c as e b 2 nd s pe e do f c o n v e r t er i n rpm

37   S _c on_ b2 = ( -1 + f_ con _b 2/ f) * S ;   // Speed o f t hec o n v er t o r i n rpm

38

39   / / S u bs c r i pt b3 i n S−con i n d i c a t e s c as e b 3 rd s pe e d

o f c o n v e r t er i n rpm40   S _c on_ b3 = ( -1 + f_ con _b 3/ f) * S ;   // Speed o f t he

c o n v er t o r i n rpm41

42

223

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 225/412

43   // D is pl ay t h e r e s u l t s

44   disp ( ”E x ampl e 9−19 S o l u t i o n : ” ) ;45

46   printf ( ”   \n U s in g Eq . ( 9 − 26) , \ n” ) ;

47

48   printf ( ”   \n a : f c o n = %d Hz f o r %d rpm i n o p p o s i t ed i r e c t i o n \ n” ,f_con_a1 ,S_con_a1);

49   printf ( ”   \n f c o n = %d Hz f o r %d rpm i n samed i r e c t i o n \ n” ,f_con_a2 ,S_con_a2);

50

51   printf ( ”   \n b : 1 . S c o n = %. f rpm , o r % . f rpm i nsame d i r e c t i o n . \ n” ,S_co n_b1 , abs ( S _ c o n _ b 1 ) ) ;

52   printf ( ”   \n 2 . S c o n = %d rpm i n o p po s i t ed i r e c t i o n . \ n” , S _ c o n _ b 2 ) ;

53   printf ( ”   \n 3 . S c o n = %d rpm i n o p po s i t ed i r e c t i o n t o r o t a t i n g s t a t o r f l ux . \ n” , S _ c o n _ b 3 ) ;

224

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 226/412

Chapter 10

SINGLE PHASE MOTORS

Scilab code Exa 10.1   calculate total starting current and PF and compo-nents of Is Ir and phase angle between Is Ir

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h a p t er 1 0 : SINGLE−PHASE MOTORS7   / / E xa mp le 10−18

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   h p = 0.25 ;   // Power r a t i n g o f t he s i n g l e −p h a s e

m oto r i n hp13   V = 110 ;   // V ol ta ge r a t i n g o f t h e s i n gl e −p h a s e

m oto r i n V14   I_sw = 4 ;   // S t a r t i ng w in di ng c u r re n t15   p hi _I _s w = 15 ;   // Ph ase a n g l e i n d e g r e es by wh ich

I sw l a g s b e h i n d V16   I_rw = 6 ;   / / Run ning w in d in g c u r r e n t

225

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 227/412

17   p hi _I _r w = 40 ;   // Ph ase a n g l e i n d e g r e es by wh ich

I rw l a g s b e h i n d V18

19   / / C a l c u l a t i o n s20   / / c as e a21   I _s = I_sw *   exp ( %i * - p hi _I _s w *( % pi / 1 80 ) ) ;   //

s t a r t i n g c ur r e nt i n A22   / / ( %pi / 18 0) f o r d e g r e e s t o r a di a ns c o nv e r s i o n o f  

p ha s e a n g l e23   I _ s_ m =   abs ( I _ s ) ; // I s m = m agni t ude o f I s i n A24   I _ s_ a =   atan ( imag ( I _s ) / real ( I _ s ) ) * 1 8 0 / % p i ; // I s a =

p h a s e a ng le o f I s i n d e g r e es

2526   I _r = I_rw *   exp ( %i * - p hi _I _r w *( % pi / 1 80 ) ) ;   //

r un ni ng c u r r e nt i n A27   I _ r_ m =   abs ( I _ r ) ; // I r m = m agni t ude o f I r i n A28   I _ r_ a =   atan ( imag ( I _r ) / real ( I _ r ) ) * 1 8 0 / % p i ; // I r a =

p h a s e a ng le o f I r i n d e g r e e s29

30   I_t = I_s + I_r ;   // T o t a l s t a r t i n g c u r r e nt i n A31   I _ t_ m =   abs ( I _ t ) ; // I t m = m agni t ude o f I t i n A32   I _ t_ a =   atan ( imag ( I _t ) / real ( I _ t ) ) * 1 8 0 / % p i ; // I t a =

p h a s e a ng le o f I t i n d e g r e e s33   P o w e r _ fa c t o r = c o sd ( I _ t _ a ) ;   // Power f a c t o r34

35   / / c as e b36   I s _ c o s _t h e t a =   real ( I _ s ) ;   / / Co mpo nent o f t h e

s t a r t i n g w in di ng c u r r e nt i n p ha se37   // w i t h t h e s u p p ly v o l t a g e i n A38

39   / / c as e c40   I r _ s i n _t h e t a =   imag ( I _ r ) ;   / / Co mpo nent o f t h e

r un ni ng w in di ng c u r r e nt t ha t l a g s

41   / / t h e s up pl y v o l t a g e by 9 0 d e g re e s42

43   / / c as e d44   p ha se = ( p hi _I _r w - p hi _I _s w ) ;   // P ha se a n g l e

b et wee n t he s t a r t i n g and r un ni ng

226

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 228/412

45   // c u r r e n t s i n d e g r e e s

4647   // D is pl ay t h e r e s u l t s48   disp ( ”Example 10−1 S ol u t i o n : ” ) ;

49   printf ( ”   \n a : I s = %d   <−%d A ” , I _sw , p hi _I _s w ) ;

50   printf ( ”   \n I s i n A = ”   ) ; disp ( I _ s ) ;

51   printf ( ”   \n I r = %d   <−%d A ” , I _rw , p hi _I _r w ) ;

52   printf ( ”   \n I r i n A = ”   ) ; disp ( I _ r ) ;

53   printf ( ”   \n I t i n A = ”   ) ; disp ( I _ t ) ;

54   printf ( ”   \n I t = %. 2 f    <% d A ” , I _t _m , I _t _a ) ;

55   printf ( ”   \n\n Power f a c t o r = c o s (%d) = %. 3 f  l a g g i n g   \n” , I _t _a , P o we r _f a ct o r ) ;

5657   printf ( ”   \n b : I s ∗  c o s = %. 2 f A ( from a ) \n ” ,

I s _ co s _ t he t a ) ;

58

59   printf ( ”   \n c : ( f ro m a ) , \ n I r ∗  s i n i n A = ”   ) ;

disp ( % i * I r _ s i n _ t h e t a ) ;

60

61   printf ( ”   \n d : ( r   −   s ) = %d d e g r e e s ” , p ha se ) ;

Scilab code Exa 10.2  calculate Ps Pr Pt and motor efficiency

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h a p t er 1 0 : SINGLE−PHASE MOTORS7   / / E xa mp le 10−2

89   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G ive n d at a a s p e r Ex .10 −1

227

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 229/412

12   h p = 0.25 ;   // Power r a t i n g o f t he s i n g l e −p h a s e

m oto r i n hp13   V = 110 ;   // V ol ta ge r a t i n g o f t h e s i n gl e −p h a s em oto r i n V

14   I_s = 4 ;   // S t a r t i n g w i nd in g c u r r e nt15   p hi _I _s = 15 ;   // Pha se a n g le i n d e g r e es by whi ch

I s l a g s b e h i n d V16   I_r = 6 ;   / / Runni ng w i nd i ng c u r r e n t17   p hi _I _r = 40 ;   // Pha se a n g le i n d e g r e es by whi ch

I r l a g s b e h i n d V18

19   / / C a l c u l a t i o n s

20   / / c as e a21   P_s = V * I_ s * c os d( p hi _I _s ) ;   // Power d i s s i p a t e d

i n t he s t a r t i n g w i n di ng i n W22

23   / / c as e b24   P_r = V * I_ r * c os d( p hi _I _r ) ;   // Power d i s s i p a t e d

i n t he r un ni ng w in di ng i n W25

26   / / c as e c27   P_t = P_s + P_r ;   // T ot al i n s t a n t a ne o u s power

d i s s i p a t e d d ur i ng s t a r t i n g i n W28

29   / / c as e d30   P_r_d = P_r ;   // T o ta l s t ea d y−s t a t e power d i s s i p a t e d

d u ri n g r un ni ng i n W31

32   / / c as e e33   eta = ( hp * 746 ) / P_r * 100 ;   // Motor e f f i c i e n c y

i n p e rc e n t34

35   // D is pl ay t h e r e s u l t s

36   disp ( ”Example 10−2 S ol u t i o n : ” ) ;37   printf ( ”   \n a : Power d i s s i p a t e d i n t he s t a r t i n g

w i n d i n g \n P s = %d W   \n” , P _ s ) ;

38

39   printf ( ”   \n b : Power d i s s i p a t e d i n t he r un ni ng

228

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 230/412

w i n d i n g \n P r = %. 1 f W   \n” , P _ r ) ;

4041   printf ( ”   \n c : T ot al i n s t a n t an e o us power d i s s i p a t e d

d ur in g s t a r t i n g  \ n P t = %. 1 f W   \n” , P _ t ) ;

42

43   printf ( ”   \n d : T ot al s te ad y −s t a t e power d i s s i p a t e dd u r in g r u nn i ng \n P r = %. 1 f W   \n” , P _r _d ) ;

44

45   printf ( ”   \n e : Motor e f f i c i e n c y   \n = %. f  p e r c e n t   \n” , e t a ) ;

Scilab code Exa 10.3  calculate total starting current and sine of angle be-tween Is Ir

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h a p t er 1 0 : SINGLE−PHASE MOTORS

7   / / E xa mp le 10−38

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   h p = 0.25 ;   // Power r a t i n g o f t he s i n g l e −p h a s e

m oto r i n hp13   V = 110 ;   // V ol ta ge r a t i n g o f t h e s i n gl e −p h a s e

m oto r i n V

14   I_sw = 4 ;   // S t a r t i ng w in di ng c u r re n t15   p hi _I _s w = 15 ;   // Ph ase a n g l e i n d e g r e es by wh ichI sw l a g s b e h i n d V

16   I_rw = 6 ;   / / Run ning w in d in g c u r r e n t17   p hi _I _r w = 40 ;   // Ph ase a n g l e i n d e g r e es by wh ich

229

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 231/412

I rw l a g s b e h i n d V

18   / / when t he c a p a c i t o r i s added t o t h e a u x i l i a r ys t a r t i n g w in di ng o f t he motor19   / / o f Ex .1 0 −1 , I s l e a d s V by 42 d eg re es so ,20   p hi _I _s w_ ne w = 4 2 ;   // I s l e a d s V by p hi I s w n e w

d e g r e e s21

22   / / C a l c u l a t i o n s23   / / c as e a24   I _s = I_sw *   exp ( % i * p h i_ I _s w _n e w * ( %p i / 18 0) ) ;   //

s t a r t i n g c ur r e nt i n A25   / / ( %pi / 18 0) f o r d e g r e e s t o r a di a ns c o nv e r s i o n o f  

p ha s e a n g l e26   I _ s_ m =   abs ( I _ s ) ; // I s m = m agni t ude o f I s i n A27   I _ s_ a =   atan ( imag ( I _s ) / real ( I _ s ) ) * 1 8 0 / % p i ; // I s a =

p h a s e a ng le o f I s i n d e g r e es28

29   I _r = I_rw *   exp ( %i * - p hi _I _r w *( % pi / 1 80 ) ) ;   //r un ni ng c u r r e nt i n A

30   I _ r_ m =   abs ( I _ r ) ; // I r m = m agni t ude o f I r i n A31   I _ r_ a =   atan ( imag ( I _r ) / real ( I _ r ) ) * 1 8 0 / % p i ; // I r a =

p h a s e a ng le o f I r i n d e g r e e s32

33   I_t = I_s + I_r ;   // T o t a l s t a r t i n g c u r r e nt i n A34   I _ t_ m =   abs ( I _ t ) ; // I t m = m agni t ude o f I t i n A35   I _ t_ a =   atan ( imag ( I _t ) / real ( I _ t ) ) * 1 8 0 / % p i ; // I t a =

p h a s e a ng le o f I t i n d e g r e e s36   P o w e r _ fa c t o r = c o sd ( I _ t _ a ) ;   // Power f a c t o r37

38   / / c as e b39   t he ta = ( p hi _I _r w - ( - p hi _I _s w_ ne w ) ) ;

40   s i n _ th e t a = s i nd ( t h e t a ) ; // S i n e o f t he a n gl e be tw e ent h e

41   // s t a r t i n g and r un ni ng c u r r e n t s42   phase = 25 ;   // Pha se a n g le b et we en t he s t a r t i n g and

r u n n i n g43   // c u r r e n t s i n d e g r e es ( fr om Ex .1 0 −1)44

230

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 232/412

45   / / c as e c

46   / / R at i o o f s t a r t i n g t o r q u e s ( c a p ac i t or t or e s i s t a n c e s t a r t )47   r a ti o _T = s in d ( t he ta ) / s in d ( p ha se ) ;

48

49   // D is pl ay t h e r e s u l t s50   disp ( ”Example 10−3 S ol u t i o n : ” ) ;

51   printf ( ”   \n a : I s = %d   <%d A ” , I _s w , p h i_ I _s w _n e w

) ;

52   printf ( ”   \n I s i n A = ”   ) ; disp ( I _ s ) ;

53   printf ( ”   \n I r = %d   <−%d A ” , I _rw , p hi _I _r w ) ;

54   printf ( ”   \n I r i n A = ”   ) ; disp ( I _ r ) ;

55   printf ( ”   \n I t i n A = ”   ) ; disp ( I _ t ) ;56   printf ( ”   \n I t = %. 2 f    <%. 1 f A ” , I_t_m , I_t_a )

;

57   printf ( ”   \n\n Power f a c t o r = c o s (%. 1 f ) = %. 3 f  l a g g i n g   \n” , I _t _a , P o we r _f a ct o r ) ;

58

59   printf ( ”   \n b : s i n ( %d   −   (−%d) ) = s i n ( %d) = %. 4 f   \n” ,

phi_I_rw ,phi_I_sw_new ,theta,sin_theta);

60

61   printf ( ”   \n c : The s te ad y s t a t e s t a r t i n g c u rr e n t ha s

b ee n r e d u ce d f ro m ”) ;

62   printf ( ”   \n 9 . 7 7   <−30 A t o %. 2 f    <%. 1 f A , ” ,I_t_m

, I _t _a ) ;

63   printf ( ”   \n and th e power f a c t o r ha s r i s e n f rom0 . 8 6 6 l a g g i n g t o %. 3 f . ” , P o w e r _ f a c t o r ) ;

64   printf ( ”   \n The motor d e v el o p s maximum s t a r t i n gt o r q u e ( T = K∗ I b ∗ ∗  c o s ) w i th ” ) ;

65   printf ( ”   \n minimum s t a r t i n g c u r r e n t . The r a t i o o f  s t a r t i n g t or qu e s ” ) ;

66   printf ( ”   \n ( c a pa ci t o r t o r e s i s t a n c e s t a r t ) i s :\n” ) ;

67   printf ( ”   \n T c s / T r s = s i n (%d) / s i n (%d) = %. 3 f ” ,t h e t a , p h a s e , r a t i o _ T )

231

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 233/412

Scilab code Exa 10.4   calculate ratios of T and efficiency and rated PFand hp

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   / / C h a p t er 1 0 : SINGLE−PHASE MOTORS7   / / E xa mp le 10−48

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta ( f ro m T ab l e 10 −2)12   T_r = 1 ;   // Rated t or qu e i n l b− f t13   T_s = 4.5 ;   // S t a r t i n g t or qu e i n l b − f t ( r fo m L oc ke d

−R o to r D at a )14   T_br = 2.5 ;   // Breakdown t o r q ue i n l b−f t ( B re ak do wn

−T o rq u e D at a )15

16   / / R at ed L oa d D at a17   P = 400 ;   // Ra ted i n p u t p ower i n W18   V = 115 ;   // Rated i np ut v o l t a g e i n v o l t19   I _t = 5.35 ;   // Rated i np ut c u r r e n t i n A20   S pe ed = 17 50 ;   // Ra ted s p ee d i n rpm21

22   / / C a l c u l a t i o n s23   / / c as e a24   r at io _s _r _T = T_s / T_ r ;   // R a t i o o f s t a r t i n g t o

r a t ed t o rq u e25

26   / / c as e b27   r at io _s _b r_ T = T _b r / T _r ;   // R a ti o o f br ea kd own t o

232

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 234/412

r a t ed t o rq u e

2829   / / c as e c30   P_o _hp = 1 / 3 ;   // Power o u tp ut i n hp31   P_o = P_o_hp * 746 ;   / / Power o u tp ut i n W32   eta = P_o / P * 100 ;   // Rated l oa d e f f i c i e n c y33

34   / / c as e d35   S = V * I_t ;   // VA r a t i n g o f t he motor36   co s_ th et a = P / S ;   / / Ra ted l o a d   −   power f a c t o r37

38   / / c as e e

39   T = 1 ;   // Rated l oa d t or qu e i n l b − f t40   h p = ( T * Sp ee d ) /5 25 2 ;   // Ra ted l o a d h o rs e po w er41

42   // D is pl ay t h e r e s u l t s43   disp ( ”Example 10−4 S ol u t i o n : ” ) ;

44

45   printf ( ”   \n a : T s / T r = %. 1 f    \n ” , r a t i o _s _ r _T ) ;

46

47   printf ( ”   \n b : T b r / T r = %. 1 f    \n ” , r a t i o _s _ b r_ T ) ;

48

49   printf (”   \n c : Rated l oa d e f f i c i e n c y   \n = %. 1 f  p e r c e n t   \n ” , et a ) ;

50

51   printf ( ”   \n d : Rated l o ad power f a c t o r \n c o s =%.4 f    \n ” , c o s _ th e t a ) ;

52

53   printf ( ”   \n e : Ra ted l o a d h o rs e po w er \n hp = %. 4 f  hp ” , h p ) ;

233

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 235/412

Chapter 11

SPECIALIZED DYNAMOS

Scilab code Exa 11.1  calculate S V P T A and B from torque speed rela-tions fig

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 1 : SPECIALIZED DYNAMOS7   / / E xa mp le 11−18

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   / / T o rq u e   −   sp ee d r e l a t i o n s shown i n F ig . 11 −3 b f o r a

d c s e r v o mo t o r .13

14   / / C a l c u l a t i o n s15   / / c as e a16   / / E x t r a p ol a ti n g t o l oa d l i n e p oi nt x ,17   S = 800 ;   // Motor s pe ed a t p o i n t x18   V = 6 0 ;   // Armature v o l t a g e i n v o l t a t p o in t x

234

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 236/412

19

20   / / c as e b21   / / At s t a n d s t i l l , 60 V y i e l d s 4 . 5 l b − f t o f s t a r t i n gt o r q u e

22   T = 4.5 ;

23

24   / / c as e c25   P _ c = ( T *S ) /5 25 2 ;   // Power d e l i v e r e d t o t he l oa d i n

hp ( from c a s e a c o n d i t i o n s )26   P _ c_ wa tt = P_c * 746 ;   / / P c i n W27   / / c as e d28   // At p o i n t o :

29   T_d = 1.1 ;   // S t a r t i n g t or qu e i n l b − f t ( s u b s c r i p t di n d i c a t e s c as e d ) and

30   S_d = 410 ;   // Motor s pe ed a t p o in t a t p o in t o31

32   / / c as e e33   // At p o in t w :34   T_e = 2.4 ;   // S t a r t i n g t or qu e i n l b − f t ( s u b s c r i p t e

i n d i c a t e s c a se e ) and35   S_e = 900 ;   // Motor s pe ed a t p o in t a t p o in t w36

37  / / c as e f  38   P _d = ( T _d * S _d ) / 52 52 ;   // Power d e l i v e r e d t o t he

l oa d i n hp ( from c a se d c o n d i t i o ns )39   P _ d_ wa tt = P_d * 746 ;   / / P d i n W40

41   / / c as e g42   P _f = ( T _e * S _e ) / 52 52 ;   // Power d e l i v e r e d t o t he

l oa d i n hp ( from c a se f c o n d i t i o n s )43   P _ f_ wa tt = P_f * 746 ;   / / P f i n W44

45   / / c as e h

46   // Upper l i m i t o f power r a n ge s A a nd B a r e :47   A = 6 5 ;   // Upper l i m i t o f power r an ge A i n W48   B = 305 ;   // Upper l i m i t o f power r an ge B i n W49

50   // D is pl ay t h e r e s u l t s

235

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 237/412

51   disp ( ”Example 11−1 S ol u t i o n : ” ) ;

5253   printf ( ”   \n a : E x t r a p ol a ti n g t o l oa d l i n e p oi nt x , \ n

S = %d rpm ” , S ) ;

54   printf ( ”   \n Load l i n e v o l t a g e i s %d V   \n” , V ) ;

55

56   printf ( ”   \n b : At s t a n d s t i l l , %d V y i e l d s T = %. 1 f  l b − f t o f s t a r t i n g t o rq ue \n” , V , T ) ;

57

58   printf ( ”   \n c : Power d e l i v e r e d t o t h e l oa d i n hp (from c a se a c o n d i t i o n s ) ” ) ;

59   printf ( ”   \n P = %. 4 f hp = %d W   \n” , P _ c , P _ c _ w a t t ) ;

6061   printf ( ”   \n d : At p o i n t o : \ n T = %. 1 f l b −f t and S

= %d rpm   \n” , T _ d , S _ d ) ;

62

63   printf ( ”   \n e : At p o in t w : \ n T = %. 1 f l b −f t and S= %d rpm   \n” , T _ e , S _ e ) ;

64

65   printf ( ”   \n f : P = %. 4 f hp = %. 1 f W   \n ” , P _ d ,

P _ d _ w a t t ) ;

66

67   printf (”   \n g : P = %. 4 f hp = % . f W   \n”

, P _ f , P _ f _ w a t t

) ;

68

69   printf ( ”   \n h : A = %d W and B = %d W ”, A , B ) ;

Scilab code Exa 11.2   calculate stepping angle

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 1 : SPECIALIZED DYNAMOS

236

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 238/412

7   / / E xa mp le 11−2

89   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   / / VR s t e p p e r m ot or13   n = 3 ;   // Number o f s t a c k s o r p ha s es14   P_a = 16 ;   // Number o f r o t o r t e et h ( s u b s c r i p t a

i n d i c a t e s c as e a )15   / / PM s t e p p e r16   P_b = 24 ;   // Number o f p o l e s ( s u b s c r i p t b i n d i c a t e s

c a s e b )17

18   / / C a l c u l a t i o n s19   / / c as e a20   a lp ha _a = 3 60 / ( n * P_ a );   // S te pp in g a n gl e i n

d e gr e e s p er s t ep21

22   a lp ha _b = 3 60 / ( n * P_ b );   // S te pp in g a n gl e i nd e gr e e s p er s t ep

23

24  // D is pl ay t h e r e s u l t s25   disp ( ”Example 11−2 S ol u t i o n : ” ) ;

26   printf ( ”   \n a : a lp ha = %. 1 f d e g r ee s / s t e p   \n ” ,

a l ph a _a ) ;

27

28   printf ( ”   \n b : a lp h a = %. 1 f d e g r ee s / s t e p   \n ” ,

a l ph a _b ) ;

Scilab code Exa 11.3   calculate stepping length

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

237

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 239/412

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 240/412

LIM i n m e te r

13   f = 6 0 ;   // F re qu en cy a p p l i e d t o t h e p ri ma ry LIM i nHz14

15   / / C a l c u l a t i o n16   v_s = 2 * f * tou ;   // S yn ch ro no us v e l o c i t y i n m et er

/ s e c o n d17

18   / / D is pl ay t h e r e s u l t19   disp ( ”Example 11−4 S ol u t i o n : ” ) ;

20   printf ( ”   \n S y nc h ro no us v e l o c i t y :   \n v s = %d m/ s ”, v _ s ) ;

Scilab code Exa 11.5  calculate slip of DSLIM

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 1 : SPECIALIZED DYNAMOS7   / / E xa mp le 11−58

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   v_s = 12 ;   // S yn ch ro no us v e l o c i t y i n m et er / s e co nd13   v = 1 0 ;   // S ec on d ar y s h e e t i n Ex .11 −4 moves a t a

l i n e a r v e l o c i t y i n m/ s

1415   / / C a l c u l a t i o n16   s = ( v_s - v )/ v_s ;   // S l i p o f t h e DSLIM17

18   / / D is pl ay t h e r e s u l t

239

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 241/412

19   disp ( ”Example 11−5 S ol u t i o n : ” ) ; disp ( ”From Eq

. ( 1 1 − 5 ) ” )20   printf ( ”   \n S l i p o f t he DSLIM :   \n s = %. 3 f ” , s ) ;

240

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 242/412

Chapter 12

POWER ENERGY AND

EFFICIENCY RELATIONS

OF DC AND AC DYNAMOS

Scilab code Exa 12.1  Pr Ia efficiency

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONSOF DC AND AC DYNAMOS

7   / / E xa mp le 12−18

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P = 10000 ;   // Power r a t i n g o f t he s hu nt g e n er a t or

i n W13   V = 230 ; // V ol ta ge r a t i n g o f t he s h u n t g e n e ra t o r i n

v o l t

241

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 243/412

14   S = 1750 ;   // Sp eed i n rpm o f t he s hu nt g e n e r a t or

15   / / S hu nt g e n e r a t o r was m ade t o r un a s a m oto r16   V_a = 245 ;   // V ol ta ge a c r o s s a rm at ur e i n v o l t17   I_a = 2 ;   // Armature c u r r e nt i n A18   R_f = 230 ;   // F i el d r e s i s t a n c e i n ohm19   R_a = 0.2 ;   // Armature r e s i s t a n c e20

21   / / C a l c u l a t i o n s22   / / c as e a23   R ot at io na l_ lo ss es = ( V _a * I _a ) - ( I_ a ^2 * R _a ) ;   //

R o t a t i o n a l l o s s e s i n W a t f u l l l oa d24

25   / / c as e b26   V_t = V ;

27   / / At r a te d l oa d28   I_L = P / V_t ;   // L i ne c u r r e n t i n A29   I_f = V / R_f ;   // F i e l d c ur r e nt i n A30   I a = I_f + I_L ;   // Armature c u r r e nt i n A31

32   a rm at ur e_ lo ss = ( Ia ^2 * R _a ) ;   // F u ll −l o a d a r ma t ur el o s s i n W

33   V_f = V ;   // F i e l d v o l t a g e i n v o l t34   f ie ld _l os s = V _f * I _f ;

  // F u ll −l oa d f i e l d l o s s i n W35

36   / / c as e c37   //38   e ta = P / ( P + R ot at io na l_ lo ss es + ( a r ma tu re _l os s +

f ie ld _l os s ) ) * 100 ;

39

40   // D is pl ay t h e r e s u l t s41   disp ( ”Example 12−1 S ol u t i o n : ” ) ;

42

43   printf ( ”   \n a : R o ta t i on a l l o s s e s a t f u l l l oa d = %. 1 f  

W   \n” , R o t a t i o n a l _ l o s s e s ) ;44

45   printf ( ”   \n b : At t he r a t ed l oa d , \ n I L = %. 1 f A\n I a = %. 1 f A\n” , I _ L , I a ) ;

46   printf ( ”   \n F u l l −l oa d a r m a t u r e l o s s : \ n ( I a

242

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 244/412

ˆ 2 ) ∗ R a = %. f W   \n” , a r m a t u r e _ l o s s ) ;

47   printf ( ”   \n F u l l −l oa d f i e l d l o s s : \ n V f ∗ I f =% . f W   \n” , f i e l d _ l o s s ) ;

48

49   printf ( ”   \n c : E f f i c i e n c y o f t h e g e n e r a t or a t r at edl o a d ( f u l l  −l o a d i n t h i s Ex . ) : ” ) ;

50   printf ( ”   \n = %. 1 f p e r c e n t ” , e t a ) ;

Scilab code Exa 12.2   efficiency at different LF

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONSOF DC AND AC DYNAMOS

7   / / E xa mp le 12−28

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   / / d a ta f ro m Ex .1 2−113   P = 10000 ;   // Power r a t i n g o f t he s hu nt g e n er a t or

i n W14   V = 230 ; // V ol ta ge r a t i n g o f t he s h u n t g e n e ra t o r i n

v o l t15   S = 1750 ;   // Sp eed i n rpm o f t he s hu nt g e n e r a t or16

17   / / ( S o l u t i o n s f ro m E xample 12−1 )18   R o t a t i o na l _ l o ss e s = 4 8 9. 2   // R ot at i o n a l l o s s e s a tf u l l l o a d i n W

19   a r m a tu r e_ l os s = 3 96 ;   // F u ll −l oa d a rm at ur e l o s s i nW

243

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 245/412

20   f ie ld _l os s = 2 30 ;   // F u ll −l oa d f i e l d l o s s i n W

2122   / / c as e a23   x 1 = ( 1/ 4) ;   // F ra ct io n o f f u l l −l o a d24   // S u b s c r i pt a f o r e t a i n d i c a t e s c as e a25   e ta _a = ( P* x1 ) / ( ( P* x1 ) + R ot at io na l_ lo ss es + (

a r ma t ur e _l o ss * ( x 1 ^2 ) + f ie l d_ l os s ) ) * 1 00 ;

26

27   / / c as e b28   x 2 = ( 1/ 2) ;   // F ra ct io n o f f u l l −l o a d29   // S u b s c r i pt b f o r e ta i n d i c a t e s c as e b30   e ta _b = ( P* x2 ) / ( ( P* x2 ) + R ot at io na l_ lo ss es + (

a r ma t ur e _l o ss * ( x 2 ^2 ) + f ie l d_ l os s ) ) * 1 00 ;31

32   / / c as e c33   x 3 = ( 3/ 4) ;   // F ra ct io n o f f u l l −l o a d34   // S u b s c r i pt c f o r e ta i n d i c a t e s c as e c35   e ta _c = ( P* x3 ) / ( ( P* x3 ) + R ot at io na l_ lo ss es + (

a r ma t ur e _l o ss * ( x 3 ^2 ) + f ie l d_ l os s ) ) * 1 00 ;

36

37   / / c as e d38   x 4 = ( 5/ 4) ;   // F ra ct io n o f f u l l −l o a d39

  // S u b s c r i pt d f o r e ta i n d i c a t e s c as e d40   e ta _d = ( P* x4 ) / ( ( P* x4 ) + R ot at io na l_ lo ss es + (

a r ma t ur e _l o ss * ( x 4 ^2 ) + f ie l d_ l os s ) ) * 1 00 ;

41

42   // D is pl ay t h e r e s u l t s43   disp ( ”Example 12−2 S ol u t i o n : ” ) ;

44

45   printf ( ”   \n I f x i s t h e f r a c t i o n o f f u l l −l o a d ,t h e n   \n ” ) ;

46   printf ( ”   \n a : E f f i c i e n c y o f g e ne r a to r when x = %. 2 f  ” , x1 ) ;

47   printf ( ”   \n = %. 1 f p e r c e n t   \n ” , e t a _ a ) ;48

49   printf ( ”   \n b : E f f i c i e n c y o f g e n er a t or when x = %. 2 f  ” , x2 ) ;

50   printf ( ”   \n = %. 1 f p e r c e n t   \n ” , e t a _ b ) ;

244

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 246/412

51

52   printf ( ”   \n c : E f f i c i e n c y o f g e n er a t or when x = %. 2 f  ” , x3 ) ;

53   printf ( ”   \n = %. 1 f p e r c e n t   \n ” , e t a _ c ) ;

54

55   printf ( ”   \n d : E f f i c i e n c y o f g e n er a t or when x = %. 2 f  ” , x4 ) ;

56   printf ( ”   \n = %. 1 f p e r c e n t   \n ” , e t a _ d ) ;

Scilab code Exa 12.3  field current Ec Pf 

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONSOF DC AND AC DYNAMOS

7   / / E xa mp le 12−38

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   V = 240 ;   // V ol ta ge r a t i n g o f t he dc s hu nt motor i n

v o l t13   P_hp = 25 ;   // Power r a t i n g o f t he dc s hu nt motor i n

hp14   S = 1800 ;   // Sp eed i n rpm o f t he s hu nt g e n e r a t or15   I_L = 89 ;   // F ul l −l oa d l i n e c u r r e n t

16   R _a = 0.05 ;   // Armature r e s i s t a n c e i n ohm17   R_f = 120 ;   // F i el d r e s i s t a n c e i n ohm18

19   / / C a l c u l a t i o n s20   / / c as e a

245

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 247/412

21   V_f = V ;   // F i e l d v o l t a g e i n v o l t

22   I_f = V_f / R_f ;   // F i e l d c ur r e nt i n A23   I _a = I _L - I _f ;   // Armature c u r r e n t i n A24   V_a = V ;

25   E_c = V_a - I_a * R_a ;   // Armature v o l t a g e t o bea p p l i e d t o t h e m oto r w hen m oto r

26   / / i s run l i g h t a t 180 0 rpm d ur in g s t ra y power t e s t27

28   / / c as e b29   I a = 4.2 ;   // Arm at ure c u r r e n t i n A p ro d uc ed by E c30   V a = E_c ;   // Armature v o l t a g e i n v o l t31   P_r = Va *Ia ;   // S t ra y po wer i n W , when E c p r o du c e s

I a = 4 . 2 A a t s pe ed o f 18 00 rpm32

33   // D is pl ay t h e r e s u l t s34   disp ( ”Example 12−3 S ol u t i o n : ” ) ;

35

36   printf ( ”   \n a : F i e l d c ur r e nt : \ n I f = %d A   \n ” ,

I _f ) ;

37   printf ( ”   \n Armature c u r r en t : \ n I a = %d A   \n” , I_ a ) ;

38   printf ( ”   \n Armature v ol t a g e t o be a pp l i e d t o th e

m ot or when m ot or i s r un ”) ;

39   printf ( ”   \n l i g h t a t %d rpm du ri ng s t r a y p owert e s t : \ n ” , S ) ;

40   printf ( ”   \n E c = %. 2 f V   \n ” , E_ c ) ;

41

42   printf ( ”   \n b : S tr a y power : \ n P r = %. 1 f W ” ,P_r

) ;

Scilab code Exa 12.4  Pr variable losses efficiency table

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

246

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 248/412

4   / / 2 nd e d i t i om

56   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONS

OF DC AND AC DYNAMOS7   / / E xa mp le 12−48

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   V = 600 ;   // V o lt ag e r a t i n g o f t he compound motor i n

v o l t

13   P_hp = 150 ;   // Power r a t i n g o f t h e compound m ot ori n hp

14   I_L = 205 ;   // F u ll −l oa d r at ed l i n e c u r r e nt i n A15   S = 1500 ;   // F ul l −l o a d S pe ed i n rpm o f t h e compound

g e n e r a t o r16   R_sh = 300 ;   / / Sh un t f i e l d r e s i s t a n c e i n ohm17   R _a = 0.05 ;   // Armature r e s i s t a n c e i n ohm18   R_s = 0.1 ;   // S e r i e s f i e l d r e s i s t a n c e i n ohm19   V_a = 570 ;   // A p pl ie d v o l t a ge i n v o l t20   I_a = 6 ;   // Armature c u r r e nt i n A21   S _o = 1800 ;

  / / No−l o a d S pe ed i n rpm o f t h e compoundg e n e r a t o r22

23   / / C a l c u l a t i o n s24   / / c as e a25   R o t _ lo s se s = V _a * I _a ;   // R ot at i o na l l o s s e s i n W26   // I f x i s f r a c t i o n o f f u l l − l o a d27   x 1 = ( 1/ 4) ;

28   S_1 = S_o - 300* x1 ;   // Sp eed a t 1 /4 l o ad29   R o t _ l o ss e s _ S _1 = ( S _ 1 / S ) * R o t_ l o s se s ;   // R o t a t io n a l

l o s s e s i n W a t s p e e d S 1

3031   x 2 = ( 1/ 2) ;

32   S_2 = S_o - 300* x2 ;   // Sp eed a t 1 /2 l o ad33   R o t _ l o ss e s _ S_ 2 = ( S _ 2 / S ) * R o t_ l o s se s ;   // R o t a t io n a l

l o s s e s i n W a t s p e e d S 2

247

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 249/412

34

35   x 3 = ( 3/ 4) ;36   S_3 = S_o - 300* x3 ;   // Sp eed a t 3 /4 l o ad37   R o t _ l o ss e s _ S_ 3 = ( S _ 3 / S ) * R o t_ l o s se s ;   // R o t a t io n a l

l o s s e s i n W a t s p e e d S 338

39   x 4 = ( 5/ 4) ;

40   S_4 = S_o - 300* x4 ;   // Sp eed a t 5 /4 l o ad41   R o t _ l o ss e s _ S_ 4 = ( S _ 4 / S ) * R o t_ l o s se s ;   // R o t a t io n a l

l o s s e s i n W a t s p e e d S 442

43   / / c as e b

44   I_sh = V / R_sh ;   // F ul l −l o a d s hu nt f i e l d c u r r e n ti n A

45   I a = I_L - I_sh ;   // F ul l −l oa d a rm at u re c u r r e nt i n A46   F L _v a ri a bl e _l o ss = ( I a ^2 ) *( R _a + R _s ) ;   // F u ll −l o a d

v a r i a b l e e l e c t r i c l o s s e s i n W47

48   x 1 _v a ri a bl e _l o ss = F L _v a ri a bl e _l o ss * ( x 1 ) ^2 ;   //V a r i a b l e l o s s e s a t 1 /4 l oa d

49   x 2 _v a ri a bl e _l o ss = F L _v a ri a bl e _l o ss * ( x 2 ) ^2 ;   //V a r i a b l e l o s s e s a t 1 /2 l oa d

50   x 3 _v a ri a bl e _l o ss = F L _v a ri a bl e _l o ss * ( x 3 ) ^2 ;  //V a r i a b l e l o s s e s a t 3 /4 l oa d

51   x 4 _v a ri a bl e _l o ss = F L _v a ri a bl e _l o ss * ( x 4 ) ^2 ;   //V a r i a b l e l o s s e s a t 5 /4 l oa d

52

53   / / c as e c54   // E f f i c i e n c y o f motor = ( I np ut   −   l o s s e s ) / I n pu t55   // wh ere I np ut = v o l t s ∗ ampe r e s ∗ l o a d f r a c t i o n56   // L o s s e s = f i e l d l o s s + r o t a t i o n a l l o s s e s +

v a r i a b l e e l e c t r i c l o s s e s57   / / I n pu t

58   I np ut_ FL = V * I_L ;   // I np ut i n W at f u l l l o ad59   I np ut_ x1 = V * I_L * x1 ;   // I np ut i n W a t 1/4 l oa d60   I np ut_ x2 = V * I_L * x2 ;   // I np ut i n W a t 1/2 l oa d61   I np ut_ x3 = V * I_L * x3 ;   // I np ut i n W a t 3/4 l oa d62   I np ut_ x4 = V * I_L * x4 ;   // I np ut i n W a t 5/4 l oa d

248

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 250/412

63

64   F ie ld _l os s = V * I _s h   // F i e l d l o s s f o r e a c h o f t h ec o n di t i o n s o f l oa d65

66   / / R ot at i o na l l o s s e s a re c a l c u l a t e d i n p ar t a w h il ev a r i a b l e e l e c t r i c l o s s e s i n p a rt b

67

68   // T o ta l l o s s e s69   L o s s es _ FL = F i el d _l o ss + R o t_ l os s es +

F L _ v ar i a b le _ l o s s ;   / / T o ta l l o s s e s f o r f u l l l oa d70   L o s s es _ 1 = F i el d _l o ss + R o t_ l os s es _ S_ 1 +

x 1 _ v ar i a b le _ l o s s ;   // T o t a l l o s s e s f o r 1/4 l oa d

71   L o s s es _ 2 = F i el d _l o ss + R o t_ l os s es _ S_ 2 +x 2 _ v ar i a b le _ l o s s ;   // T o t a l l o s s e s f o r 1/2 l oa d

72   L o s s es _ 3 = F i el d _l o ss + R o t_ l os s es _ S_ 3 +

x 3 _ v ar i a b le _ l o s s ;   // T o t a l l o s s e s f o r 3/4 l oa d73   L o s s es _ 4 = F i el d _l o ss + R o t_ l os s es _ S_ 4 +

x 4 _ v ar i a b le _ l o s s ;   // T o t a l l o s s e s f o r 5/4 l oa d74

75   // E f f i c i e n c y76   e ta _F L = ( ( I np ut _F L - L os se s_ FL ) / I np ut _F L ) ;   //

E f f i c i e n c y f o r 1/4 l oa d77   e ta _1 = ( ( I np ut _x 1 - L os se s_ 1 ) / I np ut _x 1 ) ;

  //E f f i c i e n c y f o r 1/4 l oa d78   e ta _2 = ( ( I np ut _x 2 - L os se s_ 2 ) / I np ut _x 2 ) ;   //

E f f i c i e n c y f o r 1/2 l oa d79   e ta _3 = ( ( I np ut _x 3 - L os se s_ 3 ) / I np ut _x 3 ) ;   //

E f f i c i e n c y f o r 3/4 l oa d80   e ta _4 = ( ( I np ut _x 4 - L os se s_ 4 ) / I np ut _x 4 ) ;   //

E f f i c i e n c y f o r 5/4 l oa d81

82   // D is pl ay t h e r e s u l t s83   disp ( ”Example 12−4 S ol u t i o n : ” ) ;

8485   printf ( ”   \n a : R o t a t i o n a l l o s s = %d W a t %d rpm (

r a t e d l o a d ) \n” ,Rot_losses ,S);

86   printf ( ”   \n Speed a t %. 2 f l o a d = %d rpm ” , x1 ,

S _1 ) ;

249

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 251/412

87   printf ( ”   \n R ot at i o na l l o s s a t %d rpm = %d W   \n ”

, S _1 , R ot _l os se s_ S_ 1 ) ;88

89   printf ( ”   \n Speed a t %. 2 f l o a d = %d rpm ” , x2 ,

S _2 ) ;

90   printf ( ”   \n R ot at i o na l l o s s a t %d rpm = %d W   \n ”, S _2 , R ot _l os se s_ S_ 2 ) ;

91

92   printf ( ”   \n Speed a t %. 2 f l o a d = %d rpm ” , x3 ,

S _3 ) ;

93   printf ( ”   \n R ot at i o na l l o s s a t %d rpm = %d W   \n ”, S _3 , R ot _l os se s_ S_ 3 ) ;

9495   printf ( ”   \n Speed a t %. 2 f l o a d = %d rpm ” , x4 ,

S _4 ) ;

96   printf ( ”   \n R ot at i o na l l o s s a t %d rpm = %d W   \n ”, S _4 , R ot _l os se s_ S_ 4 ) ;

97

98   printf ( ”   \n b : F ul l −l oa d v a r i a b l e l o s s = %d W\n ” ,

F L _ v ar i a b le _ l o s s ) ;

99   printf ( ”   \n V a r i a b l e l o s s e s , ” ) ;

100   printf ( ”   \n a t %. 2 f l o a d = %. 2 f W ” , x1 ,

x 1 _ v ar i a b le _ l o s s ) ;

101   printf ( ”   \n a t %. 2 f l o a d = %. 2 f W ” , x2 ,

x 2 _ v ar i a b le _ l o s s ) ;

102   printf ( ”   \n a t %. 2 f l o a d = %. 2 f W ” , x3 ,

x 3 _ v ar i a b le _ l o s s ) ;

103   printf ( ”   \n a t %. 2 f l o a d = %. 2 f W   \n ” , x4 ,

x 4 _ v ar i a b le _ l o s s ) ;

104

105   printf ( ”   \n c : E f f i c i e n c y o f motor = ( I np ut   −   l o s s e s) / I n pu t ” ) ;

106   printf ( ”   \n wher e \n I n p u t = v o l t s ∗ ampe r e s ∗

l o a d f r a c t i o n ” ) ;107   printf ( ”   \n L o s s e s = f i e l d l o s s + r o t a t i o n a l

l o s s e s + v a r i a b l e e l e c t r i c l o s s e s ” ) ;

108   printf ( ”   \n Input , \ n a t %. 2 f l o a d = %d W ” , x1

, I np ut _x 1 ) ;

250

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 252/412

109   printf ( ”   \n a t %. 2 f l o a d = %d W ” , x2 , I np ut _x 2 )

;110   printf ( ”   \n a t %. 2 f l o a d = %d W ” , x3 , I np ut _x 3 )

;

111   printf ( ”   \n a t f u l l l o a d = %d W ”   , I np ut _F L ) ;

112   printf ( ”   \n a t %. 2 f l o a d = %d W   \n ” , x4 ,

I n pu t _x 4 ) ;

113

114   printf ( ”   \n F i e l d l o s s f o r ea c h o f th e c o n di t i on so f l o a d = %d W   \n” , F i e l d _ l o s s ) ;

115   printf ( ”   \n R o t a t i o n a l l o s s e s a r e c a l c u l a t e d i np ar t a w hi le v a r i a b l e ” ) ;

116   printf ( ”   \n e l e c t r i c l o s s e s i n p a r t b   \n” ) ;117

118   printf ( ”   \n E f f i c i e n c y a t %. 2 f l o a d = %f = %. 1 f  p e rc e n t ” , x 1 , e t a _ 1 , e t a _ 1 * 1 0 0 ) ;

119   printf ( ”   \n E f f i c i e n c y a t %. 2 f l o a d = %f = %. 1 f  p e rc e n t ” , x 2 , e t a _ 2 , e t a _ 2 * 1 0 0 ) ;

120   printf ( ”   \n E f f i c i e n c y a t %. 2 f l o a d = %f = %. 1 f  p e rc e n t ” , x 3 , e t a _ 3 , e t a _ 3 * 1 0 0 ) ;

121   printf ( ”   \n E f f i c i e n c y a t f u l l l oa d = %f = %. 1 f  p e rc e n t ” , e t a _ F L , e t a _ F L * 1 0 0 ) ;

122   printf (”   \n E f f i c i e n c y a t %. 2 f l o a d = %f = %. 1 f  p e r c e n t   \n” , x 4 , e t a _ 4 , e t a _ 4 * 1 0 0 ) ;

123

124   printf ( ”   \n d :

” ) ;

125   printf ( ”   \n Item   \ t \ t \ t At 1/4 l oa d   \ t A t 1 / 2l o a d   \ t At 3/4 l oa d   \ t A t F u l l −l o a d \ t A t 5 / 4

l o a d ” ) ;

126   printf ( ”   \n

” ) ;127   printf ( ”   \n I np ut ( w a tt s ) \ t \ t %d   \ t \ t %d   \ t \ t %d   \

t \ t %d   \ t % d ” ,Inpu t_x1 ,I nput_x2 ,Input_x3 ,

Input_FL ,In put_x4 );

128   printf ( ”   \n\n F ie l d l o s s ( w a t t s ) \ t \ t %d   \ t \ t %d   \ t

251

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 253/412

\ t %d   \ t \ t %d   \ t \ t % d ” ,Field_loss ,Field_loss ,

Field_loss ,Field_loss ,F ield_loss );129   printf ( ”   \n\n R o t a t i o n a l l o s s e s ” ) ;

130   printf ( ”   \n from p ar t ( a ) ( w at ts ) \ t \ t %d   \ t \ t %d   \ t\ t %d   \ t \ t %d   \ t \ t % d ” ,Rot_losses _S_1 ,

Rot_losses_S_2 ,Rot_l osses_S_3 ,Rot_losses ,

R o t _ l o s s e s _ S _ 4 ) ;

131   printf ( ”   \n\n V a ri a bl e e l e c t r i c l o s s e s ” ) ;

132   printf ( ”   \n from p ar t ( b ) ( w at ts ) \ t \ t %. 2 f    \ t %. 2 f  \ t %. 2 f    \ t %. 2 f    \ t %. 2 f ” ,x1_va riable_loss ,

x2_variable_lo ss ,x 3_variable_loss ,

F L _ v a r i a b le _ l o s s , x 4 _ v a r i a b l e _ l o s s ) ;

133   printf ( ”   \n\n T o t a l l o s s e s ( w a t t s ) \ t \ t %. 2 f    \ t % . 2f    \ t %. 2 f    \ t %. 2 f    \ t %. 2 f ” ,Los ses_1 ,L osses_2 ,

Losses_3 ,Losses_FL ,Losses_4 );

134   printf ( ”   \n

” ) ;

135   printf ( ”   \n E f f i c i e n c y ( p e r c e n t ) \ t %. 1 f    \ t \ t %. 1 f    \ t \ t %. 1 f    \ t \ t %. 1 f    \ t \ t %. 1 f ” , e t a _ 1 * 1 0 0 ,

e t a _ 2 * 1 0 0 , e t a _ 3 * 1 0 0 , e t a _ F L * 1 0 0 , e t a _ 4 * 1 0 0 ) ;

136   printf ( ”   \n

” ) ;

Scilab code Exa 12.5  Ia LF max efficiency LF

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONSOF DC AND AC DYNAMOS

7   / / E xa mp le 12−5

252

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 254/412

8

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .10

11   / / G iv en d a ta12   P = 10000 ;   // Power r a t i n g o f t he s hu nt g e n er a t or

i n W13   V = 230 ; // V ol ta ge r a t i n g o f t he s h u n t g e n e ra t o r i n

v o l t14   S = 1750 ;   // Sp eed i n rpm o f t he s hu nt g e n e r a t or15   R_a = 0.2 ;   // Armature r e s i s t a n c e16   / / C a l c u l a t e d v a l u e s f ro m Ex .12 −1

17   P_r = 489.2 ;   // Shunt g e ne r a t or r o t a t i o n a l l o s s e si n W

18   Vf_If = 230 ;   // Shunt f i e l d c i r c u i t l o s s i n W19   I _a _r at ed = 4 4. 5 ;   // Rated a rm at ur e c u r r e nt i n A20

21   / / C a l c u l a t i o n s22   / / c as e a23   I _a =   sqrt ( ( Vf_If + P_r ) / R_a ) ;   / / A r ma t ur e

c u r r e nt i n A f o r max . e f f i c i e n c y24

25  / / c as e b26   LF = I_a / I _a_ ra ted ;   // Load f r a c t i o n

27   L F_ pe rc en t = LF * 10 0 ;   // Load f r a c t i o n i n p e r c e nt28

29   / / c as e c30   P _k = Vf_If + P_r ;

31   e ta _m ax = ( P* LF ) /( ( P* LF ) + ( V f_ If + P_r ) + P_k ) *

100;   / / Maximum e f f i c i e n c y32

33   / / c as e d34   / / s u b s c r i p t d f o r LF i n d i c a t e s c as e d

35   L F _d =   sqrt ( P _ k / ( I _ a _r a t ed ^ 2* R _ a ) ) ;   / / L oa df r a c t i o n from f i x e d l o s s e s and r at ed v a r i a b l el o s s e s

36

37   // D is pl ay t h e r e s u l t s

253

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 255/412

38   disp ( ”Example 12−5 S ol u t i o n : ” ) ;

3940   printf ( ”   \n a : Armature c u r r e nt f o r max . e f f i c i e n c y

: \ n I a = %. f A   \n” , I _ a ) ;

41

42   printf ( ”   \n b : Load f r a c t i o n : \ n L . F . = %. 1 f  p e r c e n t = %. 3 f   ∗ r a t e d   \n” ,LF_percent ,LF);

43

44   printf ( ”   \n c : Maximum e f i i c i e n c y : \ n = %. 2 f  p e r c e n t   \n” , e t a _ m a x ) ;

45

46   printf ( ”   \n d : Load f r a c t i o n fr om f i x e d l o s s e s and

r at ed v a r i a b l e l o s s e s : ” ) ;47   printf ( ”   \n L . F . = %. 3 f   ∗ r a t e d ” , L F _ d ) ;

Scilab code Exa 12.6  Pd Pr efficiency

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONSOF DC AND AC DYNAMOS

7   / / E xa mp le 12−68

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta

12   V = 240 ;   // V ol ta ge r a t i n g o f dc s hu nt motor i nv o l t13   P_hp = 5 ;   // Power r a t i n g o f dc s hu nt motor i n hp14   S = 1100 ;   // Sp eed i n rpm o f t he dc s hu nt motor15   R_a = 0.4 ;   // Armture r e s i s t a n c e i n ohm

254

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 256/412

16   R_f = 240 ;   // F i el d r e s i s t a n c e i n ohm

17   I_L = 20 ;   // Rated l i n e c u r r e n t i n A18

19   / / C a l c u l a t i o n s20   / / P r e l i m i na r y c a l c u l a t i o n s21   V_f = V ;   / / V o lt ag e a c r o s s f i e l d w in di ng i n v o l t22   I_f = V_f / R_f ;   // F i e l d c ur r e nt i n A23   I_a = I_L - I_f ;   // Arma tu re c u r r e n t i n A24   P_o = P_hp * 746 ;   // Power r a t i n g o f dc s hu nt motor

i n W25   V_a = V ;   // V ol ta ge a c r o s s a rm at u re i n v o l t26   E _c _f l = V_a - I_ a* R_a ;   / / b ac k EMF i n v o l t

2728   / / c as e a29   E _c = E _c _f l ;

30   P_d = E_c * I_a ;   / / Power d e v el o p ed by t h e a rm at ur ei n W

31

32   / / c as e b33   P_r = P_d - P_o ;   // F ul l −l o a d r o t a t i o n a l l o s s e s i n

W34

35  / / c as e c36   P_ in = V * I_L ;   / / I np ut power i n W

37   e ta = ( P _o / P _i n ) *1 00 ;   // F ul l −l oa d e f f i c i e n c y38

39   // D is pl ay t h e r e s u l t s40   disp ( ”Example 12−6 S ol u t i o n : ” ) ;

41

42   printf ( ”   \n P r el i mi n ar y c a l c u l a t i o n s u s in g n am ep la ted a t a : ” ) ;

43   printf ( ”   \n F i e l d c ur r e nt : I f = %d A   \n ” , I _ f ) ;

44   printf ( ”   \n Armature c u r r e n t : I a = %d A   \n ” , I _ a ) ;

45   printf ( ”   \n P o = %d W ” , P_ o ) ;46   printf ( ”   \n E c ( f l ) = %. 1 f V   \n” , E _ c _ f l ) ;

47

48   printf ( ”   \n a : Power d e v el o p e d by t h e a rm at ur e : \ nP d = %. 1 f W   \n” , P _ d ) ;

255

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 257/412

49

50   printf ( ”   \n b : F ul l −l o a d r o t a t i o n a l l o s s e s : \ nP r = %. 1 f W   \n” , P _ r ) ;

51

52   printf ( ”   \n c : F ul l −l a o d e f f i c i e n c y : \ n = %. 1 f  p e r ce n t ” , et a ) ;

Scilab code Exa 12.7  Pd Pr max and fl efficiency Pk Ia LF

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONSOF DC AND AC DYNAMOS

7   / / E xa mp le 12−78

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

1011   / / G iv en d a ta12   V = 240 ;   // V ol ta ge r a t i n g o f dc s hu nt motor i n

v o l t13   P_hp = 25 ;   // Power r a t i n g o f dc s hu nt motor i n hp14   S = 1100 ;   // Sp eed i n rpm o f t he dc s hu nt motor15   R _a = 0.15 ;   // Armture r e s i s t a n c e i n ohm16   R_f = 80 ;   // F i e l d r e s i s t a n c e i n ohm17   I_L = 89 ;   // Rated l i n e c u r r e n t i n A18

19   / / C a l c u l a t i o n s20   / / P r e l i m i na r y c a l c u l a t i o n s21   V_f = V ;   / / V o lt ag e a c r o s s f i e l d w in di ng i n v o l t22   I_f = V_f / R_f ;   // F i e l d c ur r e nt i n A23   I_a = I_L - I_f ;   // Arma tu re c u r r e n t i n A

256

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 258/412

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 259/412

56   printf ( ”   \n Armature c u r r e n t : I a = %d A   \n ” , I _ a ) ;

57   printf ( ”   \n P o = %d W   \n” , P_ o ) ;58   printf ( ”   \n E c ( f l ) = %. 1 f V   \n” , E _ c _ f l ) ;

59

60   printf ( ”   \n a : Power d e v el o p e d by t h e a rm at ur e : \ nP d = %. 1 f W   \n” , P _ d ) ;

61

62   printf ( ”   \n b : F ul l −l o a d r o t a t i o n a l l o s s e s : \ nP r = %. 1 f W   \n” , P _ r ) ;

63

64   printf ( ”   \n c : F ul l −l a o d e f f i c i e n c y : \ n = %. 1 f  p e r c e n t   \n ” , e ta _f l ) ;

6566   printf ( ”   \n d : T o t a l c o ns ta nt l o s s e s : \ n P k = %

. 1 f W   \n” , P _ k ) ;

67

68   printf ( ”   \n e : A r ma t ur e c u r r e n t f r o m maximume f f i c i e n c y : \ n I a = %. 1 f A\n ” , I a ) ;

69

70   printf ( ”   \n f : L . F . = %. 1 f    \n ” , L F ) ;

71

72   printf ( ”   \n g : m a x = %. 1 f p e rc e nt ” , e t a _ m a x ) ;

Scilab code Exa 12.8  IL Ia Pd Pr Speed SR

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONSOF DC AND AC DYNAMOS7   / / E xa mp le 12−88

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

258

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 260/412

c o n s o l e .

1011   / / G iv en d a ta12   V = 240 ;   // V ol ta ge r a t i n g o f dc s hu nt motor i n

v o l t13   P_hp = 5 ;   // Power r a t i n g o f dc s hu nt motor i n hp14   S _fl = 11 00 ;   // Sp eed i n rpm o f t he dc s hu nt motor15   R_a = 0.4 ;   // Armture r e s i s t a n c e i n ohm16   R_f = 240 ;   // F i el d r e s i s t a n c e i n ohm17   e ta = 0.75 ;   // F ul l −l oa d e f f i c i e n c y18

19   / / C a l c u l a t i o n s

20   / / c as e a21   V_L = V ;   // Load v o l t a g e22   P_o = P_hp * 746 ;   // Power r a t i n g o f dc s hu nt motor

i n W23   I _ L = P _o / ( e ta * V_ L );   // Rated i np ut l i n e c u r r e n t

i n A24

25   V_f = V ;   / / V o lt ag e a c r o s s f i e l d w in di ng i n v o l t26   I_f = V_f / R_f ;   // F i e l d c ur r e nt i n A27   I_a = I_L - I_f ;   // Rated a rm at ur e c u r r e n t i n A28

29   / / c as e b30   V_a = V ;   // V ol ta ge a c r o s s a rm at u re i n v o l t31   E_c = V_a - I_a * R_a ;   / / b ac k EMF i n v o l t32   P_d = E_c * I_a ;   / / Power d e v el o p ed by t h e a rm at ur e

i n W33

34   / / c as e c35   P_r = P_d - P_o ;   // R o t a t i o n a l l o s s e s i n W a t r at ed

l o a d36

37   / / c as e d38   / / A t n o−l o a d39   P_o _nl = 0 ;

40   P _r _n l = P_r ;   // R o t a t i o n a l l o s s e s i n W a t n o l oa d41   P _d _n l = P _r _n l ;

259

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 261/412

42

43   / / c as e e44   I _a _n l = P _d _n l / V_a ;   / / No−l o a d a rm at ur e c u r r e n ti n A

45

46   / / c as e f  47   E_c _nl = V ;   / / No−l oa d v o l t a g e i n v o l t48   E _c _f l = E_c ;   // F u ll −l o ad v o l t a g e i n v o l t49   S _n l = ( E _c _n l / E _c _f l ) * S_ fl ;   / / No−l oa d s pe ed i n

rpm50

51   / / c as e g

52   S R = ( S_n l - S_ fl ) /S _fl * 100 ;   // S peed r e g u l a t i o n53

54   // D is pl ay t h e r e s u l t s55   disp ( ”Example 12−8 S ol u t i o n : ” ) ;

56

57   printf ( ”   \n a : Rated i np ut l i n e c u r r e n t : \ n I L =%. 2 f A   \n ” , I _ L ) ;

58   printf ( ”   \n Rated a r ma t u r e cu rr en t : \ n I a = %. 2 f A   \n ” , I_ a ) ;

59

60   printf (”   \n b : E c = %. 1 f V   \n ”

, E_ c ) ;

61   printf ( ”   \n Power d e ve lo pe d by th e ar m a tu r e a tr at ed l oa d : \ n P d = %d W   \n ” , P _ d ) ;

62

63   printf ( ”   \n c : R ot at i o na l l o s s e s a t r at ed l oa d : \ nP r = %d W   \n ” , P _ r ) ;

64

65   printf ( ”   \n d : At no−l oa d , P o = %d W ; t h e r e f o r e  \ n\t \ t P d = P r = %d W   \n” , P _ o _ n l , P _ r ) ;

66

67   printf ( ”   \n e : No−l o ad a rm at ur e c u r r e nt : \ n I a (

n l ) = %. 2 f A   \n ” , I _a _ nl ) ;68

69   printf ( ”   \n f : No−l oa d s pe ed : \ n S n l = %. f rpm   \n ” , S _n l ) ;

70

260

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 262/412

71   printf ( ”   \n g : Speed r e g u l a t i o n : \ n SR = %. 1 f  

p e rc e n t ” , SR ) ;

Scilab code Exa 12.9  Ec Pd Po Pr To Ia efficiency speed SR

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

56   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONS

OF DC AND AC DYNAMOS7   / / E xa mp le 12−98

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   V = 240 ;   // V ol ta ge r a t i n g o f dc s hu nt motor i n

v o l t

13   I_L = 55 ;   // Rated l i n e c u r r e n t i n A14   S = 1200 ;   // Sp eed i n rpm o f t he dc s hu nt motor15   P_r = 406.4 ;   // R o t a t i o n al l o s s e s i n W a t r at ed

l o a d16   R_f = 120 ;   // F i el d r e s i s t a n c e i n ohm17   R_a = 0.4 ;   // Armture r e s i s t a n c e i n ohm18

19   / / C a l c u l a t i o n s20   / / c as e a21

22   V_f = V ;   / / V o lt ag e a c r o s s f i e l d w in di ng i n v o l t23   I_f = V_f / R_f ;   // F i e l d c ur r e nt i n A24   I_a = I_L - I_f ;   // Rated a rm at ur e c u r r e n t i n A25

26   V_a = V ;   // V ol ta ge a c r o s s a rm at u re i n v o l t

261

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 263/412

27   E_c = V_a - I_a * R_a ;   / / b ac k EMF i n v o l t

28   P_d = E_c * I_a ;   / / Power d e v el o p ed by t h e a rm at ur ei n W29

30   / / c as e b31   P _o = P _d - P _r ;   / / Ra ted o u tp ut p ower i n W32   P_o _hp = P_o / 746 ;   // Ra ted o u tp u t p ower i n hp33

34   / / c as e c35   T_o = ( P _o _h p * 5 25 2) / S ;   // C i n l b − f t36   T _o _N m = T _o * ( 1. 35 6) ;   // Rated o ut pu t t o rq u e i n N−

m

3738   / / c as e d39   P_ in = V * I_L ;   / / I np ut power i n W40   e ta = ( P _o / P _i n ) *1 00 ;   // E f f i c i e n c y a t r at ed l oa d41

42   / / c as e e43   / / A t n o−l o a d44   P_o _nl = 0 ;

45   P _r _n l = P_r ;   // R o t a t i o n a l l o s s e s i n W a t n o l oa d46   P _d _n l = P _r _n l ;

47

48   I _a _n l = P _d _n l / V_a ;   / / No−l o a d a rm at ur e c u r r e n ti n A

49

50   E_c _nl = V ;   / / No−l oa d v o l t a g e i n v o l t51   E _c _f l = E_c ;   // F u ll −l o ad v o l t a g e i n v o l t52   S_fl = S ;   // F ul l −l o ad s pe ed i n rpm53   S _n l = ( E _c _n l / E _c _f l ) * S_ fl ;   / / No−l oa d s pe ed i n

rpm54

55   / / c as e f  

56   S R = ( S_n l - S_ fl ) /S _fl * 100 ;   // S peed r e g u l a t i o n57

58   // D is pl ay t h e r e s u l t s59   disp ( ”Example 12−9 S ol u t i o n : ” ) ;

60

262

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 264/412

61   printf ( ”   \n a : E c = %. 1 f V   \n ” , E_ c ) ;

62   printf ( ”   \n Power d e ve lo pe d by th e ar m a tu r e a tr at ed l oa d : \ n P d = %. 1 f W   \n ” , P _ d ) ;

63

64   printf ( ”   \n b : Ra ted o u tp ut p ower : \ n P o = %d W\n ” , P _ o ) ;

65   printf ( ”   \n P o = %d hp   \n ” , P _ o _ h p ) ;

66

67   printf ( ”   \n c : Rated o ut pu t t o rq u e : \ n T o = %. 2 f  l b − f t ” , T _ o ) ;

68   printf ( ”   \n T o = %. f N−m   \n ” , T _o _N m ) ;

69

70   printf ( ”   \n d : E f f i c i e n c y a t r at ed l oa d : \ n =%. 1 f p e r c e n t   \n ” , et a ) ;

71

72   printf ( ”   \n e : At no−l oa d , P o = %d W ; t h e r e f o r e  \ n\t \ t P d = P r = Ec I a VaIa = %. 1 f W   \n” , P _ o _ n l ,

P _ r ) ;

73   printf ( ”   \n No−l o ad a rm at ur e c u r r e nt : \ n I a (n l ) = %. 3 f A   \n ” , I _a _ nl ) ;

74   printf ( ”   \n No−l oa d s pe ed : \ n S n l = %f %.f rpm   \n ” , S_ nl , S _n l ) ;

75

76   printf ( ”   \n f : Speed r e g u l a t i o n : \ n SR = %. 1 f  p e rc e n t ” , SR ) ;

77

78   printf ( ”   \n V a r i a t i on i n SR i s due to non−a p pr o x im a t io n o f S n l = %f rpm ”, S _ n l ) ;

79   printf ( ”   \n w h i l e c a l c u l a t i n g SR i n s c i l a b . ” )

Scilab code Exa 12.10  efficiency Pf Pd Pr Ia LF max efficiency

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

263

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 265/412

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 266/412

39   / / c as e d

40   P _d = P _d 1 ;41   P_r = P_in - P_d ;   // R o t a t i o n al power l o s s e s i n W42

43   / / c as e e44   P_k = P_r + V_f * I_f ;   // C o n s t a n t l o s s e s i n W45   Ia =   sqrt ( P _ k / R _ a ) ;   // A rma tu re c u r r e n t i n A f o r max

. e f f i c i e n c y46

47   / / c as e f  48   I _a _r at ed = I _a ;   // Rated a rm at ur e c u r r e n t i n A49   LF = Ia / I_a ;   // Load f r a c t i o n

5051   / / c as e g52   r a t e d_ o ut p ut = 1 25 00 ;   / / R at ed o u tp u t i n kW53   / / Maximum e f f i c i e n c y54   e ta_m ax = ( LF * ra ted _o ut put ) / ( ( LF *

r at ed _o ut pu t ) + (2* P _k ) ) * 100 ;

55

56   // D is pl ay t h e r e s u l t s57   disp ( ”E x ampl e 12−10 S o l u t i o n : ” ) ;

58

59   printf (”   \n a : E f f i c i e n c y : \ n = %f p e r c e n t%. 1 f p e r c e n t   \n ” , e t a , e t a ) ;

60

61   printf ( ”   \n b : Shunt f i e l d l o s s : \ n ( V f ) ̂ 2/ R f =%d W   \n ” , P _ s h _ l o s s ) ;

62

63   printf ( ”   \n c : L in e c u r r e n t : I L = %d A   \n\nF i e l d c u r r e n t : I f = %d A” , I _ L , I _ f ) ;

64   printf ( ”   \n\n Armature c ur r e n t : I a = %d A ” ,I_a

) ;

65   printf ( ”   \n\n G e n e r a t e d EMF : E g = %. 1 f V ” , E _ g )

;66   printf ( ”   \n\n G en er at ed e l e c t r i c power : ” ) ;

67   printf ( ”   \n 1 . P d = %d W   \n\n 2 . P d = %d W   \n ” , P _ d 1 , P _ d 2 ) ;

68

265

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 267/412

69   printf ( ”   \n d : R o t a t i o n a l power l o s s e s : \ n P r =

%f W %. f W   \n” , P _ r , P _ r ) ;70

71   printf ( ”   \n e : C o n s t a n t l o s s e s : P k = %f W %. f  W   \n ” , P _k , P_ k );

72   printf ( ”   \n Armature c u r r e nt f o r max . e f f i c i e n c y :I a = %. 1 f A   \n ” , I a ) ;

73

74   printf ( ”   \n f : Load f r a c t i o n : L . F . = %. 2 f    \n ” , L F ) ;

75

76   printf ( ”   \n g : Maximum e f f i c i e n c y : = %f p e rc e n t%. 2 f p e r c e n t ” ,eta_max ,eta_ max) ;

Scilab code Exa 12.11  efficiency at different LF

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONSOF DC AND AC DYNAMOS

7   / / E xa mp le 1 2−118

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a t a ( f ro m Ex . 1 2 −10)12   V = 125 ;   // V ol ta ge r a t i n g o f g e n r a t o r i n v o l t13   P_o = 12500 ;   // Power r a t i n g o f g e nr a t o r i n W

14   P_hp = 20 ;   // Power r a t i n g o f motor i n hp15   R_a = 0.1 ;   // Armture r e s i s t a n c e i n ohm16   R _f = 62.5 ;   // F i el d r e s i s t a n c e i n ohm17   P _v ar = 10 40 ;   / / Ra ted v a r i a b l e e l e c t r i c l o s s i n W18

266

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 268/412

19   / / C a l c u l a t e d d at a fr om Ex .1 2 −10

20   P _k = 1380 ;   // C o n s t a n t l o s s e s i n W21

22   / / C a l c u l a t i o n s23   / / E f f i c i e n c y o f t he dc s h u n t g e n e ra t o r24   // = ( o u t p u t ∗L . F ) / ( ( o ut pu t ∗L . F) + P k + ( L . F)

ˆ2   ∗   P a r a t e d )   ∗   10025   o ut pu t = P_o ;

26   P _a _r at ed = P _v ar ;

27

28   / / c as e a29   L F 1 = 2 5 *( 1 /1 0 0) ;   / / At 25 % r a t e d o ut pu t

30   / / E f f i c i e n c y o f t he dc s h u n t g e n e ra t o r a t 2 5 %r a t e d o u tp ut

31   e ta _1 = ( o ut pu t * LF 1 ) / ( ( o ut pu t * LF 1) + P _k + ( LF 1 )

^2 * P _a _r at ed ) * 100 ;

32

33   / / c as e b34   L F 2 = 5 0 *( 1 /1 0 0) ;   / / At 50 % r a t e d o ut pu t35   / / E f f i c i e n c y o f t he dc s h u n t g e n e ra t o r a t 5 0 %

r a t e d o u tp ut36   e ta _2 = ( o ut pu t * LF 2 ) / ( ( o ut pu t * LF 2) + P _k + ( LF 2 )

^2 * P _a _r at ed ) * 100 ;

37

38   / / c as e c39   L F 3 = 7 5 *( 1 /1 0 0) ;   / / At 75 % r a t e d o ut pu t40   / / E f f i c i e n c y o f t he dc s h u n t g e n e ra t o r a t 7 5 %

r a t e d o u tp ut41   e ta _3 = ( o ut pu t * LF 3 ) / ( ( o ut pu t * LF 3) + P _k + ( LF 3 )

^2 * P _a _r at ed ) * 100 ;

42

43   / / c as e d44   L F 4 = 1 2 5* ( 1/ 1 00 ) ;   / / At 1 25 % r a te d o ut pu t

45   / / E f f i c i e n c y o f t he dc s h u n t g e n e ra t o r a t 1 25 %r a t e d o u tp ut

46   e ta _4 = ( o ut pu t * LF 4 ) / ( ( o ut pu t * LF 4) + P _k + ( LF 4 )

^2 * P _a _r at ed ) * 100 ;

47

267

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 269/412

48

49   // D is pl ay t h e r e s u l t s50   disp ( ”E x ampl e 12−11 S o l u t i o n : ” ) ;

51

52   printf ( ”   \n a : a t %. 2 f r at ed o u t p u t = %. 2 f  p e r c e n t   \n ” , L F 1 , e t a _ 1 ) ;

53

54   printf ( ”   \n b : a t %. 2 f r at ed o u t p u t = %. 2 f  p e r c e n t   \n ” , L F 2 , e t a _ 2 ) ;

55   printf ( ”   \n P l e a s e n o t e : C a l c u l a ti on e r r o r f o rc a s e b : i n t h e t e x t b o o k . \ n” ) ;

56

57   printf ( ”   \n c : a t %. 2 f r at ed o u t p u t = %. 2 f  p e r c e n t   \n ” , L F 3 , e t a _ 3 ) ;

58

59   printf ( ”   \n d : a t %. 2 f r at ed o u t p u t = %. 2 f  p e r c e n t   \n ” , L F 4 , e t a _ 4 ) ;

Scilab code Exa 12.12  Ia Ra Pf Pk Pcu efficiencies Pd

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONSOF DC AND AC DYNAMOS

7   / / E xa mp le 1 2−128

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   // 3−p h a s e Y−c o nn e ct ed a l t e r n a t o r13   kVA = 100 ;   // kVA r a t i n g o f t he a l t e r n a t o r

268

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 270/412

14   V = 1100 ;   // Rated v o lt a g e o f t he a l t e r n a t o r i n

v o l t15   I_a _nl = 8 ;   / / No−l oa d a rm at u re c u r r e n t i n A16   P _ in _n l = 6 00 0 ;   / / No−l o ad Power i n pu t t o t he

a rm at ur e i n W17   V _oc = 13 50 ;   // Open−c k t l i n e v ol t a g e i n v o l t18   I_f = 18 ;   // F i e l d c ur r e nt i n A19   V_f = 125 ;   // v o l t a g e a c r o s s f i e l d w in di ng i n v o l t20

21   / / C a l c u l a t i o n s22   // From Ex . 6 −4 ,23   R _a = 0.45 ;   // Arma tu re r e s i s t a n c e i n ohm/ p h as e

24   I _a _r at ed = 5 2. 5 ;   // Ra ted a rm at ur e c u r r e n t i n A/p h a s e

25

26   / / c as e a27   P_r = P_i n_nl - 3 * ( I_a_nl ) ^2 * R_a ;   // R o t a ti o n a l

l o s s o f s y nc h ro n o us dynamo i n W28

29   / / c as e b30   P_f = V_f * I_ f ;   // F i e l d c o p p e r l o s s i n W31

32  / / c as e c33   P_k = P_r + P_f ;   // F i x e d l o s s e s i n W a t r at ed

s y n c hr o n o u s s p e ed34   Pk = P _k / 1 000 ;   // F ix ed l o s s e s i n kW at r a te d

s y n c hr o n o u s s p e ed35

36   / / c as e d37   P_ cu = 3 * ( I _a _r at ed ) ^2 * R_a ;   // Rated e l e c t r i c

a r m a t ur e cu− l o s s i n W38   P _c u_ kW = P_ cu / 10 00 ;   // R at ed e l e c t r i c ar mat u r e

cu− l o s s i n kW

3940   LF1 = 1/4 ;   // Load f r a c t i o n41   LF2 = 1/2 ;   // Load f r a c t i o n42   LF3 = 3/4 ;   // Load f r a c t i o n43   P _ c u_ LF 1 = P _c u * ( L F1 ) ^2 ;   // E l e c t r i c a rm at ur e cu−

269

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 271/412

l o s s i n W a t 1/4 l oa d

44   P _ c u_ LF 2 = P _c u * ( L F2 ) ^2 ;   // E l e c t r i c a rm at ur e cu−l o s s i n W a t 1/2 l oa d45   P _ c u_ LF 3 = P _c u * ( L F3 ) ^2 ;   // E l e c t r i c a rm at ur e cu−

l o s s i n W a t 3/4 l oa d46

47   P _c u_ LF 1_ kW = P _c u_ LF 1 / 1 00 0 ;   // E l e c t r i c a rm at u recu− l o s s i n kW at 1/4 l oa d

48   P _c u_ LF 2_ kW = P _c u_ LF 2 / 1 00 0 ;   // E l e c t r i c a rm at u recu− l o s s i n kW at 1/2 l oa d

49   P _c u_ LF 3_ kW = P _c u_ LF 3 / 1 00 0 ;   // E l e c t r i c a rm at u recu− l o s s i n kW at 3/4 l oa d

5051

52   / / c as e e53   P F = 0.9 ;   // Power f a c t o r l a g g i n g54   // E f f i c i e n c y55   // = LF ( r a te d kVA) ∗PF / ( LF ( r a t e d kVA ) ∗P F + P k

+ P cu )   ∗   10056   eta_1 = ( LF1 * kVA * PF ) / ( ( LF1 * kVA * PF ) + Pk +

P _c u_ LF 1_ kW ) * 100 ; // E f f i c i e n c y a t 1/4 l oa d57   eta_2 = ( LF2 * kVA * PF ) / ( ( LF2 * kVA * PF ) + Pk +

P _c u_ LF 2_ kW ) * 100 ;// E f f i c i e n c y a t 1/2 l oa d58   eta_3 = ( LF3 * kVA * PF ) / ( ( LF3 * kVA * PF ) + Pk +

P _c u_ LF 3_ kW ) * 100 ; // E f f i c i e n c y a t 3/4 l oa d59   eta _fl = ( kVA * PF ) / ( ( kVA * PF ) + Pk + P _cu_ kW )

* 1 0 0 ; // E f f i c i e n c y a t f u l l l oa d60

61   / / c as e f  62   Ia =   sqrt ( P _ k / ( 3 * R _ a ) ) ;   // Armature c u r r e n t i n A f o r

max . e f f i c i e n c y a t 0 . 9 PF l a g g i ng63   LF = Ia / I_ a_ ra te d ;   // Load f r a c t i o n f o r max .

e f f i c i e n c y

64   // a t max . e f f i c i e n c y P cu = P k65   e ta_m ax = ( LF * kVA * PF ) / ( ( LF * kVA * PF ) + 2* Pk

) * 100 ; // Max E f f i c i e n c y 0 . 9 PF l a g g i n g66

67   / / c as e g

270

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 272/412

68   P _o = kVA * PF ;   // Output p ower a t 0 . 9 PF l a g g i n g

69   I _ a = I _a _r at ed ;70   P _d = P _o + ( 3* ( I_ a )^ 2* R _a / 1 00 0) + ( V _f * I_ f / 10 00 ) ;

/ / A rm at ur e p ow er d e v e l o p e d i n kW a t 0 . 9 PFl a gg i n g a t f u l l − l o a d

71

72   // D is pl ay t h e r e s u l t s73   disp ( ”E x ampl e 12−12 S o l u t i o n : ” ) ;

74

75   printf ( ”   \n From Ex . 6 −4 , \ n R a = %. 2 f / ph a s e ” , R _ a )

;

76   printf ( ”   \n I a ( r a t e d ) = %. 1 f A   \n ” , I _ a _ r a t e d ) ;

7778   printf ( ”   \n a : R o t a ti o n a l l o s s o f s yn ch ro n ou s dynamo

: \ n P r = %. f W   \n” , P _ r ) ;

79

80   printf ( ”   \n b : F i e l d c o p p e r l o s s : \ n P f = %d W   \n ” , P _ f ) ;

81

82   printf ( ”   \n c : F ix e d l o s s e s a t r at e d s yn ch ro no uss pe ed : \ n P k = %. f W\n” , P _ k ) ;

83

84   printf (”   \n d : P cu a t r a te d l oa d = %. f W\n P cu, ” , P _ c u ) ;

85   printf ( ”   \n a t %. 2 f r at ed l oa d = %. 1 f W” , LF1 ,

P _ c u _ L F 1 ) ;

86   printf ( ”   \n a t %. 2 f r at ed l oa d = %. 1 f W” , LF2 ,

P _ c u _ L F 2 ) ;

87   printf ( ”   \n a t %. 2 f r a te d l o a d = %. 1 f W   \n” , LF3 ,

P _ c u _ L F 3 ) ;

88

89

90   printf ( ”   \n e : E f f i c i e n c y : \ n a t %. 2 f l o a d = %

. 1 f p e r c e n t ” , L F 1 , e t a _ 1 ) ;91   printf ( ”   \n a t %. 2 f l o a d = %. 1 f p e r c e n t ” , L F 2 ,

e t a _ 2 ) ;

92   printf ( ”   \n a t %. 2 f l o a d = %. 1 f p e r c e n t ” , L F 3 ,

e t a _ 3 ) ;

271

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 273/412

93   printf ( ”   \n a t f u l l − l o a d = %. 1 f p e r c e n t   \n” ,

e t a _ f l ) ;94

95   printf ( ”   \n f : Armature c u r r e nt f o r max . e f f i c i e n c ya t 0 . 9 PF l a g g i n g : ” ) ;

96   printf ( ”   \n I a ( max ) = %f A %. 1 f A\n” , I a , I a ) ;

97   printf ( ”   \n L . F . = %. 2 f    \n” , L F ) ;

98   printf ( ”   \n Maximum e f f i c i e n c y : \ n m a x = %. 1 f p e r ce n t   \n ” , e t a _ m a x ) ;

99

100   printf ( ”   \n g : Ar ma tu re p ower d e v el o p ed a t 0 . 9 PFl a gg i n g a t f u l l − l o ad : ” ) ;

101   printf ( ”   \n P d = %. 2 f kW ” , P _ d ) ;

Scilab code Exa 12.13  Pf Pcu Zs VR efficiencies Pd

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

56   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONS

OF DC AND AC DYNAMOS7   / / E xa mp le 1 2−138

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   // 3−p h a s e Y−c o nn e ct ed a l t e r n a t o r

13   k VA = 1000 ;   // kVA r a t i n g o f t he a l t e r n a t o r14   V = 2300 ;   // Rated v o lt a g e o f t he a l t e r n a t o r i nv o l t

15

16   // DC MOTOR

272

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 274/412

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 275/412

51   c os _t he ta = 0 .8 ;   / / P F l a g g i n g

52   s i n _ th e t a =   sqrt ( 1 - ( c os _t he ta ) ^2 ) ;53   V_p = V /   sqrt ( 3 ) ;   // Phase v o l t a ge i n v o l t54

55   / / Ge ne r at ed v o l t ag e p er p ha se i n v o l t56   I _a = I_sc ;   // Arma tu re c u r r e n t i n A57

58   E _g p = ( V _p * c o s _t h et a + I _a * R _a ) + % i *( V _p * s i n _t h et a

+ I _a * X _s ) ;

59   E _ g p_ m =   abs ( E _ g p ) ; / / E gp m=m ag n it ud e o f E gp i nv o l t

60   E _ g p_ a =   atan ( imag ( E _g p ) / real ( E _ g p ) ) * 1 8 0 / % p i ; //

E gp a=p ha se a n gl e o f E gp i n d e gr e e s61

62   V_ nl = E _g p_ m ;   / / No−l oa d v o l t a g e i n v o l t63   V_fl = V_p ;   // F ul l −l oa d v o l t a g e i n v o l t64

65   V R = ( V_n l - V_ fl ) /V _fl * 100 ;   // A l t e r n a to rv o l t a ge r e g u l a t i o n

66

67   / / c as e f  68   P F = 0.8 ;   // l a g g i n g PF69   LF = 1 ;

  // l oa d f r a c t i o n70   e ta _r at ed = ( LF * kV A *P F) /( ( LF * kV A *P F) + ( P _f + P _r )

+ P_cu ) * 100 ;   // E f f i c i e n c y a t 0 . 8 l a g g i n g PF71

72   / / c as e g73   P_k = ( P_f + P_r ) ;   // C o ns ta nt l o s s e s i n kW74   L _F =   sqrt ( P _ k / P _ c u ) ;   // Load f r a c t i o n f o r max .

e f f i c i e n c y75   // a t max . e f f i c i e n c y P k = P cu76   e ta _m ax = ( L _F * kV A *P F) /( ( L _F * kV A *P F) + 2* P _k ) *

100 ;   / / Max . E f f i c i e n c y a t 0 . 8 l a g g i ng PF

7778

79   / / c as e h80   P_o = kVA ;   / / O ut pu t p o we r i n kVA81   P _d = P _o + (3 *( I _a ) ^2 * R_ a /1 00 0) + ( V fI f ) ;   //

274

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 276/412

A rm at ur e p ow er d e v e l o p e d i n kW a t u n i t y PF a t

r a t e d −l o a d82

83   // D is pl ay t h e r e s u l t s84   disp ( ”E x ampl e 12−13 S o l u t i o n : ” ) ;

85

86   printf ( ”   \n a : From T e st 2 , R o t a t i o n a l l o s s e s : \ nP r = %d kW   \n” , P _ r ) ;

87

88   printf ( ”   \n b : F ul l −l oa d a rm at ur e c op pe r l o s s : \ nP c u = %. 1 f kW   \n” , P _ c u ) ;

89

90   printf ( ”   \n c : S yn ch ro n ou s i mp ed an ce o f t h e a rm at ur e: \ n Z s = %f %. 2 f     \n” , Z _ s , Z _ s ) ;

91

92   printf ( ”   \n d : S yn ch ro no us r e a c t a nc e o f t he a rm at ur e: \ n j X s = %f %. 2 f     \n” , X _ s , X _ s ) ;

93

94   printf ( ”   \n e : E gp = ” ) ; disp ( E _ g p ) ;

95   printf ( ”   \n E gp = %. f    <%. 1 f V\n” , E _ g p _ m , E _ g p _ a ) ;

96   printf ( ”   \n A l te r n a to r v o l t a ge r e g u l a t i o n : \ nVR = % . 2 f p e r c e n t   \n” , V R ) ;

97

98   printf ( ”   \n O bt a i ne d VR v al ue t h ro u gh s c i l a bc a l c u l a t i o n i s s l i g h t l y d i f f e r e n t from t e x t b oo k ”)

;

99   printf ( ”   \n b e c a u s e o f non−a p pr ox im a ti o n o f Z s ,X s and E gp w hi l e c a l c u l a t i n g i n s c i l a b . \ n” ) ;

100

101   printf ( ”   \n f : A l t e r na t o r e f f i c i e n c y a t 0 . 8 l a g g i n gPF : \ n r a t e d = %. 1 f p e r c e n t \n” , e t a _ r a t e d ) ;

102

103   printf ( ”   \n g : L . F = %. 4 f   \n” , L _ F ) ;

104   printf ( ”   \n Max . E f f i c i e n c y a t 0 . 8 l a g g i n g PF : \m a x = %. 2 f p e r c e n t   \n” , e ta _ ma x ) ;

105

106   printf ( ”   \n h : Power d e ve l op e d by t he a l t e r n a t o ra rm at ur e a t r a t e d l oa d , u n i t y PF : ” ) ;

275

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 277/412

107   printf ( ”   \n P d = %. f kW” , P _ d ) ;

Scilab code Exa 12.14  Pr Pcu efficiencies hp torque

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONSOF DC AND AC DYNAMOS7   / / E xa mp le 1 2−148

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P = 4 ; // Number o f p o l e s i n I n d u ct i o n motor13   f = 6 0 ;   // F re qu en cy i n Hz14   V = 220 ;   // Rated v o l t a g e o f IM i n v o l t

15   hp_IM = 5 ;   // Power r a t i n g o f IM i n hp16   P F = 0.9 ;   // Power f a c t o r17   I_L = 16 ;   // L i ne c u r r e n t i n A18   S = 1750 ;   // S pe ed o f IM i n rpm19

20   / / No−l oa d t e s t d a t a21   I_nl = 6.5 ;   / / No−l oa d l i n e c ur r e nt i n A22   V_nl = 220 ;   / / No−l oa d l i n e v o l t a g e i n v o l t23   P_nl = 300 ;   / / No−l o ad power r e a d in g i n W24

25   // B lo ck ed r o t o r t e s t26   I_br = 16 ;   // B l o ck e d r o t o r l i n e c u r r e n t i n A27   V_br = 50 ;   // B l o ck e d r o t o r v o l t a ge i n v o l t28   P_br = 800 ;   // B lo ck ed r o t o r power r e a di n g i n W29

276

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 278/412

30   / / C a l c u l a t i o n s

31   / / c as e a32   P _cu = P_ br ;   // F u ll −l oa d e q u i v al e n t cu− l o s s33   I _1 = I_br ;   // Pr im ary c u r r e nt i n A34   R_ e1 = ( P_c u) / ( 3/ 2 * ( I_1 ) ^2 ) ;   // E q u i v al e n t

t o t a l r e s i s t a n c e o f IM i n ohm35

36   / / c as e b37   P _in = P_ nl ;   // I n pu t po wer t o IM38   I 1 = I_nl ;   // I np ut c u r r en t i n A39   P _r = P _i n - ( 3/ 2 * ( I1 ) ^2 * R _e1 ) ;   // R o t a t io n a l

l o s s e s i n W

4041   / / c as e c42   LF1 = 1/4 ;   // Load f r a c t i o n43   LF2 = 1/2 ;   // Load f r a c t i o n44   LF3 = 3/4 ;   // Load f r a c t i o n45   LF4 = 5/4 ;   // Load f r a c t i o n46   P _ c u_ LF 1 = ( L F1 ) ^2 * P _c u ;   // E q u i v a le n t c o pp e r

l o s s a t 1/4 r a te d−l o a d47   P _ c u_ LF 2 = ( L F2 ) ^2 * P _c u ;   // E q u i v a le n t c o pp e r

l o s s a t 1/2 r a te d−l o a d48   P _ c u_ LF 3 = ( L F3 ) ^2 * P _c u ;

  // E q u i v a le n t c o pp e rl o s s a t 3/4 r a te d−l o a d49   P _ c u_ LF 4 = ( L F4 ) ^2 * P _c u ;   // E q u i v a le n t c o pp e r

l o s s a t 5/4 r a te d−l o a d50

51   / / c as e d52   F u l l _ l o a d_ i n p u t =   sqrt ( 3) * V * I _ L * P F ;

53

54   // E f f i c i e n c y55   // E f f i c i e n c y a t 1 /4 r at ed l oa d56   e ta _L F1 = ( F ul l_ lo ad _i np ut * L F1 - ( P_ r + P _c u_ LF 1 ) )

/ ( F u ll _l oa d_ in pu t * LF 1 ) * 1 00 ;57

58   // E f f i c i e n c y a t 1 /2 r at ed l oa d59   e ta _L F2 = ( F ul l_ lo ad _i np ut * L F2 - ( P_ r + P _c u_ LF 2 ) )

/ ( F u ll _l oa d_ in pu t * LF 2 ) * 1 00 ;

277

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 279/412

60

61   // E f f i c i e n c y a t 3 /4 r at ed l oa d62   e ta _L F3 = ( F ul l_ lo ad _i np ut * L F3 - ( P_ r + P _c u_ LF 3 ) )

/ ( F u ll _l oa d_ in pu t * LF 3 ) * 1 00 ;

63

64   / / E f f i c i e n c y a t r at ed l o ad65   e ta _r at ed = ( F ul l_ lo ad _i np ut - ( P_r + P _cu ) ) / (

F u ll _ lo a d_ i np u t ) * 1 00 ;

66

67   // E f f i c i e n c y a t 5 /4 r at ed l oa d68   e ta _L F4 = ( F ul l_ lo ad _i np ut * L F4 - ( P_ r + P _c u_ LF 4 ) )

/ ( F u ll _l oa d_ in pu t * LF 4 ) * 1 00 ;

6970   / / c as e e71   / / s i n c e e t a i s c a l c u l a t e d i n p er ce n t d i v i d e i t by

100 f o r hp c a l c u l a t i o n s72   P _ o _ L F1 = ( F u l l _ l o ad _ i n pu t * L F 1 * e t a _ LF 1 / 1 0 0 ) / 7 46 ;   //

Output hp a t 1 /4 r a t ed l o ad73   P _ o _ L F2 = ( F u l l _ l o ad _ i n pu t * L F 2 * e t a _ LF 2 / 1 0 0 ) / 7 46 ;   //

Output hp a t 1 /2 r a t ed l o ad74   P _ o _ L F3 = ( F u l l _ l o ad _ i n pu t * L F 3 * e t a _ LF 3 / 1 0 0 ) / 7 46 ;   //

Output hp a t 3 /4 r a t ed l o ad75   P _ o = ( F u l l _ l o ad _ i n p ut * e t a _r a t ed / 1 00 ) / 7 4 6 ;

  //Output hp a t 1 /4 r a t ed l o ad76   P _ o _ L F4 = ( F u l l _ l o ad _ i n pu t * L F 4 * e t a _ LF 4 / 1 0 0 ) / 7 46 ;   //

Output hp a t 5 /4 r a t ed l o ad77

78   / / c as e f  79   h p = P_o ;   // R at ed o u tp u t h o r s e po w e r80   T _o = ( P _o * 5 25 2) / S ;   // Outpue t o rq u e a t f u l l  − l o a d

i n l b − f t81   T _o _N m = T_o * 1 .3 56 ;   // Outpue t o rq u e a t f u l l  − l o a d

i n N−m

8283   // D is pl ay t h e r e s u l t s84   disp ( ”E x ampl e 12−14 S o l u t i o n : ” ) ;

85

86   printf ( ”   \n a : E qu iv al en t t o t a l r e s i s t a n c e o f IM : \ n

278

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 280/412

R e 1 = %. 3 f     \n” , R _ e 1 ) ;

8788   printf ( ”   \n b : R ot at i o na l l o s s e s : \ n P r = %. f W

\n ” , P _ r ) ;

89

90   printf ( ”   \n c : At f u l l −l o a d , P c u = %d W   \n” , P _ c u ) ;

91   printf ( ”   \n P cu a t %. 2 f r at ed l oa d = %d W” , L F 1 ,

P _ c u _ L F 1 )

92   printf ( ”   \n P cu a t %. 2 f r at ed l oa d = %d W” , L F 2 ,

P _ c u _ L F 2 )

93   printf ( ”   \n P cu a t %. 2 f r at ed l oa d = %d W” , L F 3 ,

P _ c u _ L F 3 )

94   printf ( ”   \n P cu a t %. 2 f r a te d l o a d = %d W   \n” ,L F 4 , P _ c u _ L F 4 )

95

96   printf ( ”   \n d : F ul l −l o a d i n p u t = %. f W   \n” ,

F u l l _ l o a d _ i n p u t ) ;

97   printf ( ”   \n E f f i c i e n c y : \ n a t %. 2 f r a t e dl o a d = %. 1 f p e r c e n t   \n” , L F 1 , e t a _ L F 1 ) ;

98   printf ( ”   \n a t %. 2 f r at e d l o a d = %. 1 f p e r c e n t\n” , L F 2 , e t a _ L F 2 ) ;

99   printf ( ”   \n a t %. 2 f r at e d l o a d = %. 1 f p e r c e n t

\n”, L F 3 , e t a _ L F 3 ) ;

100   printf ( ”   \n a t r a t e d l o a d = %. 1 f pe r c e n t   \n” ,

e t a _ r a t e d ) ;

101   printf ( ”   \n a t %. 2 f r at e d l o a d = %. 1 f p e r c e n t\n” , L F 4 , e t a _ L F 4 ) ;

102

103   printf ( ”   \n e : Output h o rs e po w er : \ n P o at %. 2 f  r a t e d l o a d = %. 3 f hp   \n” , L F 1 , P _ o _ L F 1 ) ;

104   printf ( ”   \n P o a t %. 2 f r a te d l o a d = %. 3 f hp   \n” ,

L F 2 , P _ o _ L F 2 ) ;

105   printf ( ”   \n P o a t %. 2 f r a te d l o a d = %. 3 f hp   \n” ,

L F 3 , P _ o _ L F 3 ) ;106   printf ( ”   \n P o a t r a t e d l o a d = %. 3 f hp   \n” , P _ o ) ;

107   printf ( ”   \n P o a t %. 2 f r a te d l o a d = %. 3 f hp   \n” ,

L F 4 , P _ o _ L F 4 ) ;

108

279

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 281/412

109   printf ( ”   \n f : Output t or qu e a t f u l l  −l oa d : \ n T o

= %. 1 f l b− f t ” , T _ o ) ;110   printf ( ”   \n T o = %. 2 f N−m” , T _ o _ N m ) ;

Scilab code Exa 12.15  RPO efficiency hp torque compare

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONSOF DC AND AC DYNAMOS

7   / / E xa mp le 1 2−158

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G i ve n d a t a ( f r om Ex . 1 2 −1 4)12   pole = 4 ; // Number o f p o l e s i n I n d u ct i o n motor

13   f = 6 0 ;   // F re qu en cy i n Hz14   V = 220 ;   // Rated v o l t a g e o f IM i n v o l t15   hp_IM = 5 ;   // Power r a t i n g o f IM i n hp16   P F = 0.9 ;   // Power f a c t o r17   I_L = 16 ;   // L i ne c u r r e n t i n A18   S _r = 1750 ;   // S pee d o f IM i n rpm19

20   / / No−l oa d t e s t d a t a21   I_nl = 6.5 ;   / / No−l oa d l i n e c ur r e nt i n A22   V_nl = 220 ;   / / No−l oa d l i n e v o l t a g e i n v o l t

23   P_nl = 300 ;   / / No−l o ad power r e a d in g i n W24

25   // B lo ck ed r o t o r t e s t26   I_br = 16 ;   // B l o ck e d r o t o r l i n e c u r r e n t i n A27   V_br = 50 ;   // B l o ck e d r o t o r v o l t a ge i n v o l t

280

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 282/412

28   P_br = 800 ;   // B lo ck ed r o t o r power r e a di n g i n W

29   R_dc = 1 ;   // dc r e s i s t a n c e i n ohm b etw e en l i n e s30

31   / / g i ve n d at a from ex . 12 −1532   V = 220 ;   // v o l t a g e r a t i n g i n v o l t33   P _ in pu t = 5 50 0 ;   / / p ow er drawn i n W34

35   / / C a l c u l a t i o n s36   / / P r e l i m i na r y c a l c u l a t i o n s37   R _e 1 = 1 .2 5* R _ dc ;   // E qu iv al en t t o t a l r e s i s t a n c e o f  

IM i n ohm38   P _in = P_ nl ;   // I np ut power t o IM i n W

39   I 1 = I_nl ;   // I np ut c u r r en t i n A40   P _r = P _i n - ( 3/ 2 * ( I1 ) ^2 * R _e1 ) ;   // R o t a t io n a l

l o s s e s i n W41

42   I_1 = I_L ;

43   SCL = (3/2 * ( I_1 ) ^2 * R_e1 ) ;   // S t a t o r Co pper L o ssi n W a t f u l l − l o a d

44   SPI = P _i np ut ;   // S t a t o r Power I np ut i n W45   RPI = SPI - SCL ;   / / R ot or Power I n pu t i n W46

47   S = ( 12 0* f / p ol e ) ;  // S pee d o f s y nc h ro n ou s m a gn et i cf i e l d i n rpm

48   s = ( S - S _ r ) / S ;   // S l i p49

50   R P D = R PI * (1 - s ) ;   // R ot or Power D e ve l op e d i n W51   RPO = RPD - P_r ;   / / R ot or Power Out pu t i n W52

53   / / c as e a54   P_o = RPO ;

55   e ta _f l = ( P_ o / P _i np ut ) * 10 0 ;   // F ul l −l o a de f f i c i e n c y

5657   / / c as e b58   h p = P_o / 746 ;   // O ut pu t h o r s e p o w e r59   T _o = ( hp * 52 52 ) / S_ r ;   // Output t o rq u e i n l b− f t60   T _o _N m = T_o * 1 .3 56 ;   // Output t o rq u e i n N−m

281

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 283/412

61

62   // D is pl ay t h e r e s u l t s63   disp ( ”E x ampl e 12−15 S o l u t i o n : ” ) ;

64

65   printf ( ”   \n P r e l i mi n a r y c a l c u l a t i o n s : ” ) ;

66   printf ( ”   \n R e 1 = %. 2 f     \n” , R _ e 1 ) ;

67   printf ( ”   \n P r = %. 1 f W   \n ” , P _ r ) ;

68   printf ( ”   \n SCL( f l ) = %d W   \n ” , S C L ) ;

69   printf ( ”   \n RPI( f l ) = %d W   \n ” , R P I ) ;

70   printf ( ”   \n RPD( f l ) = %f W %. 1 f W   \n ” , R P D , R P D ) ;

71   printf ( ”   \n RPO( f l ) = %f W %. f W   \n ” , R P O , R P O ) ;

72

73   printf ( ”   \n a : F ul l −l o a d e f f i c i e n c y : \ n f l = %. 1 f p e r ce n t   \n” , e t a _ f l ) ;

74

75   printf ( ”   \n b : Output h o rs e po w er : \ n hp = %. 2 f hpa t f u l l − l o a d   \n” , h p ) ;

76   printf ( ”   \n Output t o r q u e a t f u l l −l oa d : \ n T o= %f l b− f t %. 1 f l b − f t ” , T _ o , T _ o ) ;

77   printf ( ”   \n T o = %f l b − f t %. 2 f N−m   \n ” ,

T _ o _ N m , T _ o _ N m ) ;

78

79   printf (”   \n c : C o mp ar i si on o f r e s u l t s ”

) ;

80   printf ( ”   \n

” ) ;

81   printf ( ”   \n   \ t \ t \ t \ t \ t Ex . 1 2 −14\ tEx.12 −15 ” ) ;

82   printf ( ”   \n

” ) ;

83   printf ( ”   \n   \ t f l ( p er c e n t )   \ t \ t \ t 8 2. 4   \ t \ t %. 1 f  ” , e t a _ f l ) ;

84   printf ( ”   \n   \ t R at ed o u t p u t ( h p )   \ t \ t 6 . 0 6   \ t \ t %. 2 f  

” , h p ) ;85   printf ( ”   \n   \ t R at ed o u t pu t t o r q u e ( l b− f t )   \ t 1 8. 2   \ t

\ t %. 1 f ” , T _ o ) ;

86   printf ( ”   \n

282

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 284/412

” ) ;

Scilab code Exa 12.16  Ip Ir PF SPI SCL RPI RCL RPD T hp efficiency

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONSOF DC AND AC DYNAMOS7   / / E xa mp le 1 2−168

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   / / c o d e l e t t e r = J13   P = 6 ;   // Number o f p o l e s14   S _r = 1176 ;   // r o t o r s pe ed i n rpm

15   V = 220 ;   // Rated v o l t a g e o f SCIM i n v o l t16   f = 6 0 ;   // F re qu en cy i n Hz17   h p_ SC IM = 7. 5 ;   // Power r a t i n g o f SCIM i n hp18

19   R_ap = 0.3 ;   // a rm at ur e r e s i s t a n c e i n ohm/ p ha se20   R_r = 0.144 ;   // r o t o r r e s i s t a n c e i n ohm/ p ha se21   j X_m = 13 .5 ;   // r e a c t a n c e i n ohm/ p h a se22   jX_s = 0.5 ;   // s y nc h ro n o us r e a c t a n c e i n ohm/ p h as e23   jX_lr = 0.2 ;   // L ock ed r o t o r r e a c t a n c e i n ohm/ p h as e24   P_r = 300 ;   // R ot at i o na l l o s s e s i n W

2526   disp ( ”E x ampl e 12−16 : ” ) ;

27   / / C a l c u l a t i o n s28   S = ( 12 0* f / P) ;   // S pe ed o f s y nc h ro n o us m a gn e ti c

f i e l d i n rpm

283

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 285/412

29   / / c as e a

30   s = ( S - S _ r ) / S ;   // S l i p31

32   R _r _by _s = R_r / s ;

33

34   / / c as e b35   printf ( ”   \n From f i g . 12 −11 , u s i ng t he f or ma t method

o f mesh a n a l y s i s , we may w r i t e ” ) ;

36   printf ( ”   \n t h e a rr ay by i n s p e c t i o n : \ n ” ) ;

37   printf ( ”   \n ”

) ;

38   printf ( ”   \n   \ t I 1   \ t I 2   \ t \ t V ” ) ;39   printf ( ”   \

n ”) ;

40   printf ( ”   \n\ t ( 0 . 3 + j 1 4 )   −(0+ j 1 3 . 5 )   \ t ( 127+ j 0 ) ” ) ;

41   printf ( ”   \n\ t −(0+ j 1 3 . 5 ) ( 7. 2+ j 1 3 . 7 )   \ t 0 ” ) ;

42   printf ( ”   \n   \

n” ) ;

43

44   A = [ (0.3 + %i *14) - %i *13.5 ; ( -%i *1 3.5) (7.2 + %i

* 13 .7 ) ] ;   // M at ri x c o n t a i n i n g a bo ve mesh e qn sa r r a y

45   d e lt a =   det ( A ) ;   // D et er mi na nt o f A46

47   / / c as e b : S t a t o r a r m a t u r e c ur r e n t I p i n A48   I _p =   det ( [ ( 12 7+ %i *0 ) ( -%i * 13 .5 ) ; 0 ( 7.2 + %i

*13.7 ) ] ) / delta ;

49   I _ p_ m =   abs ( I _ p ) ; // I p m=m ag ni tu de o f I p i n A50   I _ p_ a =   atan ( imag ( I _p ) / real ( I _ p ) ) * 1 8 0 / % p i ; / / I p a =

p h a s e a ng le o f I p i n d e g r e e s

51   I_1 = I_p ;   // S t at o r a rm at ur e c u r re n t i n A52

53   / / c as e c : R ot o r c ur r e n t I r p e r p h a s e i n A54   I _r =   det ( [ ( 0. 3 + %i * 14) ( 127 + %i *0) ; ( -%i * 13 .5 ) 0

] ) / delta ;

284

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 286/412

55   I _ r_ m =   abs ( I _ r ) ; // I r m =m ag ni tu de o f I r i n A

56   I _ r_ a =   atan ( imag ( I _r ) / real ( I _ r ) ) * 1 8 0 / % p i ; // I r a =p h a s e a ng le o f I r i n d e g r e e s57

58   / / c as e d59   t he ta = I _p _a ;   // Motor PF a n g l e i n d e g r e es60   c o s _ th e t a = c o sd ( t h e t a ) ;   / / M ot or PF61

62   / / c as e e63   I_p = I_p_m ;   // S t at o r a rm at u re c u r r e n t i n A64   V_p = V /   sqrt ( 3 ) ;   // Phase v o l t a ge i n v o l t65   SPI = V_p * I_p * co s_ th et a ;   // S t a t o r Power I n pu t

i n W66

67   / / c as e f  68   SCL = ( I_p ) ^2 * R_ap ;   // S t a t o r Copper L os s i n W69

70   / / c as e g71   / / S u b s c r i p t s 1 and 2 f o r RPI i n d i c a t e s two methods

o f c a l c u l a t i n g RPI72   RPI_1 = SPI - SCL ;   / / R ot or Power I n pu t i n W73   R PI _2 = ( I _r _m ) ^2 * ( R _r / s) ;   // R ot or Power I n pu t i n

W74   R P I = R PI _1 ;

75

76   / / c as e h77   R CL = s *( R PI ) ;   // R ot or c o pp er l o s s e s i n W78

79   / / c as e i80   / / S u b s c r i p t s 1 , 2 and 3 f o r RPD i n d i c a t e s t h r e e

m eth od s o f c a l c u l a t i n g RPD81   RPD_1 = RPI - RCL ;   / / R ot or Power D e ve l op e d i n W82   RPD_2 = RPI * ( 1 - s ) ;   // R ot or Power D e ve l op e d i n

W83   RPD = RPD_1 ;

84

85   / / c as e j86   R PO = 3* RPD - P_r ;   / / R ot or Power D e ve l op e d i n W

285

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 287/412

87

88   / / c as e k89   P_to = RPO ;   // T ot al r o t o r power i n W90   T _ o = ( 7. 04 * P _ to ) / S _r ;   // T ot al 3−p ha se t o rq u e i n

l b − f t91

92   / / c as e l93   h p = P_to / 746 ;   / / O ut pu t h o r s e p o w e r94

95   // c as e m96   P_ in = 3* SPI ;   // I np ut power t o s t a t o r i n W97   P_o = RPO ;   / / Ou tp ut p ow er i n W

98   eta = P_o / P_in * 100 ;   // Motor e f f i c i e n c y a tr a t ed l o ad

99

100   // D is pl ay t h e r e s u l t s101   disp ( ” S o l u t i o n : ” ) ;

102   printf ( ”   \n a : s = %. 2 f    \n R r / s = %. 1 f     \n” ,s ,

R _ r_ b y_ s ) ;

103

104   printf ( ”   \n De t e r m i n a n t = ” ) ; disp ( d e l t a ) ;

105

106   printf (”   \n b : S t at o r a rm at ur e c u r re n t : \ n I p i nA = ” ) ; disp ( I _ 1 ) ;

107   printf ( ”   \n I p = I 1 = %. 2 f    <%. 2 f A   \n ” , I _p _m ,

I _p _a ) ;

108

109   printf ( ”   \n c : Ro to r c u r re n t p er p ha se : \ n I r i nA = ” ) ; disp ( I _ r ) ;

110   printf ( ”   \n I r = I 2 = %. 3 f    <%. 2 f A   \n ” , I _r _m ,

I _r _a ) ;

111

112   printf ( ”   \n d : Mot or PF : \ n c o s = %. 4 f    \n” ,

c o s _ t h e t a ) ;113

114   printf ( ”   \n e : S t a t or Power I np ut : \ n SPI = %d W\n” , S P I ) ;

115

286

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 288/412

116   printf ( ”   \n f : S t at o r Copper L os s : \ n SCL = %. 1 f  

W   \n” , S C L ) ;117

118   printf ( ”   \n g : R ot or Power I n pu t : \ n RPI = %. 1 f W( m eth od 1 ) ” , R PI _1 ) ;

119   printf ( ”   \n RPI = %. 1 f W ( method 2 ) \n” , R P I _ 2 ) ;

120

121   printf ( ”   \n h : Ro to r c o pp er l o s s : \ n RCL = %. 1 f W\n” , R C L ) ;

122

123   printf ( ”   \n i : R ot or Power D ev el o pe d : \ n RPD = %. 1 f W   \n” , R P D _ 1 ) ;

124125   printf ( ”   \n RPD = %. 1 f W   \n ” , R P D _ 2 ) ;

126

127   printf ( ”   \n j : T ot a l 3−p h as e r o t o r p ow er : \ n RPO =%f W   \n” , R P O ) ;

128

129   printf ( ”   \n k : T ot al o ut pu t t o rq u e d e ve l op e d : \ nT o = %. 2 f l b− f t \ n” , T _ o ) ;

130

131   printf ( ”   \n l : Output h o rs e po w er :   \n hp = %. 2 f  

hp ( r a t ed 7 . 5 hp ) \n”, h p ) ;

132

133   printf ( ”   \n m: Motor e f f i c i e n c y a t r at ed l oa d : \ n= %. 2 f p e r c e n t   \n” , e t a ) ;

134

135   printf ( ”   \n n : S ee F ig . 12 −12 ” ) ;

Scilab code Exa 12.17  upper and lower limit Is

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

287

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 289/412

5

6   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONSOF DC AND AC DYNAMOS7   / / E xa mp le 1 2−178

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   // c od e l e t t e r = J o f SCIM ( Ex .1 2 −16 )13

14   / / C a l c u l a t i o n s

15   / / c as e a16   / / From A p pe n di x A−3 , T a b l e 4 30 −7 (b ) , t h e s t a r t i n g kVA

/ hp ( w it h r o t o r l o c ke d ) i s17   // l e s s th an 7 . 9 9 , which , when s u b s t i t u t e d i n t he

f o l l o w i n g e qu at io n , y i e l d s a18   / / maximum s t a r t i n g c u r r e nt o f :19

20   / / s u b s c r i p t u f o r I s i n d i c a t e s up pe r l i m i t o f  s t a r t i n g c u r r en t

21   I _ s _ u = ( 7 . 9 9 *( 7 . 5 * 10 0 0 ) ) / ( sqrt ( 3) * 2 20 ) ;

22

23   / / c as e b24   / / The l o w er l i m i t , c od e l e t t e r J , i s 7 . 1 kVA/ hp . Thus

:25

26   // s u b s c r i p t l f o r I s i n d i c a t e s l o w e r l i m i t o f  s t a r t i n g c u r r en t

27   I _ s _ l = ( 7 . 1 *( 7 . 5 * 10 0 0 ) ) / ( sqrt ( 3) * 2 20 ) ;

28

29   // D is pl ay t h e r e s u l t s30   disp ( ”E x ampl e 12−17 S o l u t i o n : ” ) ;

3132   printf ( ”   \n a : From A p pe n di x A−3 , T a b l e 4 30 −7(b) , the

s t a r t i n g kVA/ hp ” ) ;

33   printf ( ”   \n ( w i t h r ot or l o c k e d ) i s l e s s than7 . 9 9 , wh ic h , when s u b s t i t u t e d ” ) ;

288

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 290/412

34   printf ( ”   \n i n t h e f o l l o w i n g e qu a t i o n , y i e l d s a

maximum s t a r t i n g c u r r e n t o f : ” ) ;35   printf ( ”   \n I s = %. 1 f A   \n” , I _ s _ u ) ;

36

37   printf ( ”   \n b : The l ow er l i m i t , c o de l e t t e r J , i s 7 . 1kVA/hp . \ n Thus : ” ) ;

38   printf ( ”   \n I s = %. 1 f A ” , I _s _l ) ;

Scilab code Exa 12.18  starting I and PF

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONSOF DC AND AC DYNAMOS

7   / / E xa mp le 1 2−188

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta ( Ex . 12 −16)12   / / c o d e l e t t e r = J13   P = 6 ;   // Number o f p o l e s14   S _r = 1176 ;   // r o t o r s pe ed i n rpm15   V = 220 ;   // Rated v o l t a g e o f SCIM i n v o l t16   f = 6 0 ;   // F re qu en cy i n Hz17   h p_ SC IM = 7. 5 ;   // Power r a t i n g o f SCIM i n hp18

19   R_ap = 0.3 ;   // a rm at ur e r e s i s t a n c e i n ohm/ p ha se20   R_r = 0.144 ;   // r o t o r r e s i s t a n c e i n ohm/ p ha se21   j X_m = 13 .5 ;   // r e a c t a n c e i n ohm/ p h a se22   jX_s = 0.5 ;   // s y nc h ro n o us r e a c t a n c e i n ohm/ p h as e23   jX_lr = 0.2 ;   // L ock ed r o t o r r e a c t a n c e i n ohm/ p h as e

289

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 291/412

24   P_r = 300 ;   // R ot at i o na l l o s s e s i n W

25   s = 1 ;   // u ni ty s l i p26

27   disp ( ”E x ampl e 12−18 S o l u t i o n : ” ) ;

28

29   printf ( ”   \n The r a t i o R r / s = %. 3 f ohm , i n f i g .12 −11, u s i ng t he f or ma t method ” , R _ r / s ) ;

30   printf ( ”   \n o f mesh a n a l y s i s , we may w r i t e t he a r ra yby i n s p e c t i o n : \ n ” ) ;

31   printf ( ”   \n ”

) ;

32   printf ( ”   \n   \ t I 1   \ t I 2   \ t \ t V ” ) ;33   printf ( ”   \

n ”) ;

34   printf ( ”   \n\ t ( 0 . 3 + j 1 4 )   −(0+ j 1 3 . 5 )   \ t ( 127+ j 0 ) ” ) ;

35   printf ( ”   \n\ t −(0+ j 1 3 . 5 ) ( 0. 14 4+ j 1 3 . 7 )   \ t 0 ” ) ;

36   printf ( ”   \n   \

n” ) ;

37

38  / / C a l c u l a t i o n s39

40   A = [ ( 0. 3 + %i * 14) - %i * 13 .5 ; ( - %i * 13 .5 ) ( 0. 14 4 +

% i * 1 3 .7 ) ] ;   // M at ri x c o n t a i n i n g a bo ve mesh e qn sa r r a y

41   d e lt a =   det ( A ) ;   // D et er mi na nt o f A42

43   / / c as e a : S t a r t i n g s t a t o r c ur re nt I s p e r p h a s e i nA

44   I _s =   det ( [ ( 12 7+ %i *0 ) ( -%i * 13 .5 ) ; 0 ( 0. 14 4 + %i

*13.7 ) ] ) / delta ;

45   I _ s_ m =   abs ( I _ s ) ; // I s m =m ag ni tu de o f I s i n A46   I _ s_ a =   atan ( imag ( I _s ) / real ( I _ s ) ) * 1 8 0 / % p i ; // I s a =

p h a s e a ng le o f I s i n d e g r e es47

48   // c as e b : power f a c t o r o f t h e m otor a t s t a r t i n g

290

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 292/412

49   t he ta = I _s _a ;   // Motor PF a n g l e i n d e g r e es

50   c o s _ th e t a = c o sd ( t h e t a ) ;   / / M ot or PF51

52   // D is pl ay t h e r e s u l t s53   disp ( ” S o l u t i o n : ” ) ;

54   printf ( ”   \n a : S t a r t i n g s t a t o r c u r re n t o f SCIM : \ nI s = I 1 = ” ) ; disp ( I _ s ) ;

55   printf ( ”   \n I s = I 1 = %. 2 f    <%. 2 f A   \n ” , I _s _m ,

I _s _a ) ;

56

57   printf ( ”   \n b : Power f a c t o r o f t he motor a t s t a r t i n g: \ n c o s = %. 4 f %. 3 f   \n” ,cos_theta ,

c o s _ t h e t a ) ;58

59   printf ( ”   \n Note : I s = %. 2 f A c a l c u l a t e d i n Ex.12 −1 8 f a l l s b et we en t h e l i m i t s ” , I _ s _ m ) ;

60   printf ( ”   \n f o u n d i n Ex . 1 2 − 1 7. T hi sv e r i f i e s t h e mesh a n a l y s i s t e c h n i q u e . ” ) ;

Scilab code Exa 12.19  Re1s slip Pcu and Pr at LFs hp T

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 2 : POWER,ENERGY,AND EFFICIENCY RELATIONSOF DC AND AC DYNAMOS

7   / / E xa mp le 1 2−198

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .10

11   / / G iv en d a ta12   V = 220 ;   // Rated v o l t a g e o f SCIM i n v o l t

291

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 293/412

13   f = 6 0 ;   // F re qu en cy i n Hz

14   P = 4 ;   // Number o f p o l e s15   P F = 0.85 ;   // power f a c t o r o f c a p a c i t o r s t a r t IM16   // n am ep la te d e t a i l s17   hp_IM = 5 ;   // power r a t i n g o f IM i n hp18   I_L = 28 ;   // Rated l i n e c u r r e n t i n A19   S _r = 1620 ;   // R ot or s pe ed o f IM i n rpm20

21   / / No−l oa d t e s t d a t a22   I_nl = 6.4 ;   / / No−l oa d l i n e c ur r e nt i n A23   V_nl = 220 ;   / / No−l oa d l i n e v o l t a g e i n v o l t24   P_nl = 239 ;   / / No−l o ad power r e a d in g i n W

25   s _nl = 0. 01 ;   / / No−l oa d s l i p26

27   // B lo ck ed r o t o r t e s t28   I_br = 62 ;   // B l o ck e d r o t o r l i n e c u r r e n t i n A29   V_br = 64 ;   // B l o ck e d r o t o r v o l t a ge i n v o l t30   P _br = 19 22 ;   // B lo ck ed r o t o r power r e a d in g i n W31   s_br = 1 ;   // b l oc k ed r o t o r s l i p ( u n it y )32

33   / / C a l c u l a t i o n s34   / / c as e a35   R _e 1s = P _b r / ( I _b r ^2 ) ;

  // E q u i v a le nt t o t a lr e s i s t a n c e o f IM i n ohm36

37   / / c as e b38   P _in = P_ nl ;   // I np ut power t o IM i n W39   I _1s = I_ nl ;   // I np ut c u r r e n t i n A40   P _r o = P _i n - (( I _1 s ) ^2 * R _e 1s ) ;   // R o t a ti o n a l

l o s s e s i n W41

42   / / c as e c43   S = ( 12 0* f / P) ;   // S pe ed o f s y nc h ro n o us m a gn e ti c

f i e l d i n rpm44   S_fl = S_r ;   // F ul l −l oa d r o t o r s pe ed o f IM i n rpm45   s_fl = ( S - S_fl )/ S ;   // F u ll −l oa d S l i p46

47   LF1 = 1/4 ;   // Load f r a c t i o n

292

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 294/412

48   LF2 = 1/2 ;   // Load f r a c t i o n

49   LF3 = 3/4 ;   // Load f r a c t i o n50   LF4 = 5/4 ;   // Load f r a c t i o n51

52   s _L F1 = s _f l * LF 1 ;   // s l i p a t 1/4 r at ed l oa d53   s _L F2 = s _f l * LF 2 ;   // s l i p a t 1/2 r at ed l oa d54   s _L F3 = s _f l * LF 3 ;   // s l i p a t 3/4 r at ed l oa d55   s _L F4 = s _f l * LF 4 ;   // s l i p a t 5/4 r at ed l oa d56

57   / / c as e d58   s _o = s_nl ;   / / No−l oa d s l i p59   P _r s_ LF 1 = P _r o * (1 - s _L F1 ) /(1 - s_ o) ;   //

R o t a ti o na l l o s s e s i n W a t s LF 160   P _r s_ LF 2 = P _r o * (1 - s _L F2 ) /(1 - s_ o) ;   //

R o t a ti o na l l o s s e s i n W a t s LF 261   P _r s_ LF 3 = P _r o * (1 - s _L F3 ) /(1 - s_ o) ;   //

R o t a ti o na l l o s s e s i n W a t s LF 362   P _r s_ fl = P_ ro * (1 - s_ fl ) /(1 - s_o ) ;   // R o t a ti o n a l

l o s s e s i n W a t f u l l − l o ad s l i p63   P _r s_ LF 4 = P _r o * (1 - s _L F4 ) /(1 - s_ o) ;   //

R o t a ti o na l l o s s e s i n W a t s LF 464

65  / / c as e e66   I1s = I_L ;   // L i n e c ur r e n t i n A

67   P _ c u_ f l = ( I 1s ) ^ 2* R _ e1 s ;   // E q u i va l e nt c op pe r l o s sa t f u l l −l oa d s l i p

68   P _c u_ LF 1 = ( L F1 ) ^2 * P _c u_ fl ;   // E q u i v a le n t c o pp e rl o s s a t s LF1

69   P _c u_ LF 2 = ( L F2 ) ^2 * P _c u_ fl ;   // E q u i v a le n t c o pp e rl o s s a t s LF2

70   P _c u_ LF 3 = ( L F3 ) ^2 * P _c u_ fl ;   // E q u i v a le n t c o pp e rl o s s a t s LF3

71   P _c u_ LF 4 = ( L F4 ) ^2 * P _c u_ fl ;   // E q u i v a le n t c o pp e r

l o s s a t s LF472

73   / / c as e f  74   I np ut = V * I_ L *PF ;   // I np ut t o s i n g l e p h a s e

c a p a c i t o r s t a r t IM

293

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 295/412

75

76   // E f f i c i e n c y a t 1 /4 r at ed l oa d77   e ta _L F1 = ( I np ut * LF1 - ( P _r s_ LF 1 + P _c u_ LF 1 ) ) / (

I np ut * L F1 ) * 1 00 ;

78

79   // E f f i c i e n c y a t 1 /2 r at ed l oa d80   e ta _L F2 = ( I np ut * LF2 - ( P _r s_ LF 2 + P _c u_ LF 2 ) ) / (

I np ut * L F2 ) * 1 00 ;

81

82   // E f f i c i e n c y a t 3 /4 r at ed l oa d83   e ta _L F3 = ( I np ut * LF3 - ( P _r s_ LF 3 + P _c u_ LF 3 ) ) / (

I np ut * L F3 ) * 1 00 ;

8485   / / E f f i c i e n c y a t r at ed l o ad86   e ta _f l = ( I np ut - ( P _r s_ fl + P _c u_ fl ) ) / ( I np ut ) *

1 00 ;

87

88   // E f f i c i e n c y a t 5 /4 r at ed l oa d89   e ta _L F4 = ( I np ut * LF4 - ( P _r s_ LF 4 + P _c u_ LF 4 ) ) / (

I np ut * L F4 ) * 1 00 ;

90

91   / / c as e g92

  / / s i n c e e t a i s c a l c u l a t e d i n p er ce n t d i v i d e i t by100 f o r hp c a l c u l a t i o n s93   P _ o _ LF 1 = ( I n p ut * L F 1 * e t a _ LF 1 / 1 0 0 ) / 7 46 ;   / / O ut pu t hp

a t 1/4 r a te d l oa d94   P _ o _ LF 2 = ( I n p ut * L F 2 * e t a _ LF 2 / 1 0 0 ) / 7 46 ;   / / O ut pu t hp

a t 1/2 r a te d l oa d95   P _ o _ LF 3 = ( I n p ut * L F 3 * e t a _ LF 3 / 1 0 0 ) / 7 46 ;   / / O ut pu t hp

a t 3/4 r a te d l oa d96   P _o = ( I n pu t * e t a_ fl / 1 0 0) / 7 46 ;   / / Output hp a t 1 /4

r a t ed l o ad97   P _ o _ LF 4 = ( I n p ut * L F 4 * e t a _ LF 4 / 1 0 0 ) / 7 46 ;   / / O ut pu t hp

a t 5/4 r a te d l oa d98

99   / / c as e h100   h p = P_o ;   // R at ed o u tp u t h o r s e po w e r101   S_fl = S_r ;   // F ul l −l oa d r o t o r s pe ed i n rpm

294

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 296/412

102   T _ o = ( P _o * 5 2 52 ) / S _f l ;   // Outpue t o rq u e a t f u l l  −

l oa d i n l b − f t103   T _o _N m = T_o * 1 .3 56 ;   // Outpue t o rq u e a t f u l l  − l o a di n N−m

104

105   // D is pl ay t h e r e s u l t s106   disp ( ”E x ampl e 12−19 S o l u t i o n : ” ) ;

107

108   printf ( ”   \n a : E qu iv al en t t o t a l r e s i s t a n c e o f IM : \ nR e 1 s = %. 1 f     \n” , R _ e 1 s ) ;

109

110   printf ( ”   \n b : R ot at i o na l l o s s e s : \ n P r o = %. 1 f  

W   \n ” , P _ r o ) ;111

112   printf ( ”   \n c : S l i p a t r at ed l oa d : s = %. 1 f    \nS l i p , ” , s _ f l ) ;

113   printf ( ”   \n s a t %. 2 f r a te d l o a d = %. 3 f ” , L F 1 ,

s _ L F 1 ) ;

114   printf ( ”   \n s a t %. 2 f r a te d l o a d = %. 3 f ” , L F 2 ,

s _ L F 2 ) ;

115   printf ( ”   \n s a t %. 2 f r a te d l o a d = %. 3 f ” , L F 3 ,

s _ L F 3 ) ;

116   printf (”   \n s a t %. 2 f r a t e d l o a d = %. 3 f    \n ”

, L F 4 ,

s _ L F 4 ) ;

117

118   printf ( ”   \n d : R ot at i o na l l o s s e s : \ n ” ) ;

119   printf ( ”   \n P r a t a t %. 2 f r a te d l o a d = %. 1 f W ” ,

L F 1 , P _ r s _ L F 1 ) ;

120   printf ( ”   \n P r a t a t %. 2 f r a te d l o a d = %. 1 f W ” ,

L F 2 , P _ r s _ L F 2 ) ;

121   printf ( ”   \n P r a t a t %. 2 f r a te d l o a d = %. 1 f W ” ,

L F 3 , P _ r s _ L F 3 ) ;

122   printf ( ”   \n P r a t a t f u l l l o a d = %. 1 f W ” ,

P _ r s _ f l ) ;123   printf ( ”   \n P r a t a t %. 2 f r a te d l o a d = %. 1 f W   \n

” , L F 4 , P _ r s _ L F 4 ) ;

124

125   printf ( ”   \n e : At f u l l −l o a d , P c u = %d W   \n” , P _ c u _ f l

295

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 297/412

) ;

126   printf ( ”   \n P cu a t %. 2 f r at ed l oa d = %. 2 f W” ,LF1, P _ c u _ L F 1 )

127   printf ( ”   \n P cu a t %. 2 f r at ed l oa d = %. 2 f W” ,LF2

, P _ c u _ L F 2 )

128   printf ( ”   \n P cu a t %. 2 f r at ed l oa d = %. 2 f W” ,LF3

, P _ c u _ L F 3 )

129   printf ( ”   \n P cu a t %. 2 f r a te d l o a d = %. 2 f W   \n” ,

L F 4 , P _ c u _ L F 4 )

130

131   printf ( ”   \n f : F ul l −l o a d i n p u t = %. f W   \n” , I n p u t ) ;

132   printf ( ”   \n E f f i c i e n c y : \ n a t %. 2 f r a t e d

l o a d = %. 1 f p e r c e n t   \n” , L F 1 , e t a _ L F 1 ) ;133   printf ( ”   \n a t %. 2 f r at e d l o a d = %. 1 f p e r c e n t

\n” , L F 2 , e t a _ L F 2 ) ;

134   printf ( ”   \n a t %. 2 f r at e d l o a d = %. 1 f p e r c e n t\n” , L F 3 , e t a _ L F 3 ) ;

135   printf ( ”   \n a t r a t e d l o a d = f l = %. 1 f  p e r c e n t   \n” , e t a _ f l ) ;

136   printf ( ”   \n a t %. 2 f r at e d l o a d = %. 1 f p e r c e n t\n” , L F 4 , e t a _ L F 4 ) ;

137   printf ( ”   \n P l e a s e n o t e : C a l c u l a ti on e r r o r f o r

f l i n t e xt bo o k . \ n”) ;

138

139   printf ( ”   \n g : Output h o rs e po w er : \ n P o at %. 2 f  r a t e d l o a d = %. 3 f hp   \n” , L F 1 , P _ o _ L F 1 ) ;

140   printf ( ”   \n P o a t %. 2 f r a te d l o a d = %. 3 f hp   \n” ,

L F 2 , P _ o _ L F 2 ) ;

141   printf ( ”   \n P o a t %. 2 f r a te d l o a d = %. 3 f hp   \n” ,

L F 3 , P _ o _ L F 3 ) ;

142   printf ( ”   \n P o a t r a t e d l o a d = %. 3 f hp   \n” , P _ o ) ;

143   printf ( ”   \n P o a t %. 2 f r a te d l o a d = %. 3 f hp   \n” ,

L F 4 , P _ o _ L F 4 ) ;

144145   printf ( ”   \n h : Output t o rq u e a t f u l l  −l oa d : \ n T o

= %. 1 f l b− f t ” , T _ o ) ;

146   printf ( ”   \n T o = %. 2 f N−m %. 1 f N−m” , T _ o _ N m ,

T _ o _ N m ) ;

296

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 298/412

297

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 299/412

Chapter 13

RATINGS SELECTION AND

MAINTENANCE OF

ELECTRIC MACHINERY

Scilab code Exa 13.1  R and reduced life expectancy

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 3 : RATINGS , SELECTION ,AND MAINTENANCE OFELECTRIC MACHINERY

7   / / E xa mp le 13−18

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   // MOTOR( c l a s s A i n s u l a t i o n ) i s o p er a te d f o r 6 h r s13   T = 125 ;   // Te mper at ur e i n d e g r ee c e l s i u s r e co r de d

by t h e embedded d e t e c t o r s14   l i fe _o ri g = 1 0 ;   // L i f e i n y ea r s o f t h e motor (

298

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 300/412

s t a n d a r d )

1516   / / C a l c u l a t i o n s17   d elta _T = T - 105 ;   // P o s i t i v e t em p er at u re

d i f f e r e n c e be t we en t he g i v en18   / / max h o t t e s t s po t t em pe ra tu re o f i t s i n s u l a t i o n

and t h e a mb ie nt t e m pe r a tu r e r e c o r d e d .19   / / 1 05 i s c ho se n from t a b l e 13 −1( c l a s s A i n s u l a t i o n )20   R = 2 ^ ( d el ta _T / 10 );   // L i f e r e d u ct i o n f a c t o r21

22   L if e_ ca lc = l if e_ or ig / R ;   // R e duc ed l i f ee xp ec ta n cy o f t he motor i n y e a rs

2324   // D is pl ay t h e r e s u l t s25   disp ( ”Example 13−1 S ol u t i o n : ” ) ;

26   printf ( ”   \n L i f e r e d u c ti o n f a c t o r : R = %d   \n ” ,R )

;

27   printf ( ”   \n Reduced l i f e e x p ec t a nc y o f t h e mo to r :L i f e c a l c = %. 1 f y e ar s ” , L i f e _ c a l c ) ;

Scilab code Exa 13.2  E and increased life expectancy

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 3 : RATINGS , SELECTION ,AND MAINTENANCE OFELECTRIC MACHINERY

7   / / E xa mp le 13−2

89   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta

299

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 301/412

12   // MOTOR( c l a s s A i n s u l a t i o n ) i s o p er a te d f o r 6 h r s

13   T = 7 5 ;   // T empe r atu re i n d e g r e e c e l s i u s r e c o rd e dby t h e embedded d e t e c t o r s14   l i fe _o ri g = 1 0 ;   // L i f e i n y ea r s o f t h e motor (

s t a n d a r d )15

16   / / C a l c u l a t i o n s17   d elta _T = 105 - T ;   // P o s i t i v e t em p er at u re

d i f f e r e n c e be t we en t he g i v en18   / / max h o t t e s t s po t t em pe ra tu re o f i t s i n s u l a t i o n

and t h e a mb ie nt t e m pe r a tu r e r e c o r d e d .19   // 105 i s c ho se n from t a b l e 13−1 ( c l a s s A i n s u l a t i o n

)20   E = 2 ^ ( d el ta _T / 10 );   // L i f e e x t e n s i o n f a c t o r21

22   L if e_ ca lc = l if e_ or ig * E ;   / / I n c r e a s e d l i f ee xp ec ta n cy o f t he motor i n y e a rs

23

24   // D is pl ay t h e r e s u l t s25   disp ( ”Example 13−2 S ol u t i o n : ” ) ;

26   printf ( ”   \n L i f e e x t e n s i o n f a c t o r : E = %d   \n ” , E ) ;

27   printf ( ”   \n I n c r e a s e d l i f e e xp ec ta n cy o f t he motor :

L i f e c a l c = %d y ea r s ”, L i f e _ c a l c ) ;

Scilab code Exa 13.3  E and increased life expectancy classB

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

56   // Ch apt e r 1 3 : RATINGS , SELECTION ,AND MAINTENANCE OFELECTRIC MACHINERY

7   / / E xa mp le 13−38

300

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 302/412

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   / / C la ss A i n s u l a t i o n13   T_A = 105 ;   // Te mp er at ure i n d e g re e c e l s i u s

r e c o r d e d by t h e embedded d e t e c t o r s14   l if e_ or ig = 5 ;   // L i f e i n y ea rs o f t h e motor (

s t a n d a r d )15   / / C la ss B i n s u l a t i o n16   T_B = 130 ;   // Te mp er at ure i n d e g re e c e l s i u s

r e c o r d e d by t h e embedded d e t e c t o r s

1718   / / C a l c u l a t i o n s19   d elta _T = T_B - T_A ;   // P o s i t i v e t em pe ra t ur e

d i f f e r e n c e betw t he g i v en20   / / max h o t t e s t s po t t em pe ra tu re o f i t s i n s u l a t i o n

and t h e a mb ie nt t e m pe r a tu r e r e c o r d e d .21   // T A and T B a r e c ho se n fro m t a b l e 13−122   E = 2 ^ ( d el ta _T / 10 );   // L i f e e x t e n s i o n f a c t o r23

24   L if e_ ca lc = l if e_ or ig * E ;   / / I n c r e a s e d l i f e

e xp ec ta n cy o f t he motor i n y e a rs25

26   // D is pl ay t h e r e s u l t s27   disp ( ”Example 13−3 S ol u t i o n : ” ) ;

28   printf ( ”   \n L i f e e x t e n s i o n f a c t o r : E = %. 2 f    \n ” ,E

) ;

29   printf ( ”   \n I n c r e a s e d l i f e e xp ec ta n cy o f t he motor :L i f e c a l c = %. 1 f y e a r s ” , L i f e _ c a l c ) ;

Scilab code Exa 13.4  ClassB insulation SCIM details

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

301

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 303/412

3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 3 : RATINGS , SELECTION ,AND MAINTENANCE OFELECTRIC MACHINERY

7   / / E xa mp le 13−48

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P_o = 25 ;   / / R at ed p ow er o f SCIM i n hp

13   / / c l a s s B i n s u l a t i o n14   T _ am bi en t = 4 0 ;   // S t an d ar d a m bi en t t e m p e r at u r e

r e c o r d e d by t h e embedded h ot−s po t d e t e c t o r s i nd eg re e c e l s i u s

15   T _h ot te st = 1 15 ;   / / H o tt e st −s p o t w in d in gt e m p e r at u r e r e c o r d e d by t h e em bed ded h ot−s p o td e t e c t o r s i n d eg re e c e l s i u s

16

17   / / C a l c u l a t i o n s18   / / c as e a19

  / / from t a b l e 13−1 a l l o w a b l e t em pe ra tu re r i s e i n 90d eg re e c e l s i u s20

21   / / c as e b22   T _r is e = T _h ot te st - T _a mb ie nt ;   // A c tu a l

t em pe r at ur e r i s e f o r t h e i n s u l a t i o n t y p e u se d i nd eg re e c e l s i u s

23

24   / / c as e c25   P _f = P _o * ( 90 / T _r is e );   // A pp ro xi ma te p ow er t o t h e

motor t ha t can be d e l i v e r e d a t T r i s e

2627   / / c as e d28   / / same a s P f  29

30   / / c as e e

302

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 304/412

31   / / a ns we r fro m c a s e a

3233   // D is pl ay t h e r e s u l t s34   disp ( ”Example 13−4 S ol u t i o n : ” ) ;

35   printf ( ”   \n a : The a l l o w a b l e t em pe ra tu re r i s e f o rt h e ” ) ;

36   printf ( ”   \n i n s u l a t i o n t y p e u se d = 90 d e g r e ec e l s i u s ( fro m t a b l e 13 −1) \n” ) ;

37

38   printf ( ”   \n b : The a c t ua l t em pe ra tu re r i s e f o r t hei n s u l a t i o n t yp e us ed = %d d e g re e c e l s i u s \ n” ,

T _ r i s e ) ;

3940   printf ( ”   \n c : The a p pr o xi m at e po we r t o t h e m oto r

t ha t can be d e l i v e r e d a t T r i s e ” ) ;

41   printf ( ”   \n P f = %d hp\n” , P _ f ) ;

42

43   printf ( ”   \n d : Power r a t i n g t h a t may be s ta mp ed ont he n am ep la te = %d hp ( s u b j e c t t o t e s t a t t h i sl o a d )   \n ” , P _ f ) ;

44

45   printf ( ”   \n e : The t em pe ra t ur e r i s e t h at must be

stamped on t he n am ep la te = 90 d e gr e e c e l s i u s ”) ;

Scilab code Exa 13.5   final temperature

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

56   // Ch apt e r 1 3 : RATINGS , SELECTION ,AND MAINTENANCE OFELECTRIC MACHINERY

7   / / E xa mp le 13−58

303

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 305/412

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   P_o = 50 ;   // Power r a t i n g o f t h e WRIM i n hp13   / / C la ss F i n s u l a t i o n14   T _h ot te st = 1 60 ;   / / H o tt e st −s p o t w in d in g

t e m p e r at u r e r e c o r d e d by t h e em bed ded15   / / h ot−s po t d e t e c t o r s i n d eg re e c e l s i u s16   T _ am bi en t = 4 0 ;   // S t an d ar d a m bi en t t e m p e r at u r e

r e c o r d e d by t h e embedded17   / / h ot−s po t d e t e c t o r s i n d eg re e c e l s i u s

18   P_f_a = 40 ;   // Power r a t i n g o f l oa d a i n hp19   P_f_b = 55 ;   // Power r a t i n g o f l oa d a i n hp20

21   / / C a l c u l a t i o n s22   / / c as e a23   d e l ta _ T_ o = T _ ho t te s t - T _ am b ie n t ;   / / T e m p er a t u re

r i s e f o r t h e i n s u l a t i o n t y p e24   / / u s e d i n d eg re e c e l s i u s25

26   // s u b s c r i p t a i n d e l t a T f , P f a and T f i n d i c a t e s

c a s e a27   d e l t a _T _ f _a = ( P _ f _a / P _ o ) * d e l t a _T _ o ;   // f i n a lt em pe r at ur e r i s e i n d eg re e c e l s i u s

28   T _f _a = d el ta _T _f _a + T _a mb ie nt ;   / / A p p ro x i ma t ef i n a l hot−s po t t em pe ra tu re i n d e g r e e c e l s i u s

29

30   / / c as e b31   // s u b s c r i p t b i n d e l t a T f , P f and T f i n d i c a t e s

c a s e b32   d e l t a _T _ f _b = ( P _ f _b / P _ o ) * d e l t a _T _ o ;   // f i n a l

t em pe r at ur e r i s e i n d eg re e c e l s i u s

33   T _f _b = d el ta _T _f _b + T _a mb ie nt ;   / / A p p ro x i ma t ef i n a l hot−s po t t em pe ra tu re i n d e g r e e c e l s i u s

34

35   // D is pl ay t h e r e s u l t s36   disp ( ”Example 13−5 S ol u t i o n : ” ) ;

304

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 306/412

37   printf ( ”   \n a : T o = %d d e g r e e c e l s i u s ” , d e l t a _ T _ o

) ;38   printf ( ”   \n T f = %d d e g r e e c e l s i u s ” ,

d e l t a _ T _ f _ a ) ;

39   printf ( ”   \n T f = %d d e g r e e c e l s i u s   \n” , T _ f _ a ) ;

40

41   printf ( ”   \n b : T f = %d d e g r e e c e l s i u s ” ,

d e l t a _ T _ f _ b ) ;

42   printf ( ”   \n T f = %d d e g r e e c e l s i u s   \n” , T _ f _ b ) ;

43   printf ( ”   \n Yes , motor l i f e i s r e du ce d a t t h e 110p e r ce n t motor l o ad b e ca u se ” ) ;

44   printf ( ”   \n t he a l l o wa b l e maximum hot−s p o t m ot or

t em p er a tu r e f o r C l a ss F ”) ;45   printf ( ”   \n i n s u l a t i o n i s 155 d e g r e e c e l s i u s . ” ) ;

Scilab code Exa 13.6  Tf R decreased life expectancy

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 3 : RATINGS , SELECTION ,AND MAINTENANCE OFELECTRIC MACHINERY

7   / / E xa mp le 13−68

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta

12   P_o = 55 ;   // Power r a t i n g o f t h e WRIM i n hp13   T _ am bi en t = 4 0 ;   // S t an d ar d a m bi en t t e m p e r at u r er e c o r d e d by t h e embedded

14   / / h ot−s po t d e t e c t o r s i n d eg re e c e l s i u s15   l i fe _o ri g = 1 0 ;   // L i f e i n y ea r s o f t h e motor (

305

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 307/412

s t a n d a r d )

1617   / / C a l c u l a t e d d at a fr om Ex .13 −5 b18   T_f = 172 ;   // A pp ro xi ma te f i n a l h ot−s p o t

t em pe ra tu re i n d e g r e e c e l s i u s19

20   / / C a l c u l a t i o n s21   d elta _T = T_f - 155 ;   // P o s i t i v e t em pe ra t ur e

d i f f e r e n c e betw t he g i v en22   / / max h o t t e s t s po t t em pe ra tu re o f i t s i n s u l a t i o n

and t h e a mb ie nt t e m pe r a tu r e r e c o r d e d .23   / / 1 55 i s c ho se n from t a b l e 13 −1( c l a s s F i n s u l a t i o n )

2425   R = 2 ^ ( d el ta _T / 10 );   // L i f e r e d u ct i o n f a c t o r26

27   L if e_ ca lc = l if e_ or ig / R ;   // R e duc ed l i f ee xp ec ta n cy o f t he motor i n y e a rs

28

29   // D is pl ay t h e r e s u l t s30   disp ( ”Example 13−6 S ol u t i o n : ” ) ;

31   printf ( ”   \n From Ex.13 −5 b , T f = %d d e g re e c e l s i u s \ n”, T _ f ) ;

32   printf (”   \n L i f e r e d u ct i on f a c t o r : R = %. 2 f    \n ”

,R

) ;

33   printf ( ”   \n Reduced l i f e e x p ec t a nc y o f t h e mo to r :L i f e c a l c = %. 2 f y e ar s ” , L i f e _ c a l c ) ;

Scilab code Exa 13.7   rms hp

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 3 : RATINGS , SELECTION ,AND MAINTENANCE OF

306

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 308/412

ELECTRIC MACHINERY

7   / / E xa mp le 13−78

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   P_o = 200 ;   // Power r a t i n g o f t he t e s t motor i n hp13   t1 = 5 ;   // t im e d u ra t io n i n m in ut es f o r which t e s t

motor i s o pe r a t e d a t 200 hp14   t2 = 5 ;   // t im e d u ra t io n i n m in ut es f o r which t e s t

motor i s o pe r a t e d a t 20 hp

15   t3 = 10 ;   // t i me d u ra t io n i n m in ut es f o r whi ch t e s tmotor i s o p er at ed a t 100 hp

16

17   / / C a l c u l a t i o n18   r m s _h p =   sqrt ( ( ( 20 0^ 2) * t1 + ( 20 ^2 ) * t2 + ( 10 0^ 2) * t3

) / ( t 1 + t 2 + t 3 + 1 0 / 3 ) ) ;

19   / / H or s epo we r r e q ui r e d f o r i n t e r m i t t e n t v ar y i ng l oa d20

21   // D is pl ay t h e r e s u l t s22   disp ( ”Example 13−7 S ol u t i o n : ” ) ;

23   printf (”   \n H o rse p ow e r r e q ui r e d f o r i n t e r m i t t e ntv a ry i ng l o a d i s : ” ) ;

24   printf ( ”   \n rms hp = %. f hp   \n ” , r m s _ h p ) ;

25

26   printf ( ”   \n A 12 5 h p m otor would be s e l e c t e d b e ca u set ha t i s t h e n e ar e st l a r g e r ” ) ;

27   printf ( ”   \n c o m me r ci a l s t a n d a r d r a t i n g . T h is meanst h at t he motor would o p e ra t e ” ) ;

28   printf ( ”   \n w it h a 160 p e rc e n t o v er l oa d ( a t 200 hp )f o r 5 m in ute s , o r 1/ 6 th o f ” )

29   printf ( ”   \n i t s t o t a l duty c y c l e . ” ) ;

Scilab code Exa 13.8  Vb Ib Rb Rpu

307

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 309/412

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 3 : RATINGS , SELECTION ,AND MAINTENANCE OFELECTRIC MACHINERY

7   / / E xa mp le 13−88

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   V = 120 ;   // Rated o ut pu t v o l t a g e i n v o l t o f  

s e p a r a t e l y e x c i t ed dc g e n er a t or13   I = 100 ;   // Rated o ut pu t c u r re n t i n A o f s e p a r a t e l y

e x c i t ed dc g e ne r a to r14   R = 0.1 ;   // Armature r e s i s t a n c e i n ohm15

16   / / C a l c u l a t i o n s17   / / c as e a18   V_b = V ;   // b a s e v o l t a g e i n v o l t19

20   / / c as e b21   I_b = I ;   // b as e c u r r e n t i n A22

23   / / c as e c24   R_b = V_b / I_b ;   // b a se r e s i s t a n c e i n ohm25

26   / / c as e d27   R_pu = R / R_b ;   // p er −u n i t v a lu e o f a rm at ur e

r e s i s t a n c e i n p . u28

29   // D is pl ay t h e r e s u l t s30   disp ( ”Example 13−8 S ol u t i o n : ” ) ;

31

32   printf ( ”   \n a : Base v o l t a g e   \n V b = %d V   \n ” ,

V _b ) ;

308

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 310/412

33

34   printf ( ”   \n b : Bas e c u r r e nt   \n I b = %d A   \n ” ,I _b ) ;

35

36   printf ( ”   \n c : Base r e s i s t a n c e   \n R b = %. 1 f ohm\n ” , R _ b ) ;

37

38   printf ( ”   \n d : Per−u n it v al u e o f a rm at ur e r e s i s t a n c e\n R p . u = %. 3 f p . u   \n ” , R_pu ) ;

Scilab code Exa 13.9  Rpu jXpu Zpu

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 3 : RATINGS , SELECTION ,AND MAINTENANCE OFELECTRIC MACHINERY

7   / / E xa mp le 13−9

89   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   // s i n g l e p h a s e a l t e r n a t o r13   V = 500 ;   // R ated v o l t a ge o f t he a l t e r n a t o r i n v o l t14   P = 2 0 ;   // Rated power o f t he a l t e r n a t o r i n kVA15   I = 4 0 ;   // Rated c u r r e n t o f t h e a l t e r n a t o r i n A16   R = 2 ;   // Armature r e s i s t a n c e i n ohm

17   X = 1 5 ;   // A rm at ur e r e a c t a n c e i n ohm18

19   / / C a l c u l a t i o n s20   / / c as e a21   V_b = V ;   // b a s e v o l t a g e i n v o l t

309

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 311/412

22   I_b = I ;   // b as e c u r r e n t i n A

23   R _p u = ( R *I _b ) / V_ b ;   / / p er −u n i t v a lu e o f a rm at ur er e s i s t a n c e i n p . u24

25   / / c as e b26   j X_ pu = ( X * I_ b )/ V _b ;   // p er −u n i t v a lu e o f a rm at ur e

r e a c t a n c e i n p . u27

28   / / c as e c29   // s u b s c r i p t 1 i n d i c a t e s method 1 f o r f i n d i n g Z p . u30   Z _p u1 = R _p u + %i * ( jX _p u );   // p er −u n i t v al ue o f  

a r m a t ur e i m pe d an c e i n p . u

31   Z _ p u1 _ m =   abs ( Z _ p u 1 ) ; / / Z p u1 m = m ag n it ud e o f Z pu 1i n p . u

32   Z _ p u1 _ a =   atan ( imag ( Z _ pu 1 ) / real ( Z _ p u 1 ) ) * 1 8 0 / % p i ; //Z pu 1 a=p ha se a n gl e o f Z pu1 i n d e gr e e s

33

34   // s u b s c r i p t 2 i n d i c a t e s method 2 f o r f i n d i n g Z p . u35   Z _p u2 = ( R + %i * X) *( I /V ) ;   / / p er −u ni t v al ue o f  

a r m a t ur e i m pe d an c e i n p . u36   Z _ p u2 _ m =   abs ( Z _ p u 2 ) ; / / Z p u2 m = m ag n it ud e o f Z pu 2

i n p . u37   Z _ p u2 _ a =   atan ( imag ( Z _ pu 2 ) / real ( Z _ p u 2 ) ) * 1 8 0 / % p i ;

//Z pu 2 a=p ha se a n gl e o f Z pu2 i n d e gr e e s38

39   // D is pl ay t h e r e s u l t s40   disp ( ”Example 13−9 S ol u t i o n : ” ) ;

41

42   printf ( ”   \n a : Armature r e s i s t a n c e p er u n it v al u e \nR p . u = %. 2 f p . u   \n” , R _ p u ) ;

43

44   printf ( ”   \n b : Armature r e a c t a nc e p er u n i t v a lu e \n j X p . u i n p . u = ” ) ; disp ( % i * j X _ p u ) ;

4546   printf ( ”   \n c : Ar ma tu re i mp ed an ce p e r u n i t v a l u e \n” )

;

47   printf ( ”   \n ( method 1 ) \n Z p . u i n p . u = ” ) ;

disp ( Z _ p u 1 ) ;

310

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 312/412

48   printf ( ”   \n Z p . u = %. 3 f    <%. 1 f p . u   \n” ,Z_pu1_ m ,

Z _ pu 1 _a ) ;49

50   printf ( ”   \n ( method 2 ) \n Z p . u i n p . u = ” ) ;

disp ( Z _ p u 2 ) ;

51   printf ( ”   \n Z p . u = %. 3 f    <%. 1 f p . u   \n” ,Z_pu2_ m ,

Z _ pu 2 _a ) ;

Scilab code Exa 13.10  new Zpu

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 3 : RATINGS , SELECTION ,AND MAINTENANCE OFELECTRIC MACHINERY

7   / / E xa mp le 1 3−108

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   // s i n g l e p h a s e a l t e r n a t o r13   V _o ri g = 500 ;   // Rated v o l t a ge o f t he a l t e r n a t o r i n

v o l t14   k VA _o ri g = 20 ;   // Rated power o f t he a l t e r n a t o r i n

kVA15   I = 4 0 ;   // Rated c u r r e n t o f t h e a l t e r n a t o r i n A16   R = 2 ;   // Armature r e s i s t a n c e i n ohm

17   X = 1 5 ;   // A rm at ur e r e a c t a n c e i n ohm18

19   V _n ew = 50 00 ;   // New v o l t a ge o f t h e a l t e r n a t o r i nv o l t

20   k VA _n ew = 10 0 ;   // New p ower o f t he a l t e r n a t o r i n

311

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 313/412

kVA

2122   / / C a l c u l a t e d a r ma t ur e i mp ed an ce f ro m Ex .1 3 −9 c23   Z _p u_ or ig = 1 .2 11 ;   // o r i g i n a l per −u ni t v al ue o f  

a r m a t ur e i m pe d an c e i n p . u24

25   / / C a l c u l a t i o n26   Z _ pu _n e w = Z _ pu _ or i g * ( k V A_ ne w / k V A_ or i g ) * ( V _ or ig /

V _n ew ) ^ 2 ;

27   / / new p e r−u n i t v a l u e o f a rm at ur e i mp ed an ce i n p . u28

29   // D is pl ay t h e r e s u l t s

30   disp ( ”E x ampl e 13−10 S o l u t i o n : ” ) ;31   printf ( ”   \n New pe r−u n i t v a l u e o f a rm at ur e i mp ed an ce

\n Z p u ( n ew ) = %. 5 f p . u ” , Z _ p u _ n e w ) ;

Scilab code Exa 13.11   line and phase Vpu

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 3 : RATINGS , SELECTION ,AND MAINTENANCE OFELECTRIC MACHINERY

7   / / E xa mp le 1 3−118

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   // 3−p ha se d i s t r i b u t i o n s ys te m13   V = 2300 ;   // L i n e v o l t a g e o f 3−p h a se d i s t r i b u t i o n

s ys te m i n v o l t14   V _p = 1328 ;   // Phase v o l t a g e o f 3−p h a s e

312

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 314/412

d i s t r i b u t i o n s y s t e m i n v o l t

1516   V _b = 6 90 00 ;   // Common b a s e l i n e v o l t a g e i n v o l t17   V_ pb = 3 984 0 ;   // Common b a se p ha se v o l t a g e i n v o l t18

19   / / C a l c u l a t i o n s20   / / c as e a21   V_ pu _l in e = V / V_b ;   // D i s t r i b u t i o n s ys te m p . u

l i n e v o l t a g e22

23   / / c as e a24   V _p u_ ph as e = V _p / V _pb ;   // D i s t r i b u t i o n s ys te m p . u

p ha se v o l t a g e25

26   // D is pl ay t h e r e s u l t s27   disp ( ”E x ampl e 13−11 S o l u t i o n : ” ) ;

28   printf ( ”   \n a : D i s t r i b u t i o n sy st e m p . u l i n e v o l t a g e: \ n V pu = %. 2 f p . u\n” , V _ p u _ l i n e ) ;

29

30   printf ( ”   \n b : D i s t r i b u t i o n s ys te m p . u p ha se v o l t a g e: \ n V pu = %. 2 f p . u\n” , V _ p u _ p h a s e ) ;

Scilab code Exa 13.12  Zb Xs Ra Zs P

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch apt e r 1 3 : RATINGS , SELECTION ,AND MAINTENANCE OF

ELECTRIC MACHINERY7   / / E xa mp le 1 3−128

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

313

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 315/412

10

11   / / G iv en d a ta12   VA_b = 50 ;   // Base power r a t i n g o f t he 3−p h a s e Y−c o n ne c te d a l t e r n a t o r i n MVA

13   V_b = 25 ;   // Base v o l t a ge o f t he 3−p h a s e Y−c on ne ct ed a l t e r n a t o r i n kV

14   X_pu = 1.3 ;   // p er u n it v al ue o f s yn ch ro no usr e a c t a n c e

15   R_pu = 0.05 ;   // p e r u ni t v al ue o f r e s i s t a n c e16

17   / / C a l c u l a t i o n s18   / / c as e a

19   // s u b s c r i p t 1 f o r Z b i n d i c a t e s method 1 f o rf i n d i n g Z b

20   Z_ b1 = ( V_b ) ^2 / VA _b ;   / / B as e i m pe da n ce i n ohm21

22   // s u b s c r i p t 2 f o r Z b i n d i c a t e s method 2 f o rf i n d i n g Z b

23   S _b = VA_b ;   // Base power r a t i n g o f t he 3−p h a s e Y−c o n ne c te d a l t e r n a t o r i n MVA

24   I _ b = ( S _b ) / V_ b ;   // Base c u r re n t i n kA25   Z_b2 = V_b / I_b ;   / / B as e i m pe da n ce i n ohm26

27   / / c as e b28   Z_b = Z _b 1;   / / B as e i mp ed a nc e i n ohm29   X_s = X_pu * Z_b ;   // A ct ua l v a lu e o f s yn ch ro no u s

r e a c t a nc e p er p ha se i n ohm30

31   / / c as e c32   R_a = R_pu * Z_b ;   // A ct ua l v a lu e o f a rm at ur e

s t a t o r r e s i s t a n c e p er p h a se i n ohm33

34   / / c as e d

35   / / s u b s c r i p t 1 f o r Z s i n d i c a t e s method 1 f o rf i n d i n g Z s

36   Z_s1 = R_a + %i * X_s ;   // S y nc h ro n o us i m pe da n ce p e rp h a se i n ohm

37   Z _ s 1_ m =   abs ( Z _ s 1 ) ; // Z s1 m = m ag ni tu de o f Z s 1 i n

314

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 316/412

ohm

38   Z _ s 1_ a =   atan ( imag ( Z _s 1 ) / real ( Z _ s 1 ) ) * 1 8 0 / % p i ; //Z s 1 a=p h a se a ng l e o f Z s1 i n d e g r e e s39

40   / / s u b s c r i p t 2 f o r Z s i n d i c a t e s method 2 f o rf i n d i n g Z s

41   Z_ pu = R_ pu + %i * X_ pu ;   // p e r u ni t v al ue o f  i mpe danc e

42   Z_s2 = Z_pu * Z_b ;   / / S y nc h ro n ou s i mp ed an ce p e rp h a se i n ohm

43   Z _ s 2_ m =   abs ( Z _ s 2 ) ; // Z s2 m = m ag ni tu de o f Z s 2 i nohm

44   Z _ s 2_ a =   atan ( imag ( Z _s 2 ) / real ( Z _ s 2 ) ) * 1 8 0 / % p i ; //Z s 2 a=p h a se a ng l e o f Z s2 i n d e g r e e s

45

46   / / c as e e47   S = S_b ;   // Base power r a t i n g o f t he 3−p h a s e Y−

c o n ne c te d a l t e r n a t o r i n MVA48   P = S * R_pu ;   // F u ll −l o a d c o p p e r l o s s e s f o r a l l

t h r e e p h a s es i n MW49

50   // D is pl ay t h e r e s u l t s51   disp (

”E x ampl e 13−12 S o l u t i o n : ”) ;

52

53   printf ( ”   \n a : B as e i m pe d an c e ( m et ho d 1 ) :   \n Z b =%.1 f ohm\n” , Z _ b 1 ) ;

54   printf ( ”   \n Base i mpe danc e ( method 2 ) : ” ) ;

55   printf ( ”   \n I b = %d kA   \n Z b = %. 1 f ohm\n” ,

I _ b , Z _ b 2 ) ;

56

57   printf ( ”   \n b : A ct ua l v a l ue o f s yn ch ro n ou s r e a c t a n cep e r p h a s e : ” ) ;

58   printf ( ”   \n X s i n ohm = ” ) ; disp ( % i * X _ s ) ;

5960   printf ( ”   \n c : A ct ua l v al u e o f a rm at u re s t a t o r

r e s i s t a n c e p e r p h a s e : ” ) ;

61   printf ( ”   \n R a = %. 3 f ohm   \n ” , R_ a ) ;

62

315

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 317/412

63   printf ( ”   \n d : S yn ch ro no u s i mp ed an ce p e r p ha se (

m et ho d 1 ) : ” ) ;64   printf ( ”   \n Z s i n ohm = ” ) ; disp ( Z _ s 1 ) ;

65   printf ( ”   \n Z s = %. 2 f    <%.1 f ohm\n” , Z _ s 1 _ m , Z _ s 1 _ a

) ;

66   printf ( ”   \n S y n c h r o no us impeda nce p e r p h a s e (method 2 ) : ” ) ;

67   printf ( ”   \n Z s i n ohm = ” ) ; disp ( Z _ s 2 ) ;

68   printf ( ”   \n Z s = %. 2 f    <%.1 f ohm\n” , Z _ s 2 _ m , Z _ s 2 _ a

) ;

69

70   printf ( ”   \n e : F ul l −l o a d c o p p e r l o s s e s f o r a l l 3

p ha se s :   \n P = %. 1 f MW” , P ) ;

316

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 318/412

Chapter 14

TRANSFORMERS

Scilab code Exa 14.1  stepup stepdown alpha I1

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS

7   / / E xa mp le 14−18

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iven d at a f o r S te p   −down t r a n s f o r m e r12   N_1 = 500 ;   // Number o f t u r n s i n t h e p ri ma ry13   N_2 = 100 ;   // Number o f t u r ns i n t he s ec o nd a ry14   I_2 = 12 ;   / / Load ( S ec on d ar y ) c u r r e n t i n A15

16   / / C a l c u l a t i o n s17   / / c as e a18   a l p h a = N _ 1 / N _ 2 ;   // T ra n sf o rm a ti o n r a t i o19

20   / / c as e b

317

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 319/412

21   I _1 = I_2 / alpha ;   / / Load c om po ne nt o f p r im a ry

c u r r e n t i n A22

23   / / c as e c24   // s u n s c r i p t c f o r a l p h a i n d i c a t e s c as e c25   / / F or s t ep up t r an s f o r me r , u s in g above g i ve n d at a26   N 1 = 100 ;   // Number o f t u r n s i n t h e p ri ma ry27   N 2 = 500 ;   // Number o f t u rn s i n t he s e co n da r y28   a lpha _c = N1 / N2 ;   // T ra n sf o rm a ti o n r a t i o29

30   // D is pl ay t h e r e s u l t s31   disp ( ”Example 14−1 S ol u t i o n : ” ) ;

3233   printf ( ”   \n a : T r a ns f o rm a t io n r a t i o ( s te p −down

t r a n s fo r m e r ) : \ n = %d\n” , a l p h a ) ;

34

35   printf ( ”   \n b : Load co mp on en t o f p ri ma ry c u r r e n t :   \n I 1 = %. 1 f A   \n” , I _ 1 ) ;

36

37   printf ( ”   \n c : T r a ns f o rm a t io n r a t i o ( s te p −upt r a n s fo r m e r ) : \ n = %. 1 f ” , a l p h a _ c ) ;

Scilab code Exa 14.2  turns I1 I2 stepup stepdown alpha

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS

7   / / E xa mp le 14−28

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

318

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 320/412

11   / / G iv en d a ta

12   V _h = 2300 ;   // h i g h v o l t a g e i n v o l t13   V_l = 115 ;   // low v o l t a ge i n v o l t14   V _1 = 2300 ;   // Pr imary v o l t a g e i n v o l t15   V_2 = 115 ;   // S ec on da ry v o l t a g e i n v o l t16   f = 6 0 ;   // F re qu en cy i n Hz17   S = 4.6 ;   // kVA r a t i n g o f t he s te p −down t r a n s f o r m e r18   S_1 = S ;

19   S_2 = S ;

20   V _p er _t ur n = 2 .5 ;   / / I n d uc e d EMF p e r t u r n i n V/ t u r n21   // I d e a l t r an s f or m e r22

23   / / C a l c u l a t i o n s24   / / c as e a25   N_h = V_h / V _p er _t ur n ;   / / Number o f h i gh −s i d e

t u r n s26   N_l = V_l / V _p er _t ur n ;   / / Number o f l ow−s i d e t ur ns27

28   N _1 = N_h ; / / Number o f t u r n s i n t h e p ri ma ry29   N _2 = N_l ; // Number o f t u r ns i n t he s e co n da r y30

31   / / c as e b32   I _1 = S_1 * 10 00 / V_1 ;

  // Rated p ri ma ry c u r r e nt i n A33   I _2 = S_2 * 10 00 / V_2 ;   // Rated s e co n da r y c u r r e nt i nA

34

35   I_h = 2 ;   / / Rated c u r r en t i n A o n HV s i d e36   I_l = 40 ;   // Rated c u r r e nt i n A on LV s i d e37

38   / / c as e c39   / / s u b s c r i p t c f o r a lp ha st ep do wn and a l ph a st e p u p

i n d i c a t e s c as e c40   a lp ha _s te pd ow n_ c = N _1 / N _2 ;   // s t ep −down

t r a ns f o rm a t i o n r a t i o41   a lp ha _s te pu p_ c = N _l / N _h ;   // s t ep −up

t r a ns f o rm a t i o n r a t i o42

43   / / c as e d

319

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 321/412

44   // s u b s c r i p t d f o r a lp ha st ep do wn and a l ph a st e p u p

i n d i c a t e s c as e d45   a lp ha _s te pd ow n_ d = I _2 / I _1 ;   // s t ep −downt r a ns f o rm a t i o n r a t i o

46   a lp ha _s te pu p_ d = I _h / I _l ;   // s t ep −upt r a ns f o rm a t i o n r a t i o

47

48   // D is pl ay t h e r e s u l t s49   disp ( ”Example 14−2 S ol u t i o n : ” ) ;

50

51   printf ( ”   \n a : Number o f h i gh −s i d e t ur ns : \ n N h= %d t = N 1   \n” , N _ h ) ;

52   printf ( ”   \n Number o f low−s i d e t ur ns : \ n N l =%d t = N 2 \n” , N _ l ) ;

53

54   printf ( ”   \n b : Rated p ri ma ry c u r r e nt : \ n I h =I 1 = %d A   \n” , I _ 1 ) ;

55   printf ( ”   \n Rated s e c o n d a r y cu r r en t : \ n I l =I 2 = %d A\n” , I _ 2 ) ;

56

57   printf ( ”   \n c : s te p−down t r a ns f o rm a t i o n r a t i o : \ n= N 1 / N 2 = %d\n” , a l p h a _ s t e p d o w n _ c ) ;

58   printf (”   \n s t e p −up t r a n sf o rm a ti o n r a t i o : \ n= N l / N h = %. 2 f   \n” , a l p h a _ s t e p u p _ c ) ;

59

60   printf ( ”   \n d : s te p −down t r a ns f o rm a t i o n r a t i o : \ n= I 2 / I 1 = %d\n” , a l p h a _ s t e p d o w n _ d ) ;

61   printf ( ”   \n s t e p −up t r a n sf o rm a ti o n r a t i o : \ n= I h / I l h = %. 2 f   \n” , a l p h a _ s t e p u p _ d ) ;

Scilab code Exa 14.3  alpha Z1 I1

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

320

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 322/412

4   / / 2 nd e d i t i om

56   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 14−38

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   N_1 = 500 ;   // Number o f p ri ma ry t u r ns i n t he a ud io

o ut p ut t r a n s f o r m e r13   N_2 = 25 ;   // Number o f s e co n da r y t u rn s i n t he a ud io

o u tp ut t r a n s f o r m e r14   Z_L = 8 ;   // S p e a ke r i mp ed an ce i n ohm15   V_1 = 10 ;   // Output v o l t a g e o f t he a ud io o ut pu t

t r an s f o r me r i n v o l t16

17   / / C a l c u l a t i o n s18   / / c as e a19   a lp ha = N _1 / N_ 2 ;   // s te p −down t r a n s f o r ma t i o n r a t i o20   Z_1 = ( a lph a )^2 * Z _L ;   // Impedance r e f l e c t e d t o

t he t r a n s fo r m e r p ri ma ry21

  / / a t t he o ut p ut o f Tr i n ohm22

23   / / c as e b24   I_1 = V_1 / Z_1 ;   // Pr im ary c u r r e nt i n A25

26   // D is pl ay t h e r e s u l t s27   disp ( ”Example 14−3 S ol u t i o n : ” ) ;

28

29   printf ( ”   \n a : T ra ns fo rm at io n r a t i o : \ n = %d\n” , a l p h a ) ;

30   printf ( ”   \n Impedance r e f l e c t e d to t h e

t r an s f o r me r p ri ma ry a t t he o ut pu t o f Tr : ” ) ;31   printf ( ”   \n Z 1 = %d ohm   \n ” , Z _ 1 ) ;

32

33   printf ( ”   \n b : M at ch in g t r a n s f o r m e r p ri ma ry c u r r e n t: \ n I 1 = %f A” , I _ 1 ) ;

321

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 323/412

34   printf ( ”   \n I 1 = %. 3 f mA ” , 10 00 * I _1 ) ;

Scilab code Exa 14.4  Z2prime Z3prime Z1 I1 Pt V2 P2 V3 P3 Pt

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 14−48

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   N_1 = 600 ;   // Number o f p r im a ry t u r n s13   N_2 = 150 ;   // Some number o f s e c o n d a r y t u r n s14   N_3 = 300 ;   // Some number o f s e c o n d a r y t u r n s15   Z_2 = 30 ;   // R e s i s t i v e l oa d i n ohm a c r o s s N 2

16   Z_3 = 15 ;   // R e s i s t i v e l oa d i n ohm a c r o s s N 317   R_2 = 30 ;

18   R_3 = 15 ;

19   V_p = 16 ;   // Pr imar y a p p li e d v o l t a g e i n v o l t20   c os _t he ta = 1 ;   // u n i t y PF21

22   / / C a l c u l a t i o n s23   / / c as e a24   Z _2 _p ri me = Z _2 * ( N _1 / N _2 ) ^2 ;   / / I m p ed a n ce

r e f l e c t e d t o t he p r i m a r y by l oa d Z 2 i n ohm

2526   / / c as e b27   Z _3 _p ri me = Z _3 * ( N _1 / N _3 ) ^2 ;   / / I m p ed a n ce

r e f l e c t e d t o t he p r i m a r y by l oa d Z 3 i n ohm28

322

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 324/412

29   / / c as e c

30   / / T ot al i mp ed an ce r e f l e c t e d t o t he p ri ma ry i n ohm31   Z _1 = ( Z _2 _p ri me * Z _3 _p ri me ) / ( Z _2 _p ri me +

Z _ 3_ p ri m e ) ;

32

33   / / c as e d34   I_1 = V_p / Z_1 ;   // T ot al c u r r e nt drawn fro m t he

s up pl y i n A35

36   / / c as e e37   P_t = V_p * I_1 * co s_ th et a ;   / / T ot al power i n W

drwan f ro m t h e s u pp l y a t u n i t y PF

3839   / / c as e f  40   V_2 = V_p * ( N_2 / N_1 ) ;   // V ol ta ge a c r o s s Z 2 i n

v o l t41   P_2 = ( V_2 ) ^2 / R_2 ;   // Power d i s s i p a t e d i n l oa d

Z 2 i n W42

43   / / c as e g44   V_3 = V_p * ( N_3 / N_1 ) ;   // V ol ta ge a c r o s s Z 3 i n

v o l t45   P_3 = ( V_3 ) ^2 / R_3 ;

  // Power d i s s i p a t e d i n l oa dZ 3 i n W46

47   / / c as e h48   P _tot al = P_2 + P_3 ;   // T ot al power d i s s i p a t e d i n

bot h l o a ds i n W49

50   // D is pl ay t h e r e s u l t s51   disp ( ”Example 14−4 S ol u t i o n : ” ) ;

52

53   printf ( ”   \n a : Impedance r e f l e c t e d t o t he p ri ma ry by

l o a d Z 2 : ” ) ;54   printf ( ”   \n Z 2 = %d ohm   \n ” , Z _ 2_ p ri m e ) ;

55

56   printf ( ”   \n b : Impedance r e f l e c t e d t o t he p ri ma ry byl o a d Z 3 : ” ) ;

323

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 325/412

57   printf ( ”   \n Z 3 = %d ohm   \n ” , Z _ 3_ p ri m e ) ;

5859   printf ( ”   \n c : T ot al i mpe danc e r e f l e c t e d t o t he

p ri ma ry : ” ) ;

60   printf ( ”   \n Z 1 = %. 1 f ohm   \n ” , Z_ 1 ) ;

61

62   printf ( ”   \n d : T ot al c u r r e n t drawn fro m t he s u pp l y :” ) ;

63   printf ( ”   \n I 1 = %. 1 f A   \n ” , I_ 1 ) ;

64

65   printf ( ”   \n e : T o ta l po we r d rawn f ro m t h e s u pp l y a tu n it y PF : ” ) ;

66   printf ( ”   \n P t = %. 1 f W   \n ” , P_ t ) ;67

68   printf ( ”   \n f : V o l t a g e a c r o s s Z 2 i n v o l t : \ n V 2= %d V   \n ” , V_ 2 ) ;

69   printf ( ”   \n Power d i s s i p a t e d i n l o a d Z 2 : \ nP 2 = %. 2 f W   \n” , P_ 2 ) ;

70

71   printf ( ”   \n g : V o l ta g e a c r o s s Z 3 i n v o l t : \ n V 3= %d V   \n ” , V_ 3 ) ;

72   printf ( ”   \n Power d i s s i p a t e d i n l o a d Z 3 : \ n

P 3 = %f W   \n”, P_ 3 ) ;

73

74   printf ( ”   \n h : T ot al power d i s s i p a t e d i n bot h l o a ds: \ n P t = %. 1 f W” , P _ t o t a l ) ;

Scilab code Exa 14.5  alpha N2 N1 ZL

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS

324

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 326/412

7   / / E xa mp le 14−5

89   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   P = 100 ;   // P ower r a t i n g o f t he s i n g l e c ha nn el

power a m p l i f i e r i n W13   Z _p = 3200 ;   // Ou tp ut i mp ed an ce i n ohm o f t h e

s i n g l e c ha nn el power a m p l i f i e r14   N _p = 1500 ;   // Number o f p ri ma ry t u r n s i n a t ap pe d

impedance −m at ch in g t r a n s f o r m e r

15   Z_L1 = 8 ;   // A m p l i f i er o ut pu t i n ohm u s i ng a t ap pe dimpedance −m at ch in g t r a n s f o r m e r

16   Z_L2 = 4 ;   // A m p l i f i er o ut pu t i n ohm u s i ng a t ap pe dimpedance −m at ch in g t r a n s f o r m e r

17

18   / / C a l c u l a t i o n s19   / / c as e a20   a l ph a =   sqrt ( Z _p / Z _ L1 ) ;   // T ra n sf o rm a ti o n r a t i o21   N _2 = N_p / alpha ;   // T o ta l number o f s e c on d a ry

t u r n s t o match 8 ohm s p e a k e r22

23   / / c as e b24   // s u b s c r i p t b f o r a l p h a i n d i c a t e s c as e b25   a l p ha _ b =   sqrt ( Z _p / Z _L 2 ) ;   // T ra n sf o rm a ti o n r a t i o26   N_1 = N_p / al pha _b ;   // Number o f p ri m ar y t u r n s t o

m at ch 4 ohm s p e a k e r27

28   / / c as e c29   t ur ns _d if fe re nc e = N _2 - N _1 ;   // D i f f e r e n c e i n

s e c on d a r y and p ri ma ry t u r n s30   // s u b s c r i p t c f o r a l p h a i n d i c a t e s c as e c

31   a l ph a _c = ( 1 50 0 /2 2 ) ;   // T ra n sf or m at io n r a t i o32   Z_L = Z_p / ( a lp ha _c ) ^2 ;   // I mp ed an ce t h a t must b e

c o n n e c t e d b e tw e en 4 o hm a n d33   / / 8 ohm t e r m i n a l s t o r e f l e c t a p r im a ry i mp ed an ce o f  

3 . 2 k i l o −ohm

325

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 327/412

34

35   // D is pl ay t h e r e s u l t s36   disp ( ”Example 14−5 S ol u t i o n : ” ) ;

37

38   printf ( ”   \n a : T ra ns fo rm at io n r a t i o :   \n = %d\n ” , a lp ha ) ;

39   printf ( ”   \n T o t a l number o f s e c o nd ar y t u r ns t omatch 8 ohm s p e a k e r : ” ) ;

40   printf ( ”   \n N 2 = %d t   \n ” , N_ 2 ) ;

41

42   printf ( ”   \n b : T ra ns fo rm at io n r a t i o :   \n = %. 3f    \n ” , a l ph a_ b ) ;

43   printf ( ”   \n Number o f p ri ma r y t u r n s t o match 4ohm s p e a k e r : ” ) ;

44   printf ( ”   \n N 1 = %d t   \n ” , N_ 1 ) ;

45

46   printf ( ”   \n c : D i f f e r e n c e i n s ec on da ry and p ri ma ryt u r n s : ” ) ;

47   printf ( ”   \n N 2   −   N 1 = %. f t   \n ” ,

t u r n s_ d i f fe r e n c e ) ;

48   printf ( ”   \n Impedance t h at must be co nn ec te db e tw e en 4 ohm a nd 8 ohm ” ) ;

49   printf (”   \n t e r m i na l s t o r e f l e c t a p r i m a r yi mp ed an ce o f 3 . 2 k i l o −ohm : ” ) ;

50   printf ( ”   \n Z L = %. 2 f ohm ”, Z_ L ) ;

Scilab code Exa 14.6  Z between terminals A B

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 14−6

326

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 328/412

8

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .10

11   / / G iv en d a ta12   P = 100 ;   // P ower r a t i n g o f t he s i n g l e c ha nn el

power a m p l i f i e r i n W13   Z_L1 = 8 ;   // A m p l i f i er o ut pu t i n ohm u s i ng a t ap pe d

impedance −m at ch in g t r a n s f o r m e r14   Z_L2 = 4 ;   // A m p l i f i er o ut pu t i n ohm u s i ng a t ap pe d

impedance −m at ch in g t r a n s f o r m e r15   P _s er vo = 10 ;   // Power r a t i n g o f t he s e rv o motor i n

W16   Z _s er vo = 0. 7 ;   // Imp eda nce o f t he s e r vo motor i n

ohm17

18   / / C a l c u l a t i o n s19   r o o t _Z _ A B =   sqrt (8) -   sqrt ( 4 ) ;

20   Z _A B = ( r o ot _ Z_ A B ) ^2 ;

21

22   / / D is pl ay t h e r e s u l t a23   disp ( ”Example 14−6 S ol u t i o n : ” ) ;

24

25   printf ( ”   \n Z p = % d   ∗ ( N p /N 1 ) ˆ2 = % d   ∗ ( N p / N 2 )ˆ2\ n” , Z _ L 2 , Z _ L 1 ) ;

26   printf ( ”   \n = Z AB   ∗   ( N p / ( N 2   −   N 1 ) ˆ2 )   \n” ) ;

27   printf ( ”   \n D i vi d in g e a ch o f t he t h r e e n um er at or s byN p ˆ2 and t a ki n g t he ” ) ;

28   printf ( ”   \n s q ua r e r o o t o f e ac h term , we h ave \n” ) ;

29

30   printf ( ”   \n ( Z AB ) / ( N 2   −   N 1 ) = ( 4 ) / N 1 =( 8 ) / N 2   \n” ) ;

31   printf ( ”   \n ( Z AB ) / ( N 2   −   N 1 ) = ( 4 ) / N 1   −

( 8 ) / N 2   \n” ) ;32   printf ( ”   \n y i e l d i n g , ( Z AB ) = ( 8 )   −   ( 4 ) =

%f    \n” , r o o t _ Z _ A B ) ;

33   printf ( ”   \n w hi ch Z AB = ( %f ) ˆ 2 = %. 2 f     \n” ,

root_Z_AB ,Z_AB );

327

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 329/412

Scilab code Exa 14.7  alpha V1 V2 I2 I1 PL Ps PT efficiency

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS

7   / / E xa mp le 14−78

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   V = 1 0 *   exp ( %i * 0 * ( %pi / 18 0) ) ;   // S up pl y v o l t a g e

o f t he s o u r c e 10<0 V13   R _s = 1000 ;   // R e s is t a nc e o f t he s o ur c e i n ohm14   R_L = 10 ;   // Load r e s i s t a n c e i n ohm15   Z_L = R_L ;   // Load r e s i s t a n c e i n ohm16

17   / / C a l c u l a t i o n s18   / / c as e a19   a l ph a =   sqrt ( R _s / R _L ) ;   // T ra ns fo rm at io n r a t i o o f  

t h e m a tc h in g t r a n s f o r m e r f o r MPT20

21   / / c as e b22   V_1 = V / 2 ;   // T e r mi n a l v o l t a ge i n v o l t o f t he

s o u r c e a t MPT23

24   / / c as e c25   V _2 = V_1 / alpha ;   // T e r mi na l v o l t a g e i n v o l t

a c r o s s t h e l o a d a t MPT26

27   / / c as e d

328

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 330/412

28   I_2 = V_2 / Z_L ;   // S ec on da ry l oa d c u r re n t i n A (

m et ho d 1 )29   I 2 = V / (2* a lp ha * R_L ) ;   // S ec on da ry l o ad c u r r e n ti n A ( m ethod 2 )

30

31   / / c as e e32   I _1 = I_2 / alpha ;   // P ri ma ry l o a d c u r r e n t drawn

from t he s o u r ce i n A ( m ethod 1 )33   I1 = V / (2* R_s ) ;   // P ri ma ry l o a d c u r r e n t drawn

from t he s o u r ce i n A ( m ethod 2 )34

35   / / c as e f  

36   P_L = ( I_2 ) ^2 * R_L ;   / / Maximum p ow er d i s s i p a t e d i nt h e l oa d i n W

37

38   / / c as e g39   P_s = ( I_1 ) ^2 * R_s ;   // Power d i s s i p a t e d i n t e r n a l l y

w it hi n t he s o u r c e i n W40

41   / / c as e h42   P_T1 = V * I_1 * cosd (0) ;   // T ot al power s u p p l i e d

by t h e s o u r c e i n W( m ethod 1 )43

44   P_T2 = P_L + P_s ;   // T ot al power s u p p l i e d by t hes o u r c e i n W( m ethod 2 )

45

46   / / c as e i47   P _T = P_T1 ;

48   eta = P_L / P_T * 100 ;   // Power t r a n s f e r e f f i c i e n c yi n p e rc e n t

49

50   // D is pl ay t h e r e s u l t s51   disp ( ”Example 14−7 S ol u t i o n : ” ) ;

5253   printf ( ”   \n a : T ra n sf o rm a ti o n r a t i o o f t he m at ch in g

t r a n s f o r m e r f o r MPT : ” ) ;

54   printf ( ”   \n = %d   \n ” , a lp ha ) ;

55

329

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 331/412

56   printf ( ”   \n b : T er mi na l v o l t a g e o f t he s o u r ce a t MPT

: \ n V 1 = %d V   \n” , V _ 1 ) ;57

58   printf ( ”   \n c : T e r m i n a l v o l t a ge a c r o s s t h e l oa d a tMPT : \ n V 2 = %. 1 f V   \n” , V _ 2 ) ;

59

60   printf ( ”   \n d : S ec on da ry l o ad c u r r e nt : ” ) ;

61   printf ( ”   \n ( method 1 ) : \ n I 2 = %. 2 f A = %dmA   \n ” , I _2 , 1 0 00 * I _ 2 ) ;

62

63   printf ( ”   \n ( method 2 ) : \ n I 2 = %. 2 f A = %dmA   \n ” , I2 , 1 0 00 * I 2 ) ;

6465   printf ( ”   \n e : P ri ma ry l o a d c u r r e n t drawn f ro m t h e

s ou rc e : ” ) ;

66   printf ( ”   \n ( method 1 ) : \ n I 1 = %f A = %d mA\n ” , I_ 1 , 1 00 0* I _1 ) ;

67   printf ( ”   \n ( method 2 ) : \ n I 1 = %f A = %d mA\n ” , I1 , 1 00 0* I1 ) ;

68

69   printf ( ”   \n f : Maximum p o wer d i s s i p a t e d i n t h e l o a d: ” ) ;

70   printf (”   \n P L = %f W = %d mW   \n”

, P _L , 1 00 0* P _ L

) ;

71

72   printf ( ”   \n g : Power d i s s i p a t e d i n t e r n a l l y w it hi nt h e s ou rc e : ”   ) ;

73   printf ( ”   \n P s = %f W = %d mW   \n” , P _s , 1 00 0* P _ s

) ;

74

75   printf ( ”   \n h : T ot al power s u p p li e d by t he s o ur c e :” ) ;

76   printf ( ”   \n ( method 1 ) : \ n P T = %f W = %d mW

\n ” , P _T 1 , 1 0 00 * P _ T 1 ) ;77   printf ( ”   \n ( method 2 ) : \ n P T = %f W = %d mW

\n ” , P _T 2 , 1 0 00 * P _ T 2 ) ;

78

79   printf ( ”   \n i : Power t r a n s f e r e f f i c i e n c y : \ n =

330

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 332/412

%d p e r c e n t ” , et a ) ;

Scilab code Exa 14.8  PL alpha maxPL

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 14−88

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   / / p ower t r a n s f o r m e r13   V = 2 0 ;   / / No−l oa d v o l t a g e i n v o l t14   R_s = 18 ;   // I n t e r n a l r e s i s t a n c e o f t he power

a m p l i f i e r i n ohm

15   R_L = 8 ;   / / Load r e s i s t a n c e i n ohm ( S p ea k er )16

17   / / C a l c u l a t i o n s18   / / c as e a19   V_L = ( R_L / ( R_L + R_s ) ) * V ;   // Load v o l t a g e i n

v o l t20   P_L = ( V_L ) ^2 / R_L ;   // Power d e l i v e r e d i n W t o t he

s p e a k e r when c o n n e c t ed21   // d i r e c t l y t o t h e a m p l i f i e r22

23   / / c as e b24   a l ph a =   sqrt ( R _ s / R _ L ) ;   // Turns r a t i o o f t h et r a n s f o r m e r t o m ax im iz e s p e a k e r p ower

25

26   / / c as e c

331

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 333/412

27   V_2 = V / (2 * al ph a) ;   // S ec o nd ar y v o l t a g e i n v o l t

28   P_ L2 = ( V_2 ) ^2 / R_L ;   // Maximum p ow er d e l i v e r e d i nW t o t he s p e ak e r u s i ng m at ch in g29   / / t r a n s f o r m e r o f p ar t b30

31   // D is pl ay t h e r e s u l t s32   disp ( ”Example 14−8 S ol u t i o n : ” ) ;

33

34   printf ( ”   \n a ; Load v o l t a g e : \ n V L = %. 2 f Va c r o s s t h e 8 s p e a k e r \n ” , V _ L ) ;

35   printf ( ”   \n Power d e l i v e r e d i n W t o t h e s pe a ke rwhen c o nn ec te d d i r e c t l y t o t h e a m p l i f i e r : ” ) ;

36   printf ( ”   \n P L = %. 2 f W   \n ” , P _ L ) ;37

38   printf ( ”   \n b : Turns r a t i o o f t he t r a n sf o r m e r t om ax im iz e s p e a k e r p ower : ” ) ;

39   printf ( ”   \n = %. 1 f    \n ” , al ph a ) ;

40

41   printf ( ”   \n c : S ec on da ry v o l t a g e : \ n V 2 = %f V   \n ” , V_ 2 ) ;

42   printf ( ”   \n Maximum power d e l i v e r e d i n W t o t h es p e ak e r u s i ng m at ch in g ” ) ;

43   printf (”   \n t r a n s f o r m e r o f pa r t b : \ n P L = %f  W ” , P _L 2 ) ;

Scilab code Exa 14.9  Eh El Ih new kVA

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 14−98

332

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 334/412

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   kVA = 1 ;   // kVA r a t i n g o f t he t r a n s fo r m e r13   V_1 = 220 ;   // P ri mary v o l t ag e i n v o l t14   V_2 = 110 ;   // S ec on da ry v o l t a g e i n v o l t15   f_o = 400 ;   / / F re qu en cy i n Hz ( o r i g i n a l f r e q u e n c y )16   f_f = 60 ;   // F re qu en cy i n Hz f o r whi ch t he

t r a n sf o r m e r i s t o be us e d17

18   / / C a l c u l a t i o n s

19   a l p h a = V _ 1 / V _ 2 ;   // T ra n sf o rm a ti o n r a t i o20   / / c as e a21   E_h = V_1 * ( f_f / f_o );   / / Maximum rm s v o l t a g e i n

v o l t a p p l i e d t o HV s i d e22   E_1 = E_h ;

23   E _l = E_1 / alpha ;   / / Maximum r ms v o l t a g e i n v o l ta p p l i e d t o HV s i d e

24

25   / / c as e b26   V_h = V_1 ;   // High v o l t a ge i n v o l t27   I_h = kVA * 1000 / V_h ;

28   V h = E_h ;

29   k VA_n ew = Vh * I_h ;

30

31   // D is pl ay t h e r e s u l t s32   disp ( ”Example 14−9 S ol u t i o n : ” ) ;

33

34   printf ( ”   \n a : To m ai nt ai n t he same p e r m i s s i b l e f l u xd e n s i t y i n Eqs . ( 14 − 1 5 ) ” ) ;

35   printf ( ”   \n and (14 −16) , b ot h v o l t a g e s o f t he h ig hand lo w s i d e s must c ha ng e ” ) ;

36   printf ( ”   \n i n t h e same pr o p o rt i on a s th ef r e q u e n c y : ” ) ;

37   printf ( ”   \n E h = %d V   \n and , \ n E l = %. 1 f  V\n” , E_h , E_l ) ;

38

333

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 335/412

39   printf ( ”   \n b : The o r i g i n a l c ur r e nt r a t i n g o f t h e

t r a n s fo r m e r i s u nch ang ed s i n c e ” ) ;40   printf ( ”   \n t he c on du ct or s s t i l l have t h e samec u r r e nt c a r r y i n g c a p a c i ty . ” ) ;

41   printf ( ”   \n Thus , \ n I h = %. 3 f A\n and t h enew kVA r a t i n g i s ” , I_ h ) ;

42   printf ( ”   \n V h ∗ I h = V 1∗ I 1 = %d VA = %.2 f kVA”, k V A_ n ew , k VA _ ne w / 1 00 0) ;

Scilab code Exa 14.10   Piron

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−108

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G i ve n d a t a ( f r om E xa mp le 1 4−9)12   kVA = 1 ;   // kVA r a t i n g o f t he t r a n s fo r m e r13   V_1 = 220 ;   // P ri mary v o l t ag e i n v o l t14   V_2 = 110 ;   // S ec on da ry v o l t a g e i n v o l t15   f_o = 400 ;   // F re qu en cy i n Hz16   f_f = 60 ;   // F re qu en cy i n Hz f o r whi ch t he

t r a n sf o r m e r i s t o be us e d17   P _ or ig = 10 ;   // O r i g i n a l i r o n l o s s e s o f t h e

t r an s f o r me r i n W18

19   / / C a l c u l a t i o n s20   // c o n s i d e r o n ly r a t i o o f f r e q u e n c i e s f o r

c a l c u l a t i n g B

334

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 336/412

21   B = f_o / f_f ;   // f l u x d e n s i t y

2223   P _i r on = ( P _ or ig ) * ( B ^2 ) ;   // I ro n l o s s e s i n W24

25   // D is pl ay t h e r e s u l t s26   disp ( ”E x ampl e 14−10 S o l u t i o n : ” ) ;

27

28   printf ( ”   \n S i n ce E = k∗ f  ∗B m and t h e same p r im a ryv o l t a g e i s a p p l i e d t o t h e ” ) ;

29   printf ( ”   \n t r a n s fo r m e r a t r ed uc ed f re qu e nc y , t hef i n a l f l u x d e n s i t y B mf ” ) ;

30   printf ( ”   \n i n c r e a s e d s i g n i f i c a n t l y abov e i t s

o r i g i n a l maximum p e r m i s s i b l e ” ) ;31   printf ( ”   \n v al ue B mo t o : \ n B mf = B mo   ∗   ( f o / f f  

) = % . 2 f B m o   \n ” , B ) ;

32

33   printf ( ”   \n S i n ce t h e i r on l o s s e s v a r y a pp ro xi ma te lya s t h e s qu ar e o f t h e f l ux d e n s i t y : ” ) ;

34   printf ( ”   \n P i r o n = %d W ”, P _ ir on ) ;

Scilab code Exa 14.11  I2 I1 Z2 Z1their loss E2 E1 alpha

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−118

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .10

11   / / G iv en d a ta12   kVA = 500 ;   // kVA r a t i n g o f t he s te p −down

335

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 337/412

t r a n s f o r m e r

13   V _1 = 2300 ;   // Pr imary v o l t a g e i n v o l t14   V_2 = 230 ;   // S ec on da ry v o l t a g e i n v o l t15   f = 6 0 ;   // F re qu en cy i n Hz16   r_1 = 0.1 ;   // P ri ma ry w in di ng r e s i s t a n c e i n ohm17   x_1 = 0.3 ;   // P ri ma ry w in d in g r e a c t a n c e i n ohm18   r _2 = 0 .0 01 ;   // S ec on da ry w in di ng r e s i s t a n c e i n ohm19   x _2 = 0 .0 03 ;   // S ec on d ar y w in d in g r e a c t a n c e i n ohm20

21   / / C a l c u l a t i o n s22   a l p h a = V _ 1 / V _ 2 ;   // T ra n sf o rm a ti o n r a t i o23   / / c as e a

24   I_2 = ( kVA * 10 00 ) / V_2 ;   // S ec on da ry c u r r e n t i n A25   I _1 = I_2 / alpha ;   // P ri ma ry c u r r e n t i n A26

27   / / c as e b28   Z_2 = r_2 + %i *( x _2 ) ;   // S ec on da ry i n t e r n a l

i m p ed a n ce i n ohm29   Z _ 2_ m =   abs ( Z _ 2 ) ; / / Z 2 m=m ag n it ud e o f Z 2 i n ohm30   Z _ 2_ a =   atan ( imag ( Z _2 ) / real ( Z _ 2 ) ) * 1 8 0 / % p i ; / / Z 2 a =

p h a se a n g l e o f Z 2 i n d e g r e e s31

32   Z_1 = r_1 + %i *( x _1 ) ;  // P ri ma ry i n t e r n a l i mp ed an cei n ohm

33   Z _ 1_ m =   abs ( Z _ 1 ) ; / / Z 1 m=m ag n it ud e o f Z 1 i n ohm34   Z _ 1_ a =   atan ( imag ( Z _1 ) / real ( Z _ 1 ) ) * 1 8 0 / % p i ; / / Z 1 a =

p h a se a n g l e o f Z 1 i n d e g r e e s35

36   / / c as e c37   I _2 _Z _2 = I_ 2 * Z _2 _m ;   // S ec on da ry i n t e r n a l

v o l t a ge dr op i n v o l t38   I _1 _Z _1 = I_ 1 * Z _1 _m ;   // P ri mar y i n t e r n a l v o l t a g e

dr op i n v o l t

3940   / / c as e d41   E_2 = V_2 + I_ 2_Z _2 ;   // S ec on d ar y i n du c ed v o l t a g e

i n v o l t42   E_1 = V_1 - I_ 1_Z _1 ;   // P ri ma ry i nd uc ed v o l t a g e i n

336

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 338/412

v o l t

4344   / / c as e e45   r atio _E = E_1 / E_2 ;   // r a t i o o f p r i m a ry t o

s e co n da r y i nd uc ed v o l t a g e46   r atio _V = V_1 / V_2 ;   // r a t i o o f p r i m a ry t o

s e co n da r y t e r m i na l v o l t a g e47

48   // D is pl ay t h e r e s u l t s49   disp ( ”E x ampl e 14−11 S o l u t i o n : ” ) ;

50

51   printf ( ”   \n a : S ec on da ry c u r r e nt : \ n I 2 = %. f A

\n ” , I_ 2 ) ;52   printf ( ”   \n P ri mary c u r r e n t : \ n I 1 = %. 1 f A   \

n ” , I_ 1 ) ;

53

54   printf ( ”   \n b : S ec on da ry i n t e r n a l i mp ed an ce :   \nZ 2 i n ohm = ”) ; disp ( Z _ 2 ) ;

55   printf ( ”   \n Z 2 = %f    <%.2 f ohm   \n ” , Z _2 _m , Z _2 _a

) ;

56   printf ( ”   \n P ri mary i n t e r n a l i mpeda nce :   \nZ 1 i n ohm = ”) ; disp ( Z _ 1 ) ;

57   printf (”   \n Z 1 = %f  

  <

%.2 f ohm   \n ”, Z _1 _m , Z _1 _a

) ;

58

59   printf ( ”   \n c : S ec on da ry i n t e r n a l v o l t a g e dr op : \ nI 2 ∗ Z 2 = %. 2 f V   \n ” , I _ 2 _ Z _ 2 ) ;

60   printf ( ”   \n P ri mary i n t e r n a l v o l t a g e drop : \ nI 1 ∗ Z 1 = %. 2 f V   \n ” , I _ 1 _ Z _ 1 ) ;

61

62   printf ( ”   \n d : S ec on da ry i nd uc ed v o l t a g e : \ n E 2= %. 2 f V   \n” , E_ 2 ) ;

63   printf ( ”   \n P ri mary i n d u c e d vo l t ag e : \ n E 1 =

%. 2 f V   \n” , E_ 1 ) ;64

65   printf ( ”   \n e : R a t i o o f E 1 /E 2 = %. 2 f = = N 1 /N 2   \n” , r a ti o _E ) ;

66   printf ( ”   \n But V 1 / V 2 = %d ” , r a ti o_ V ) ;

337

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 339/412

Scilab code Exa 14.12  ZL ZP difference

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS

7   / / E xa mp le 1 4−128

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G i ve n d a t a ( f r om E xa mp le 1 4−11)12   V _1 = 2300 ;   // Pr imary v o l t a g e i n v o l t13   V_2 = 230 ;   // S ec on da ry v o l t a g e i n v o l t14   I _2 = 2174 ;   // S ec on da ry c u r re n t i n A15   I_1 = 217.4 ;   // P ri ma ry c u r r e nt i n A16   / / c a l c u l a t e d v a l u e s fro m E xample 14−1117   Z_2 = 0 .0 03 16 ;   // S ec on da ry i n t e r n a l i mp ed an ce i n

ohm18   Z_1 = 0.316 ;   // P ri ma ry i n t e r n a l i mp ed an ce i n ohm19

20

21   / / C a l c u l a t i o n s22   a l p h a = V _ 1 / V _ 2 ;   // T ra n sf o rm a ti o n r a t i o23   / / c as e a24   Z_L = V_2 / I_2 ;   / / L oa d i m pe d an c e i n ohm25

26   / / c as e b27   Z_p = V_1 / I_1 ;   // P ri ma ry i n p u t i mp ed an ce i n ohm28

29   Zp = ( alpha ) ^2 * Z_L ;   // P ri ma ry i n p u t i mp ed an ce i nohm

338

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 340/412

30

31   // D is pl ay t h e r e s u l t s32   disp ( ”E x ampl e 14−12 S o l u t i o n : ” ) ;

33

34   printf ( ”   \n a : Load i mp ed an ce : \ n Z L = %. 4 f ohm\n ” , Z _ L ) ;

35

36   printf ( ”   \n b : P ri ma ry i n pu t i mp ed an ce : ” ) ;

37   printf ( ”   \n ( method 1 ) : \ n Z p = %. 2 f ohm   \n ”, Z_ p ) ;

38   printf ( ”   \n ( method 2 ) : \ n Z p = %. 2 f ohm   \n ”, Zp ) ;

3940   printf ( ”   \n c : The i mp ed an ce o f t he l o ad Z L = %. 4 f  

, wh ich i s much g r e a t e r ” , Z _ L ) ;

41   printf ( ”   \n t han th e i n t e r n a l s e c o nd ar y impe danc eZ 2 = %. 5 f . \ n ” , Z _ 2 ) ;

42   printf ( ”   \n The p ri ma ry i np ut i mpe danc e Z p = %. 2f , whi ch i s much g r e at e r ” , Z _ p ) ;

43   printf ( ”   \n t han th e i n t e r n a l p ri m a r y impe dan ceZ 1 = %. 3 f . \ n” , Z _ 1 ) ;

44

45   printf (”   \n d : I t i s e s s e n t i a l f o r Z L t o be muchg r e a t e r t han Z 2 s o t ha t t h e ” ) ;

46   printf ( ”   \n maj or p a rt o f t h e v o lt a g e pr o d uc e d byE 2 i s dr opp ed a c r o s s t he ” ) ;

47   printf ( ”   \n l oa d i mped anc e Z L . As Z L i s r e d u c e di n p r o p or t i o n t o Z 2 , t he ” ) ;

48   printf ( ”   \n l o a d c u rr en t i n c r e a s e s and morev o l t a ge i s dr op ped i n t e r n a l l y ” ) ;

49   printf ( ”   \n a c r o s s Z 2 . ” ) ;

Scilab code Exa 14.13  Re1 Xe1 Ze1 ZLprime I1

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

339

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 341/412

2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−138

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   kVA = 500 ;   // kVA r a t i n g o f t he s te p −down

t r a n s f o r m e r13   V _1 = 2300 ;   // Pr imary v o l t a g e i n v o l t14   V_2 = 230 ;   // S ec on da ry v o l t a g e i n v o l t15   f = 6 0 ;   // F re qu en cy i n Hz16   r_1 = 0.1 ;   // P ri ma ry w in di ng r e s i s t a n c e i n ohm17   x_1 = 0.3 ;   // P ri ma ry w in d in g r e a c t a n c e i n ohm18   r_2 = 0.001 ;   // S ec on da ry w in di ng r e s i s t a n c e i n ohm19   x_2 = 0.003 ;   // S ec on d ar y w in d in g r e a c t a n c e i n ohm20   / / c a l c u l a t e d d at a fr om Example 1 4−1221   Z _L = 0 .1 05 8 ;   / / Lo ad i m pe d an c e i n ohm22

23   / / C a l c u l a t i o n s24   a l p h a = V _ 1 / V _ 2 ;   // T ra n sf o rm a ti o n r a t i o25

26   / / c as e a27   R_e1 = r_1 + ( alpha ) ^2 * r_2 ;   // E q u i v a le n t

i n t e r n a l r e s i s t a n c e r e f e r r e d t o t h e28   / / p ri ma ry s i d e i n ohm29

30   / / c as e b31   X_e1 = x_1 + ( alpha ) ^2 * x_2 ;   // E q u i v a le n t

i n t e r n a l r e a c t an c e r e f e r r e d t o t h e32   / / p ri ma ry s i d e i n ohm33

34   / / c as e c35   Z_ e1 = R_ e1 + %i *( X _e 1) ;   // E q u i va l e nt i n t e r n a l

340

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 342/412

i mp ed an ce r e f e r r e d t o t he

36   / / p ri ma ry s i d e i n ohm37   Z _ e 1_ m =   abs ( Z _ e 1 ) ; / / Z e 1 m=m ag n it ud e o f Z e 1 i n ohm38   Z _ e 1_ a =   atan ( imag ( Z _e 1 ) / real ( Z _ e 1 ) ) * 1 8 0 / % p i ; //

Z e1 a=p ha se a n gl e o f Z e 1 i n d e gr e e s39

40   / / c as e d41   Z _ L _ pr i me = ( a l ph a ) ^2 * ( Z _L ) ;   // E q u i v a le n t

s e co n da r y l o ad i mp ed an ce r e f e r r e d42   // t o t h e p ri m a r y s i d e i n ohm43

44   / / c as e e

45   R_L = Z_L ;   // Load r e s i s t a n c e i n ohm46   X_L = 0 ;   // Load r e a c t a n c e i n ohm47

48   // P ri mary l oa d c u r r e n t i n A , when V 1 = 2 300 V49   I_1 = V_1 / ( ( R_ e1 + a lp ha ^ 2* R _L ) + %i *( X _e 1 +

a l ph a ^ 2 * X _ L ) ) ;

50

51   // D is pl ay t h e r e s u l t s52   disp ( ”E x ampl e 14−13 S o l u t i o n : ” ) ;

53

54   printf (”   \n a : E qu iv al en t i n t e r n a l r e s i s t a n c er e f e r r e d t o t h e p r i m a r y s i d e : ” ) ;

55   printf ( ”   \n R c1 = %. 2 f ohm   \n ” , R _e 1 ) ;

56

57   printf ( ”   \n b : E q u i v al e n t i n t e r n a l r e a ct a n cer e f e r r e d t o t h e p r i m a r y s i d e : ” ) ;

58   printf ( ”   \n X c1 = %. 2 f ohm   \n ” , X _e 1 ) ;

59

60   printf ( ”   \n c : E q ui v al e n t i n t e r n a l i mp ed an cer e f e r r e d t o t h e p r i m a r y s i de : ” ) ;

61   printf ( ”   \n Z c 1 i n ohm = ” ) ; disp ( Z _ e 1 ) ;

62   printf ( ”   \n Z c 1 = %. 3 f    <%.2 f ohm   \n ” , Z _e 1_ m ,Z _e 1_ a ) ;

63

64   printf ( ”   \n d : E q u i v al e n t s e c on d a ry l o a d i mp ed an cer e f e r r e d t o t h e p r i m a r y s i d e : ” ) ;

341

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 343/412

65   printf ( ”   \n ( a l p h a ) ˆ2   ∗   Z L = %. 2 f ohm = ( a l p h a )

ˆ2   ∗   R L   \n” , Z _ L _ p r i m e ) ;66

67   printf ( ”   \n e : P ri mary l oa d c u r r e n t : \ n I 1 = %f  A %. f A ” , I_1 , I _1 ) ;

Scilab code Exa 14.14  I2 ohmdrops E2 VR

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−148

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta

12   kVA = 500 ;   // kVA r a t i n g o f t he s te p −downt r a n s f o r m e r

13   V _1 = 2300 ;   // Pr imary v o l t a g e i n v o l t14   V_2 = 230 ;   // S ec on da ry v o l t a g e i n v o l t15   R_e2 = 2 ;   // E qu i v al en t r e s i s t a n c e r e f e r r e d t o t h e16   / / p r i m a r y s i de i n m17   X_e2 = 6 ;   // E qu i v al en t r e a c t a nc e r e f e r r e d t o t he18   / / p r i m a r y s i de i n m19

20   / / C a l c u l a t i o n s

21   / / c as e a22   I_2 = ( kVA ) / V_2 ;   // Rated s e co n da r y c u r r e nt i nkA

23

24   / / c as e b

342

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 344/412

25   R _e 2_ dr op = I_2 * R _e 2 ;   // F u ll −l oa d e q u i v a l e n t

r e s i s t a n c e v o l t a g e dro p i n v o l t26

27   / / c as e c28   X _e 2_ dr op = I_2 * X _e 2 ;   // F u ll −l oa d e q u i v a l e n t

r e a c t a nc e v o l t a ge dr op i n v o l t29

30   / / c as e d31   / / u n i t y PF32   c o s _ th e ta 2 = 1 ;

33   s i n _ t he t a 2 =   sqrt ( 1 - ( c o s _t h et a 2 ) ^2 ) ;

34

35   / / I n du ce d v o l t a g e when t he t r a n s fo r m e r i sd e l i v e r i n g r at ed c u r r e n t t o u ni ty PF l o ad

36   E _2 = ( V _2 * c os _t he ta 2 + I _2 * R _e 2 ) + %i * ( V_ 2 *

s i n_ t he t a2 + I _2 * X _ e2 ) ;

37   E _ 2_ m =   abs ( E _ 2 ) ; // E 2 m=m ag ni tu de o f E 2 i n v o l t38   E _ 2_ a =   atan ( imag ( E _2 ) / real ( E _ 2 ) ) * 1 8 0 / % p i ; // E 2 a=

p h a se a n g l e o f E 2 i n d e g r e e s39

40   / / c as e e41   VR = ( ( E_2_m - V_2 ) / V_2 ) * 100 ;   // P e rc e nt

v o l t a ge r e g u l a t i o n a t u ni ty PF42

43   // D is pl ay t h e r e s u l t s44   disp ( ”E x ampl e 14−14 S o l u t i o n : ” ) ;

45

46   printf ( ”   \n a : Rated s e co n da r y c u r r e n t : \ n I 2 =% . 3 f kA   \n ” , I _ 2 ) ;

47

48   printf ( ”   \n b : F ul l −l oa d e q ui v a l e n t r e s i s t a n c ev o l t a ge dr op : ” ) ;

49   printf ( ”   \n I 2 ∗ R c 2 = %. 2 f V   \n” , R _e 2_ dr op ) ;

5051   printf ( ”   \n c : F ul l −l oa d e q u i v a l e n t r e a ct a n ce

v o l t a ge dr op : ” ) ;

52   printf ( ”   \n I 2 ∗ X c 2 = %. 2 f V   \n” , X _e 2_ dr op ) ;

53

343

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 345/412

54   printf ( ”   \n d : I nd uc ed v o l t a g e when t he t r a n s fo r m e r

i s d e l i v e r i n g r at ed c ur r e nt ” ) ;55   printf ( ”   \n t o un i t y PF l o a d : \ n E 2 i n v o l t =” ) ; disp ( E _ 2 ) ;

56   printf ( ”   \n E 2 = %. 2 f    <%. 2 f V   \n ” , E _2 _m , E _2 _a

) ;

57

58   printf ( ”   \n e : V ol ta ge r e g u l a t i o n a t u ni ty PF : \ nVR = %. 2 f p e r c e n t ” , VR ) ;

Scilab code Exa 14.15   E2 VR

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−158

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   kVA = 500 ;   // kVA r a t i n g o f t he s te p −down

t r a n s f o r m e r13   V _1 = 2300 ;   // Pr imary v o l t a g e i n v o l t14   V_2 = 230 ;   // S ec on da ry v o l t a g e i n v o l t15   R_e2 = 2 ;   // E qu i v al en t r e s i s t a n c e r e f e r r e d t o t h e16   / / p r i m a r y s i de i n m

17   X_e2 = 6 ;   // E qu i v al en t r e a c t a nc e r e f e r r e d t o t he18   / / p r i m a r y s i de i n m19   I_2 = 2.174 ;   // Rated s ec on da ry c u r r e nt i n kA20

21   c os _t he ta 2 = 0 .8 ;   // l a g g i n g PF

344

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 346/412

22   s i n _ t he t a 2 =   sqrt ( 1 - ( c o s _t h et a 2 ) ^2 ) ;

2324   / / C a l c u l a t i o n s25

26   / / c as e d27   / / I n du ce d v o l t a g e when t he t r a n s fo r m e r i s

d e l i v e r i n g r at ed c u r r e n t t o 0 . 8 l a g gi n g PF l oa d28   E _2 = ( V _2 * c os _t he ta 2 + I _2 * R _e 2 ) + %i * ( V_ 2 *

s i n_ t he t a2 + I _2 * X _ e2 ) ;

29   E _ 2_ m =   abs ( E _ 2 ) ; // E 2 m=m ag ni tu de o f E 2 i n v o l t30   E _ 2_ a =   atan ( imag ( E _2 ) / real ( E _ 2 ) ) * 1 8 0 / % p i ; // E 2 a=

p h a se a n g l e o f E 2 i n d e g r e e s

3132   / / c as e e33   VR = ( ( E_2_m - V_2 ) / V_2 ) * 100 ;   // P e rc e nt

v o l t a ge r e g u l a t i o n a t 0 . 8 PF l a g34

35   // D is pl ay t h e r e s u l t s36   disp ( ”E x ampl e 14−15 S o l u t i o n : ” ) ;

37

38   printf ( ”   \n d : I nd uc ed v o l t a g e when t he t r a n s fo r m e ri s d e l i v e r i n g r at ed c ur r e nt ” ) ;

39   printf (”   \n t o 0 . 8 l a g g i n g PF l o a d : \ n E 2 i nv o l t = ” ) ; disp ( E _ 2 ) ;

40   printf ( ”   \n E 2 = %. 2 f    <%. 2 f V   \n ” , E _2 _m , E _2 _a

) ;

41

42   printf ( ”   \n e : V ol ta ge r e g u l a t i o n a t 0 . 8 l a g g i n g PF: \ n VR = %. 2 f p er c en t ” , VR ) ;

Scilab code Exa 14.16   E2 VR

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

345

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 347/412

4   / / 2 nd e d i t i om

56   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−168

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   kVA = 500 ;   // kVA r a t i n g o f t he s te p −down

t r a n s f o r m e r13   V _1 = 2300 ;   // Pr imary v o l t a g e i n v o l t

14   V_2 = 230 ;   // S ec on da ry v o l t a g e i n v o l t15   R_e2 = 2 ;   // E qu i v al en t r e s i s t a n c e r e f e r r e d t o t h e16   / / p r i m a r y s i de i n m17   X_e2 = 6 ;   // E qu i v al en t r e a c t a nc e r e f e r r e d t o t he18   / / p r i m a r y s i de i n m19   I_2 = 2.174 ;   // Rated s ec on da ry c u r r e nt i n kA20

21   c os _t he ta 2 = 0 .6 ;   // l e a d i n g PF22   s i n _ t he t a 2 =   sqrt ( 1 - ( c o s _t h et a 2 ) ^2 ) ;

23

24  / / C a l c u l a t i o n s25

26   / / c as e d27   / / I n du ce d v o l t a g e when t he t r a n s fo r m e r i s

d e l i v e r i n g r at ed c u r r e n t t o u ni ty PF l o ad28   E _2 = ( V _2 * c os _t he ta 2 + I _2 * R _e 2 ) + %i * ( V_ 2 *

s i n_ t he t a2 - I _2 * X _ e2 ) ;

29   E _ 2_ m =   abs ( E _ 2 ) ; // E 2 m=m ag ni tu de o f E 2 i n v o l t30   E _ 2_ a =   atan ( imag ( E _2 ) / real ( E _ 2 ) ) * 1 8 0 / % p i ; // E 2 a=

p h a se a n g l e o f E 2 i n d e g r e e s31

32   / / c as e e33   VR = ( ( E_2_m - V_2 ) / V_2 ) * 100 ;   // P e rc e nt

v o l t a ge r e g u l a t i o n a t 0 . 8 l e ad i n g PF34

35   // D is pl ay t h e r e s u l t s

346

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 348/412

36   disp ( ”E x ampl e 14−16 S o l u t i o n : ” ) ;

3738   printf ( ”   \n d : I nd uc ed v o l t a g e when t he t r a n s fo r m e r

i s d e l i v e r i n g r at ed c ur r e nt ” ) ;

39   printf ( ”   \n t o 0 . 6 l e a d i n g PF l o a d : \ n E 2 i nv o l t = ” ) ; disp ( E _ 2 ) ;

40   printf ( ”   \n E 2 = %. 2 f    <%. 2 f V   \n ” , E _2 _m , E _2 _a

) ;

41

42   printf ( ”   \n e : V ol ta ge r e g u l a t i o n a t 0 . 8 l e a d i n g PF: \ n VR = %. 2 f p er c en t ” , VR ) ;

Scilab code Exa 14.17  Ze1 Re1 Xe1 Ze2 Re2 Xe2their drops VR

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS

7   / / E xa mp le 1 4−178

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   kVA = 20 ;   // kVA r a t i n g o f t he s te p −down

t r a n s f o r m e r13   S = 20000 ;   // power r a t i n g o f t he s te p−down

t r a n s f o r m e r i n VA

14   V _1 = 2300 ;   // Pr imary v o l t a g e i n v o l t15   V_2 = 230 ;   // S ec on da ry v o l t a g e i n v o l t16

17   // w . r . t HV s i d e f o l l o w i n g i s SC−t e s t d at a18   P 1 = 250 ;   // w at tm et er r e a di n g i n W

347

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 349/412

19   I 1 = 8.7 ;   // I n pu t c u r r e n t i n A

20   V1 = 50 ;   // I np u t v o l t a ge i n V21

22   / / C a l c u l a t i o n s23   a l p h a = V _ 1 / V _ 2 ;   // T ra n sf o rm a ti o n r a t i o24   / / c as e a25   Z_e1 = V1 / I1 ;   / / E q u i v a l e n t i m pe d an c e w . r . t HV

s i d e i n ohm26

27   R_e1 = P1 / ( I1 )^2 ;   // E q ui v a le n t r e s i s t a n c e w . r . tHV s i d e i n ohm

28

29   t he ta = a co sd ( R _ e1 / Z _ e1 ) ;   // PF a n gl e i n d e gr e e s30

31   X _ e1 = Z _ e1 * s i n d ( t h e ta ) ;   / / E q ui v a le n t r e a c t a nc e w . r. t HV s i d e i n ohm

32

33   / / c as e b34   Z_ e2 = Z_ e1 / ( al ph a) ^2 ;   / / E q u i v a le n t i mp ed an ce w .

r . t LV s i d e i n ohm35

36   R_ e2 = R_ e1 / ( al ph a) ^2 ;   // E qu i v al en t r e s i s t a n c e w

. r . t LV s i d e i n ohm37

38   X _ e2 = Z _ e2 * s i n d ( t h e ta ) ;   / / E q ui v a le n t r e a c t a nc e w . r. t LV s i d e i n ohm

39

40   / / c as e c41   I_2 = S / V_2 ;   // Rated s ec on da ry l oa d c u r r e nt i n A42

43   R _e 2_ dr op = I_2 * R _e 2 ;   // F u ll −l oa d e q u i v a l e n tr e s i s t a n c e v o l t a g e dro p i n v o l t

44   X _e 2_ dr op = I_2 * X _e 2 ;   // F u ll −l oa d e q u i v a l e n t

r e a c t a nc e v o l t a ge dr op i n v o l t45

46   / / At u n i t y PF47   c o s _ th e ta 2 = 1 ;

48   s i n _ t he t a 2 =   sqrt ( 1 - ( c o s _t h et a 2 ) ^2 ) ;

348

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 350/412

49

50   / / I n du ce d v o l t a g e when t he t r a n s fo r m e r i sd e l i v e r i n g r at ed c u r r e n t t o u ni ty PF l o ad51   E _2 = ( V _2 * c os _t he ta 2 + I _2 * R _e 2 ) + %i * ( V_ 2 *

s i n_ t he t a2 + I _2 * X _ e2 ) ;

52   E _ 2_ m =   abs ( E _ 2 ) ; // E 2 m=m ag ni tu de o f E 2 i n v o l t53   E _ 2_ a =   atan ( imag ( E _2 ) / real ( E _ 2 ) ) * 1 8 0 / % p i ; // E 2 a=

p h a se a n g l e o f E 2 i n d e g r e e s54

55   VR _un ity _PF = ( ( E_2_m - V_2 ) / V_2 ) * 100 ;   //T ra ns fo rm er v o l t a g e r e g u l a t i o n

56

57   / / c as e d58   / / a t 0 . 7 l a g gi n g PF59   c os _t he ta _2 = 0 .7 ;   // l a g g i n g PF60   s i n _ t h et a _ 2 =   sqrt ( 1 - ( c o s _t h et a _2 ) ^ 2 ) ;

61

62   / / I n du ce d v o l t a g e when t he t r a n s fo r m e r i sd e l i v e r i n g r at ed c u r r e n t t o u ni ty PF l o ad

63   E 2 = ( V _2 * c os _t he ta _2 + I _2 * R _e 2 ) + %i * ( V_ 2*

s i n _t h e t a_ 2 + I _2 * X _ e 2 ) ;

64   E 2 _m =   abs ( E 2 ) ; / /E2 m=m a gn it ud e o f E2 i n v o l t65   E 2 _a =   atan ( imag ( E 2 ) / real ( E 2 ) ) * 1 8 0 / % p i ;

//E 2 a= phasea ng l e o f E2 i n d e g r ee s66

67   VR _l ag _P F = ( ( E2_m - V_2 ) / V_2 ) * 100 ;   //T ra ns fo rm er v o l t a g e r e g u l a t i o n

68

69   // D is pl ay t h e r e s u l t s70   disp ( ”E x ampl e 14−17 S o l u t i o n : ” ) ;

71

72   printf ( ”   \n a : E q u i v al e n t i mp ed an ce w . r . t HV s i d e : \n Z e 1 = %. 2 f     \n” , Z _ e 1 ) ;

73   printf ( ”   \n E qu iv al en t r e s i s t a n c e w . r . t HV s i d e: \ n R e1 = %. 1 f     \n” , R _ e 1 ) ;

74   printf ( ”   \n = %. f d e g r e e s   \n” , t he ta ) ;

75   printf ( ”   \n E qu iv al en t r e a c ta n ce w . r . t HV s i d e : \n X e1 = %. 2 f    \n” , X _ e 1 ) ;

349

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 351/412

76

77   printf ( ”   \n b : E q u i v al e n t i mp ed an ce w . r . t LV s i d e : ”) ;

78   printf ( ”   \n Z e 2 = %f = %. 2 f m   \n” , Z _e 2 ,

Z _ e 2 * 1 0 0 0 ) ;

79   printf ( ”   \n E qu iv al en t r e s i s t a n c e w . r . t LV s i d e: \ n R e2 = %f     \n” , R _ e 2 ) ;

80   printf ( ”   \n R e2 = %f = %. 2 f m   \n” , R _ e 2 , R _ e 2

* 1 0 0 0 ) ;

81   printf ( ”   \n E qu iv al en t r e a c t an c e w . r . t LV s i d e : \n X e2 = %f     \n” , X _ e 2 ) ;

82   printf ( ”   \n X e2 = %f = %. 2 f m   \n” , X _ e 2 , X _ e 2

* 1 0 0 0 ) ;83

84   printf ( ”   \n c : Rated s ec on da ry l oa d c u r re n t : \ nI 2 = %. f A\n” , I _ 2 ) ;

85   printf ( ”   \n I 2 ∗ R c 2 = %. 2 f V   \n” , R _e 2_ dr op ) ;

86   printf ( ”   \n I 2 ∗ X c 2 = %. 2 f V   \n” , X _e 2_ dr op ) ;

87   printf ( ”   \n At u n i t y PF , \ n E 2 i n v o l t = ” ) ;

disp ( E _ 2 ) ;

88   printf ( ”   \n E 2 = %. 2 f    <%. 2 f V   \n ” , E _2 _m , E _2 _a

) ;

89   printf (”   \n V o l t a g e r e g u l a t i o n a t un i t y PF : \ nVR = %. 2 f p e r c e n t ” , V R _ u n it y _ PF ) ;

90

91   printf ( ”   \n\n d : At 0 . 7 l a g g i n g PF ,   \n E 2 i nv o l t = ” ) ; disp ( E 2 ) ;

92   printf ( ”   \n E 2 = %. 2 f    <%. 2 f V   \n ” , E2 _m , E 2_ a );

93   printf ( ”   \n V o l t a g e r e g u l a t i o n a t 0 .7 l a gg i n g PF: \ n VR = %. 2 f p er c en t ” , V R _ l ag _ P F ) ;

Scilab code Exa 14.18   Pcsc

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

350

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 352/412

3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−188

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   V_sc = 50 ;   // S h o r t c i r c u i t v o l t a g e i n v o l t13   V _1 = 2300 ;   // Rated p ri ma ry v o l t a g e i n v o l t

1415   / / C a l c u l a t i o n s16   P _c =   poly (0 , ’ P c ’ ) ; // Making P c a s a v a r i a b l e j u s t

f o r d i s p l a y i n g a n sw e r a s p e r17   / / t e xt b o o k18

19   P _c _s c = ( V_ sc / V_1 ) ^2 * P_c ;   // F r a c t i o n o f P cm ea su re d by t h e w a tt m et e r

20

21   // D is pl ay t h e r e s u l t s22   disp (

”E x ampl e 14−18 S o l u t i o n : ”) ;

23

24   printf ( ”   \n S in ce P c i s p r o p o r t i o na l t o t h e s qu ar eo f t he p ri ma ry v o l t a g e V sc , ” ) ;

25   printf ( ”   \n t he n und er s h o rt c i r c u i t c o nd i t io n s , t hef r a c t i o n o f r a te d −c o r e l o s s i s : ” ) ;

26   printf ( ”   \n P c ( s c ) = ” ) ; disp ( P _ c _ s c ) ;

Scilab code Exa 14.19  Ze1drop Re1drop Xe1drop VR

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

351

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 353/412

4   / / 2 nd e d i t i om

56   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−198

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12

13   kVA = 20 ;   // kVA r a t i n g o f t he s te p −downt r a n s f o r m e r

14   S = 20000 ;   // power r a t i n g o f t he s te p−downt r a n s f o r m e r i n VA

15   V _1 = 2300 ;   // Pr imary v o l t a g e i n v o l t16   V_2 = 230 ;   // S ec on da ry v o l t a g e i n v o l t17   Z _e1 = 5. 75 ;   / / E q u i v a l e n t i mp ed an ce w . r . t HV s i d e

i n ohm18   R_e1 = 3.3 ;   // E q ui v a le n t r e s i s t a n c e w . r . t HV s i d e

i n ohm19   X _e1 = 4. 71 ;   // E q u i v al e n t r e a c t a n c e w . r . t HV s i d e

i n ohm20

21   // w . r . t HV s i d e f o l l o w i n g i s SC−t e s t d at a22   P 1 = 250 ;   // w at tm et er r e a di n g i n W23   I 1 = 8.7 ;   // I n pu t c u r r e n t i n A24   V1 = 50 ;   // I np u t v o l t a ge i n V25

26   / / C a l c u l a t i o n s27   / / c as e a28   Z _ e1 _d ro p = V 1 ;   // Hi gh v o l t a g e i mp ed an ce d ro p i n

v o l t29

30   / / c as e b31   t he ta = a co sd ( R _ e1 / Z _ e1 ) ;   // PF a n gl e i n d e gr e e s32

33   R _ e1 _ dr o p = I 1 * Z_ e1 * c o sd ( t h et a ) ;   //HV−s i d ee q u i v a l e n t r e s i s t a n c e v o l t a ge dr op i n v o l t

352

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 354/412

34

35   / / c as e c36   X _ e1 _ dr o p = I 1 * Z_ e1 * s i nd ( t h et a ) ;   //HV−s i d ee q u i v a l e n t r e a c ta n ce v o l t a ge dro p i n v o l t

37

38   / / c as e d39   / / At u n i t y PF40   c o s _ th e ta 1 = 1 ;

41   s i n _ t he t a 1 =   sqrt ( 1 - ( c o s _t h et a 1 ) ^2 ) ;

42

43   / / I n du ce d v o l t a g e when t he t r a n s fo r m e r i sd e l i v e r i n g r at ed c u r r e n t t o u ni ty PF l o ad

44   E _1 = ( V _1 * c os _t he ta 1 + I1 * R _e 1 ) + %i * ( V_ 1 *s i n_ t he t a1 + I 1 * X_ e1 ) ;

45   E _ 1_ m =   abs ( E _ 1 ) ; // E 1 m=m ag ni tu de o f E 1 i n v o l t46   E _ 1_ a =   atan ( imag ( E _1 ) / real ( E _ 1 ) ) * 1 8 0 / % p i ; // E 1 a=

p h a se a n g l e o f E 1 i n d e g r e e s47

48   VR _un ity _PF = ( ( E_1_m - V_1 ) / V_1 ) * 100 ;   //T ra ns fo rm er v o l t a g e r e g u l a t i o n

49

50   / / c as e e51

  / / a t 0 . 7 l a g gi n g PF52   c os _t he ta _1 = 0 .7 ;   // l a g g i n g PF53   s i n _ t h et a _ 1 =   sqrt ( 1 - ( c o s _t h et a _1 ) ^ 2 ) ;

54

55   / / I n du ce d v o l t a g e when t he t r a n s fo r m e r i sd e l i v e r i n g r at ed c u r r e n t t o u ni ty PF l o ad

56   E 1 = ( V _1 * c os _t he ta _1 + I 1* R _e 1 ) + %i * ( V_ 1 *

s i n_ t he t a_ 1 + I 1 * X_ e1 ) ;

57   E 1 _m =   abs ( E 1 ) ; / /E1 m=m a gn it ud e o f E1 i n v o l t58   E 1 _a =   atan ( imag ( E 1 ) / real ( E 1 ) ) * 1 8 0 / % p i ; //E 1 a= phase

a ng l e o f E1 i n d e g r ee s

5960   VR _l ag _P F = ( ( E1_m - V_1 ) / V_1 ) * 100 ;   //

T ra ns fo rm er v o l t a g e r e g u l a t i o n61

62   // D is pl ay t h e r e s u l t s

353

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 355/412

63   disp ( ”E x ampl e 14−19 S o l u t i o n : ” ) ;

6465   printf ( ”   \n a : High v o l t a g e i mp ed an ce d ro p : \ n

I 1 ∗ Z e 1 = V 1 = %d\n” , Z _ e 1 _ d r o p ) ;

66

67   printf ( ”   \n b : = %. f d e g r e e s   \n” , t he ta ) ;

68   printf ( ”   \n High v ol ta ge r e s i s t a n c e dr op : \ nI 1 ∗ R e 1 = %. 2 f    \n” , R _ e 1 _ d r o p ) ;

69

70   printf ( ”   \n c : High v o l t a g e r e a ct a n ce drop : \ nI 1 ∗ X e 1 = %. 2 f    \n” , X _ e 1 _ d r o p ) ;

71

72   printf ( ”   \n d : At u n i t y PF , \ n E 2 i n v o l t = ” ) ;disp ( E _ 1 ) ;

73   printf ( ”   \n E 2 = %. 2 f    <%. 2 f V   \n ” , E _1 _m , E _1 _a

) ;

74   printf ( ”   \n V o l t a g e r e g u l a t i o n a t un i t y PF : \ nVR = %. 2 f p e r c e n t ” , V R _ u n it y _ PF ) ;

75

76   printf ( ”   \n\n e : At 0 . 7 l a g g i n g PF ,   \n E 2 i nv o l t = ” ) ; disp ( E 1 ) ;

77   printf ( ”   \n E 2 = %. 2 f    <%. 2 f V   \n ” , E1 _m , E 1_ a );

78   printf (”   \n V o l t a g e r e g u l a t i o n a t 0 .7 l a gg i n g PF: \ n VR = %. 2 f p er c en t ” , V R _ l ag _ P F ) ;

Scilab code Exa 14.20  Re1 Re1 r2 its drop Pc

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−208

354

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 356/412

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   kVA = 500 ;   // kVA r a t i n g o f t he s te p −down

t r a n s f o r m e r13   V _1 = 2300 ;   // Pr imary v o l t a g e i n v o l t14   V_2 = 208 ;   // S ec on da ry v o l t a g e i n v o l t15   f = 6 0 ;   // F re qu en cy i n Hz16

17   / / SC−t e s t d at a18   P _sc = 82 00 ;   // w at tm et er r e a di n g i n W

19   I_ sc = 2 17. 4 ;   // S h o rt c i r c u i t c ur r e nt i n A20   V_sc = 95 ;   // S h o r t c i r c u i t v o l t a g e i n V21

22   // OC−t e s t d at a23   P _oc = 18 00 ;   // w at tm et er r e a di n g i n W24   I_oc = 85 ;   // Open c i r c u i t c u r r e n t i n A25   V_oc = 208 ;   // Open c i r c u i t v o l t a ge i n V26

27   / / C a l c u l a t i o n s28   a l p h a = V _ 1 / V _ 2 ;   // T ra n sf o rm a ti o n r a t i o29

  / / c as e a30   P = P_sc ;   // w at tm et er r e a di n g i n W31   I 1 = I_sc ;   // S h o r t c i r c u i t c ur r e nt i n A32   R_e1 = P / ( I1 )^2 ;   // E q ui v a le n t r e s i s t a n c e w . r . t

HV s i d e i n ohm33   R _e 2 = R _e 1 / ( a lp ha ) ^2   // E qu i va l en t r e s i s t a n c e

r e f e r r e d t o LV s i d e i n ohm34

35   / / c as e b36   r_2 = R_e2 / 2 ;   // R e s is t a nc e o f low−v o l t a ge s i d e

i n ohm

3738   / / c as e c39   I _m = I_oc ;   // Open c i r c u i t c u r r e n t i n A40   P_ cu = ( I_m ) ^2 * r_2 ;   // T ra ns fo rm er c op pe r l o s s o f  

t h e LV s i d e wdg d u r i n g OC−t e s t i n W

355

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 357/412

41

42   / / c as e d43   P _c = P_oc - P_cu ;   // T ra ns fo rm er c o re l o s s i n W44

45   // D is pl ay t h e r e s u l t s46   disp ( ”E x ampl e 14−20 S o l u t i o n : ” ) ;

47

48   printf ( ”   \n a : E q ui v al e n t r e s i s t a n c e w . r . t HV s i d e: \ n R e1 = %. 4 f     \n” , R _ e 1 ) ;

49   printf ( ”   \n E qu iv al en t r e s i s t a n c e w . r . t LV s i d e: \ n R e2 = %f = %. 3 f m   \n” , R _ e 2 , R _ e 2

* 1 0 0 0 ) ;

5051   printf ( ”   \n b : R e s i st a n c e o f LV s i d e : \ n r 2 = %f  

= %. 2 f m   \n” , r _ 2 , r _ 2 * 1 0 0 0 ) ;

52

53   printf ( ”   \n c : T ra ns fo rm er c op pe r l o s s o f t he LVs i d e wdg d u r i n g OC−t e s t : ” ) ;

54   printf ( ”   \n ( I m ) ˆ2   ∗   r 2 = %f W   \n” , P _ c u ) ;

55

56   printf ( ”   \n d : T ra ns fo rm er c or e l o s s : \ n P c = %f  W   \n ” , P _ c ) ;

57

58   printf ( ”   \n e : Yes . The e r r o r i s a p p r ox i m a te l y 5 /%d =0 . 2 7 8 p e r c e n t , w hi ch i s ” , P _ o c ) ;

59   printf ( ”   \n w i t h i n th e e r r o r pr o d u c e d by t h ei n s tr u m en t s u se d i n t he t e s t . ” ) ;

60   printf ( ”   \n We may assume t ha t t h e c or e l o s s i s%d W. ” , P _ o c ) ;

Scilab code Exa 14.21   tabulate I2 efficiencies

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a

356

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 358/412

4   / / 2 nd e d i t i om

56   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−218

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G i ve n d a t a ( f r om Ex . 1 4 −1 8)12   V_sc = 50 ;   // S h o r t c i r c u i t v o l t a g e i n v o l t13   V _1 = 2300 ;   // Rated p ri ma ry v o l t a g e i n v o l t14

1516   // P r el i mi n ar y d at a b e f o re t a b u l at i n g17

18   / / f ro m e x . 14 −2019   P_c = 1.8 ;   // c o r e l o s s e s i n kW20   P_k = 1.8 ;   // f i x e d l o s s e s i n kW21   P _c u_ ra te d = 8 .2 ;   // Rated c op pe r l o s s i n kW22

23   / / g iv en r a t i n g24   kVA = 500 ;   // Power r a t i n g i n kVA25   PF = 1 ;

  // power f a c t o r26   P_o = kVA * PF ;   // f u l l −l o ad o ut pu t a t u n it y PF i nkW

27

28   / / C a l c u l a t i o n s29   / / c as e a30   LF1 = 1/4 ;   // Load f r a c t i o n31   LF2 = 1/2 ;   // Load f r a c t i o n32   LF3 = 3/4 ;   // Load f r a c t i o n33   LF4 = 5/4 ;   // Load f r a c t i o n34   P _c u_ fl = 8. 2 ;   // E qu i v al en t c op pe r l o s s a t f u l l −

l oa d s l i p35   P _c u_ LF 1 = ( L F1 ) ^2 * P _c u_ fl ;   // E q u i v a le n t c o pp e r

l o s s a t 1 /4 r at ed l oa d36   P _c u_ LF 2 = ( L F2 ) ^2 * P _c u_ fl ;   // E q u i v a le n t c o pp e r

l o s s a t 1 /2 r at ed l oa d

357

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 359/412

37   P _c u_ LF 3 = ( L F3 ) ^2 * P _c u_ fl ;   // E q u i v a le n t c o pp e r

l o s s a t 3 /4 r at ed l oa d38   P _c u_ LF 4 = ( L F4 ) ^2 * P _c u_ fl ;   // E q u i v a le n t c o pp e rl o s s a t 5 /4 r at ed l oa d

39

40   P _L _1 = P _c + P _c u_ LF 1 ;   // T o ta l l o s s e s i n kW at1/4 r a te d l oa d

41   P _L _2 = P _c + P _c u_ LF 2 ;   // T o ta l l o s s e s i n kW at1/2 r a te d l oa d

42   P _L _3 = P _c + P _c u_ LF 3 ;   // T o ta l l o s s e s i n kW at3/4 r a te d l oa d

43   P _L _f l = P_c + P _c u_ fl ;   // T o ta l l o s s e s i n kW at

r a t ed l o ad44   P _L _4 = P _c + P _c u_ LF 4 ;   // T o ta l l o s s e s i n kW at

5/4 r a te d l oa d45

46   P _o _1 = P _o * LF 1 ;   // T ot al o ut pu t i n kW a t 1 /4 r a t edl o a d

47   P _o _2 = P _o * LF 2 ;   // T ot al o ut pu t i n kW a t 1 /2 r a t edl o a d

48   P _o _3 = P _o * LF 3 ;   // T ot al o ut pu t i n kW a t 3 /4 r a t edl o a d

49   P _o _f l = P_o ;  // T ot al o ut pu t i n kW at r a t ed l o ad50   P _o _4 = P _o * LF 4 ;   // T ot al o ut pu t i n kW a t 5 /4 r a t ed

l o a d51

52   P _i n_ 1 = P _L _1 + P _o _1 ;   // T ot al i n pu t i n kW a t 1/ 4r a te d l oa d

53   P _i n_ 2 = P _L _2 + P _o _2 ;   // T ot al i n pu t i n kW a t 1/ 2r a te d l oa d

54   P _i n_ 3 = P _L _3 + P _o _3 ;   // T ot al i n pu t i n kW a t 3/ 4r a te d l oa d

55   P _i n_ fl = P _L _f l + P _o _f l ;   // T ot al i n pu t i n kW a t

r a t ed l o ad56   P _i n_ 4 = P _L _4 + P _o _4 ;   // T ot al i n pu t i n kW a t 5/ 4

r a te d l oa d57

58   e ta _1 = ( P _ o_ 1 / P _i n _1 ) * 1 00 ;   // E f f i c i e n c y a t 1/4

358

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 360/412

r a t ed l o ad

59   e ta _2 = ( P _ o_ 2 / P _i n _2 ) * 1 00 ;   // E f f i c i e n c y a t 1/2r a t ed l o ad60   e ta _3 = ( P _ o_ 3 / P _i n _3 ) * 1 00 ;   // E f f i c i e n c y a t 3/4

r a t ed l o ad61   e ta _ fl = ( P _ o_ fl / P _ i n_ f l ) *1 00 ;   // E f f i c i e n c y a t

r a t ed l o ad62   e ta _4 = ( P _ o_ 4 / P _i n _4 ) * 1 00 ;   // E f f i c i e n c y a t 5/4

r a t ed l o ad63

64

65   / / c as e b

66   PF_b = 0.8 ;   // 0 . 8 PF l a g g i ng67   P o_ 1 = P _o * L F1 * P F_ b ;   // T ot al o ut pu t i n kW a t 1/ 4

r a t ed l o ad68   P o_ 2 = P _o * L F2 * P F_ b ;   // T ot al o ut pu t i n kW a t 1/ 2

r a t ed l o ad69   P o_ 3 = P _o * L F3 * P F_ b ;   // T ot al o ut pu t i n kW a t 3/ 4

r a t ed l o ad70   P o_ fl = P _o * P F_ b ;   // T ot al o ut pu t i n kW a t r a t ed

l o a d71   P o_ 4 = P _o * L F4 * P F_ b ;   // T ot al o ut pu t i n kW a t 5/ 4

r a t ed l o ad72

73   P in _1 = P _L _1 + P o_ 1 ;   // T ot al i n pu t i n kW a t 1/ 4r a t ed l o ad

74   P in _2 = P _L _2 + P o_ 2 ;   // T ot al i n pu t i n kW a t 1/ 2r a t ed l o ad

75   P in _3 = P _L _3 + P o_ 3 ;   // T ot al i n pu t i n kW a t 3/ 4r a t ed l o ad

76   P in _f l = P _L _f l + P o_ fl ;   // T ot al i n pu t i n kW a tr a t ed l o ad

77   P in _4 = P _L _4 + P o_ 4 ;   // T ot al i n pu t i n kW a t 5/ 4

r a t ed l o ad78

79   e t a1 = ( P o_ 1 / P in _1 ) * 1 00 ;   // E f f i c i e n c y a t 1 /4 r at edl o a d

80   e t a2 = ( P o_ 2 / P in _2 ) * 1 00 ;   // E f f i c i e n c y a t 1 /2 r at ed

359

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 361/412

l o a d

81   e t a3 = ( P o_ 3 / P in _3 ) * 1 00 ;   // E f f i c i e n c y a t 3 /4 r at edl o a d82   e ta fl = ( P o _f l / P in _ fl ) * 1 00 ;   // E f f i c i e n c y a t r at ed

l o a d83   e t a4 = ( P o_ 4 / P in _4 ) * 1 00 ;   // E f f i c i e n c y a t 5 /4 r at ed

l o a d84

85   / / c as e c86   R _e 2 = 1 .4 17 e -3 ;   // E q u i va l en t r e s i s t a n c e i n ohm

r e f e r r e d t o LV s i d e87   P c = 1800 ;   // Core l o s s e s i n W

88   I _2 =   sqrt ( P c / R _ e 2 ) ;   // Load c u r r e nt i n A f o r max .e f f i c i e n c y i n v a r i a n t o f LF

89

90   / / c as e d91   V = 208 ;   // V ol ta ge r a t i n g i n v o l t92   I _2 _r at ed = ( k VA * 1 00 0) / V ;   // R at ed s e c o n d a r y

c u r r e n t i n A93   L F _m ax = I _2 / I _2 _r at ed ;   // Load f r a c t i o n f o r max .

e f f i c i e n c y94

95  / / c as e e96   / / s u b s c r i p t e f o r e t a max i n d i c a t e s c as e e

97   c o s _t h et a = 1 ;

98   V_2 = V ;   // s ec on da ry v o l t a ge i n v o l t99   P c = 1800 ;   // c or e l o s s i n W

100   // max . e f f i c i e n c y f o r u n it y PF101   e t a_ m ax _ e = ( V _2 * I _2 * c o s _t h et a ) / ( ( V_ 2 * I_ 2 *

c os _t he ta ) + ( Pc + I _2 ^ 2* R _e 2 )) * 1 00

102

103   / / c as e f  104   / / s u b s c r i p t f f o r e t a max i n d i c a t e s c as e e

105   c o s_ t he t a2 = 0 .8 ;106   // max . e f f i c i e n c y f o r 0 . 8 l a g g i n g PF107   e t a_ m ax _ f = ( V _2 * I _2 * c o s _t h et a 2 ) / ( ( V_ 2 * I_ 2 *

c os _t he ta 2 ) + ( Pc + I _2 ^ 2* R _e 2 )) * 1 00

108

360

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 362/412

109   // D is pl ay t h e r e s u l t s

110   disp ( ”E x ampl e 14−21 S o l u t i o n : ” ) ;111

112   printf ( ”   \n a : T ab ul at io n a t u n it y PF : ” ) ;

113   printf ( ”   \n

” ) ;

114   printf ( ”   \n L . F   \ t Core l o s s   \ t Copper l o s s   \t To t a l l o s s   \ t T o t a l Out pu t   \ t T ot al I np ut   \ tE f f i c i e n c y ” ) ;

115   printf ( ”   \n   \ t (kW)   \ t (kW)   \ tP L (kW)   \ t P o (kW)   \ t P L+P o (kW) \ t P o /

P i n ( p e r c e n t ) ” ) ;116   printf ( ”   \n

” ) ;

117   printf ( ”   \n %. 2 f     \ t %. 1 f    \ t \ t %. 3 f     \ t%.3 f    \ t \ t %. 1 f    \ t %. 2 f    \ t %. 2 f ” , L F 1 , P _ c ,

P _ c u_ L F 1 , P _L _ 1 , P _ o_ 1 , P _ i n _1 , e t a _ 1 ) ;

118   printf ( ”   \n %. 2 f     \ t %. 1 f    \ t \ t %. 3 f     \ t%.3 f    \ t \ t %. 1 f    \ t %. 2 f    \ t %. 2 f ” , L F 2 , P _ c ,

P _ c u_ L F 2 , P _L _ 2 , P _ o_ 2 , P _ i n _2 , e t a _ 2 ) ;

119   printf (”   \n %. 2 f     \ t %. 1 f    \ t \ t %. 3 f     \ t%.3 f    \ t \ t %. 1 f    \ t %. 2 f    \ t %. 2 f ” , L F 3 , P _ c ,

P _ c u_ L F 3 , P _L _ 3 , P _ o_ 3 , P _ i n _3 , e t a _ 3 ) ;

120   printf ( ”   \n 1   \ t \ t %. 1 f    \ t \ t %. 3 f     \ t %. 3 f    \ t %. 1 f    \ t %. 2 f    \ t %. 2 f ” ,P_c, P_cu_fl ,

P _ L_ f l , P _ o _ fl , P _ i n _ fl , e t a _ f l ) ;

121   printf ( ”   \n %. 2 f     \ t %. 1 f    \ t \ t %. 3 f     \ t %. 3 f  \ t %. 1 f    \ t %. 2 f    \ t %. 2 f ” ,LF4, P_c, P_cu_LF4 ,

P _ L _ 4 , P _ o _ 4 , P _ i n _ 4 , e t a _ 4 ) ;

122   printf ( ”   \n

\n\n” ) ;123

124   printf ( ”   \n b : T ab ul at io n a t 0 . 8 PF l a g g i n g : ” ) ;

125   printf ( ”   \n

361

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 363/412

” ) ;

126   printf ( ”   \n L . F   \ t Core l o s s   \ t Copper l o s s   \t To t a l l o s s   \ t T o t a l Out pu t   \ t T ot al I np ut   \ tE f f i c i e n c y ” ) ;

127   printf ( ”   \n   \ t (kW)   \ t (kW)   \ tP L (kW)   \ t P o (kW)   \ t P L+P o (kW) \ t P o /P i n ( p e r c e n t ) ” ) ;

128   printf ( ”   \n

” ) ;

129   printf ( ”   \n %. 2 f     \ t %. 1 f    \ t \ t %. 3 f     \ t%.3 f    \ t \ t %. 1 f    \ t %. 2 f    \ t %. 2 f ” , L F 1 , P _ c ,

P _ c u_ L F 1 , P _ L_ 1 , P o _ 1 , P i n _ 1 , e t a 1 ) ;130   printf ( ”   \n %. 2 f     \ t %. 1 f    \ t \ t %. 3 f     \ t

%.3 f    \ t \ t %. 1 f    \ t %. 2 f    \ t %. 2 f ” , L F 2 , P _ c ,

P _ c u_ L F 2 , P _ L_ 2 , P o _ 2 , P i n _ 2 , e t a 2 ) ;

131   printf ( ”   \n %. 2 f     \ t %. 1 f    \ t \ t %. 3 f     \ t%.3 f    \ t \ t %. 1 f    \ t %. 2 f    \ t %. 2 f ” , L F 3 , P _ c ,

P _ c u_ L F 3 , P _ L_ 3 , P o _ 3 , P i n _ 3 , e t a 3 ) ;

132   printf ( ”   \n 1   \ t \ t %. 1 f    \ t \ t %. 3 f     \ t %. 3 f    \ t %. 1 f    \ t %. 2 f    \ t %. 2 f ” ,P_c, P_cu_fl ,

P _ L _ f l , P o _ f l , P i n _ f l , e t a f l ) ;

133   printf (”   \n %. 2 f     \ t %. 1 f    \ t \ t %. 3 f     \ t %. 3 f  \ t %. 1 f    \ t %. 2 f    \ t %. 2 f ” ,LF4, P_c, P_cu_LF4 ,

P _ L _ 4 , P o _ 4 , P i n _ 4 , e t a 4 ) ;

134   printf ( ”   \n

\n\n” ) ;

135

136   printf ( ”   \n c : Load c u r r e nt a t wh ich max . e f f i c i e n c yo c c ur s : \ n I 2 = %. 1 f A   \n” , I _ 2 ) ;

137

138   printf ( ”   \n d : Rated l oa d c u r re n t : \ n I 2 ( r a t e d )

= %. 1 f A   \n” , I _ 2 _ r a t e d ) ;139   printf ( ”   \n Load f r a c t i o n f o r m a x = %. 3 f (

h a l f r a t e d l o a d ) \n ” , L F _ m a x ) ;

140

141   printf ( ”   \n e : Max . e f f i c i e n c y f o r u n it y PF : \ n

362

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 364/412

m a x = %. 2 f p e r c e n t   \n” , e t a _ m a x _ e ) ;

142143   printf ( ”   \n f : Max . e f f i c i e n c y f o r 0 . 8 l a g g i n g PF : \ n

m a x = %. 2 f p e r c e n t ” , e t a _ m a x _ f ) ;

Scilab code Exa 14.22  Zeqpu V1pu VR

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−228

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   V _1 = 2300 ;   // Pr imary v o l t a g e i n v o l t

13   V_2 = 230 ;   // S ec on da ry v o l t a g e i n v o l t14   P = 2 0 ;   // Power r a t i n g o f t he t r a n s fo r m e r i n kVA15   // S h o rt c i r c u i t t e s t d a t a16   P_sc = 250 ;   / / Power m ea su re d i n W17   V_sc = 50 ;   // S h o r t c i r c u i t v o l t a g e i n v o l t18   I_sc = 8.7 ;   // S h o r t c i r c u i t c ur r e nt i n A19

20   / / C a l c u l a t i o n s21   / / c as e a22   V_1b = V_1 ;   // b a se v o l t a ge i n v o l t

23   Z _e q_ pu = V_ sc / V_1 ;24

25   funcprot ( 0) ;   // Use t h i s t o a vo id t he me ss ag e ”Warning : r e d e f i n i n g f u n c t i o n : b et a ”

.

363

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 365/412

26   b e t a = a c os d ( P _ s c / ( V _ sc * I _ s c ) ) ;   // a ng l e i n d e g r e e s

2728   Z e q _p u = Z _e q _p u * exp ( % i * ( b e t a ) * ( % p i / 1 8 0 ) ) ;

29   Z e q _ pu _ m =   abs ( Z e q _ p u ) ; / / Z e q pu m=m a g n i t ud e o f  Z eq p u i n p . u

30   Z e q _ pu _ a =   atan ( imag ( Z e q_ pu ) / real ( Z e q _ p u ) ) * 1 8 0 / % p i ;

// Z eq p u a=p ha se a n g le o f Ze q p u i n d e g r e es31

32   / / c as e b33   / / a t u ni t y PF34   V _ 1_ pu = 1* exp ( % i *( 0) * ( % pi / 1 80 ) ) + 1 *exp ( % i * ( 0 ) * ( % p i

/ 1 8 0 ) ) * Z _ e q _ p u * exp ( % i * ( b e t a ) * ( % p i / 1 8 0 ) ) ;

35   / / RHS i s w r i t t en i n e x p o n e n t i a l co mp lex fo rm and (%pi / 18 0) i s r a d i an s t o d e g r e e s c o nv e r s i o n f a c t o r

36   V _ 1 _ pu _ m =   abs ( V _ 1 _ p u ) ; / / V 1 p u m=m a g ni t ud e o f  V 1 pu i n v o l t

37   V _ 1 _ pu _ a =   atan ( imag ( V _ 1_ pu ) / real ( V _ 1 _ p u ) ) * 1 8 0 / % p i ;

// V 1 pu a=p ha se a n gl e o f V 1 pu i n d e g re e s38

39   / / c as e c40   // a t 0 . 7 PF l a g g i n g41   t he ta = a co sd ( 0 . 7) ;   // Power f a c t o r a n gl e i n d e g re e s42   V 1_ pu = 1* exp ( % i * (0 ) * ( %p i / 18 0) ) + 1 * exp ( % i * ( - t h e t a )

* ( % p i / 1 8 0 ) ) * Z _ e q _ p u * exp ( % i * ( b e t a ) * ( % p i / 1 8 0 ) ) ;

43   V 1 _ pu _ m =   abs ( V 1 _ p u ) ; / / V1 pu m=m a g ni t ud e o f V 1 p u i nv o l t

44   V 1 _ pu _ a =   atan ( imag ( V 1 _p u ) / real ( V 1 _ p u ) ) * 1 8 0 / % p i ; //V 1 p u a=p ha se a n g l e o f V1 pu i n d e g r e es

45

46   / / c as e d47   V R_ un it y_ PF = V _1 _p u_ m - 1 ;   // v o l t a ge r e g u l a t i o n

a t u n it y PF48

49   / / c as e e50   V R_ la g_ PF = V 1_ pu _m - 1 ;   // v o l t a ge r e g u l a t i o n a t

0 . 7 l a g g i ng PF51

52   // D is pl ay t h e r e s u l t s

364

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 366/412

53   disp ( ”E x ampl e 14−22 S o l u t i o n : ” ) ;

5455   printf ( ”   \n a : Z e q ( p u ) = %. 5 f p . u   \n” , Z _ e q _ p u ) ;

56   printf ( ”   \n = %. f d e g r e e s   \n” , b e t a ) ;

57   printf ( ”   \n Z e q ( pu )   <   = ” ) ; disp ( Z e q _ p u ) ;

58   printf ( ”   \n Z e q ( pu )   <   = %. 5 f    <%. f p . u   \n ” ,

Zeq_pu_m ,Ze q_pu_a );

59

60   printf ( ”   \n b :   | V 1 ( p u ) |   = ” ) ; disp ( V _ 1 _ p u ) ;

61   printf ( ”   \n   | V 1 ( p u ) |   = %. 4 f    <%. 2 f V   \n ” ,

V _ 1_ p u_ m , V _ 1_ p u_ a ) ;

62

63   printf ( ”   \n c :   | V 1 ( p u ) |   = ” ) ; disp ( V 1 _ p u ) ;64   printf ( ”   \n   | V 1 ( p u ) |   = %. 4 f    <%. 2 f V   \n ” , V 1 _ p u _ m

, V 1_ pu _a ) ;

65

66   printf ( ”   \n d : V ol ta ge r e g u l a t i o n a t u ni ty PF : \ nVR = %f ” , V R _ u n i t y _ P F ) ;

67   printf ( ”   \n VR = %. 3 f p er ce nt   \n ” ,100*

V R _ u n i t y _ P F ) ;

68

69   printf ( ”   \n e : V ol ta ge r e g u l a t i o n a t 0 . 7 l a g g i n g PF

: \ n VR = %f ”, V R _ l a g _ P F ) ;

70   printf ( ”   \n VR = %. 2 f p er ce nt   \n ” , 1 0 0 * V R _ l a g _ P F )

;

71

72   printf ( ”   \n f : VRs a s f o un d by p . u metho d a r ee s s e n t i a l l y t h e s ame a s t ho se f o u n d ” ) ;

73   printf ( ”   \n i n Exs .14 −1 7 and 14−19 u s i ng t he sameda ta , f o r t he same t r an s fo r me r , ” ) ;

74   printf ( ”   \n but w i t h much l e s s e f f o r t . ” ) ;

Scilab code Exa 14.23   Pcu LF efficiencies

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

365

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 367/412

2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−238

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   V _1 = 2300 ;   // Pr imary v o l t a g e i n v o l t

13   V_2 = 230 ;   // S ec on da ry v o l t a g e i n v o l t14   S = 500 ;   // Power r a t i n g o f t he t r a n s fo r m e r i n kVA15   f = 6 0 ;   // F re qu en cy i n Hz16

17   / / Open c i r c u i t t e s t d a t a18   V_oc = 208 ;   // Open c i r c u i t v o l t a ge i n v o l t19   I_oc = 85 ;   // Open c i r c u i t c u r r e n t i n A20   P _oc = 18 00 ;   / / Power m ea su re d i n W21

22   // S h o rt c i r c u i t t e s t d a t a23   V_sc = 95 ;

  // S h o r t c i r c u i t v o l t a g e i n v o l t24   I_ sc = 2 17. 4 ;   // S h o rt c i r c u i t c ur r e nt i n A25   P _sc = 82 00 ;   / / Power m ea su re d i n W26

27   / / C a l c u l a t i o n s28   / / c as e a29   S_b = S ;   // B as e v o l t a g e i n kVA30   Psc = 8.2 ;   / / P ow er m e as u re d i n kW d u r i n g SC−t e s t31   P _Cu_ pu = Psc / S_b ;   // p er u n i t v al ue o f P Cu a t

r a t ed l o ad32

33   / / c as e b34   Poc = 1.8 ;   / / P ow er m e as u re d i n kW d u r i n g OC−t e s t35   P _CL_ pu = Poc / S_b ;   // p er u n i t v al ue o f P CL a t

r a t ed l o ad36

366

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 368/412

37   / / c as e c

38   PF = 1 ;   // u n i ty Power f a c t o r39   eta _pu = PF / ( PF + P _CL _pu + P _Cu _pu ) * 100 ;   //E f f i c i e n c y a t r a te d l oa d , u n it y PF

40

41   / / c as e d42   // s u b s c r i p t d f o r PF and e t a p u i n d i c a t e s c as e d43   PF_d = 0.8 ;   // 0 . 8 l a g g i n g Power f a c t o r44   e ta _p u_ d = P F_ d / ( PF_ d + P _C L_ pu + P _C u_ pu ) * 100

;   / / E f f i c i e n c y a t r at e d l oa d , u ni t y PF45

46   / / c as e e

47   LF =   sqrt ( P _ CL _ pu / P _ Cu _ pu ) ;   // Load f r a c t i o np ro d uc i ng max . e f f i c i e n c y

48

49   / / c as e f  50   e ta _p u_ ma x = ( LF * PF ) / ( ( LF * PF ) + 2* ( P_ CL _p u ) ) *

100 ;   // Maximum e f f i c i e n c y a t u n i t y PF l o a d51

52   / / c as e g53   e ta _p u_ ma x_ g = ( LF * P F_ d ) / ( ( LF * P F_ d ) + 2 *( P _ CL _p u )

) * 100 ;   // Maximum e f f i c i e n c y a t 0 . 8 l a g g i n g

P F l o a d54

55

56   // D is pl ay t h e r e s u l t s57   disp ( ”E x ampl e 14−23 S o l u t i o n : ” ) ;

58

59   printf ( ”   \n a : Per u ni t c o pp er l o s s a t r at ed l oa d : ”) ;

60   printf ( ”   \n P Cu ( pu ) = %. 4 f p . u = R eq ( pu ) \n” ,

P _ C u _ p u ) ;

61

62   printf ( ”   \n a : Per u ni t c or e l o s s a t r at ed l oa d : ” ) ;63   printf ( ”   \n P CL ( pu ) = %. 4 f p . u   \n” , P _ C L _ p u ) ;

64

65   printf ( ”   \n c : E f f i c i e n c y a t r a te d l oa d , u ni t y PF : \ np u = %. 2 f p e r c e n t   \n” , e t a _ p u ) ;

367

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 369/412

66

67   printf ( ”   \n c : E f f i c i e n c y a t r at ed l o a d , 0 . 8 l a g gi n gPF : \ n p u = %. 2 f p e r c e n t   \n” , e t a _ p u _ d ) ;

68

69   printf ( ”   \n e : Load f r a c t i o n p ro d uc i ng max .e f f i c i e n c y : \ n L . F = %. 3 f    \n ” , LF ) ;

70

71   printf ( ”   \n f : Maximum e f f i c i e n c y a t u n it y PF l o ad: \ n p u ( max ) = %. 2 f p e r c e n t   \n” , e t a _ p u _ m a x ) ;

72

73   printf ( ”   \n g : Maximum e f f i c i e n c y a t 0 . 8 l a g g i n g PFl oa d : \ n p u ( max ) = %. 2 f p e r c e n t   \n” ,

e t a _ p u _ m a x _ g ) ;74

75   printf ( ”   \n h : A l l e f f i c i e n c y v al ue s a re i d e n t i c a lt o t h o se computed i n s o l u t i o n t o Ex .1 4 − 2 1 .   \n” ) ;

76

77   printf ( ”   \n i : Per−u n i t method i s much s i m p l e r andl e s s s u b j e c t t o e r r o r t ha n c o n v e n ti o n a l method . ” )

;

Scilab code Exa 14.24  efficiencies at differnt LFs

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−24

89   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G i ve n d a t a ( From Ex . 1 4 −2 3)

368

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 370/412

12   V _1 = 2300 ;   // Pr imary v o l t a g e i n v o l t

13   V_2 = 230 ;   // S ec on da ry v o l t a g e i n v o l t14   S = 500 ;   // Power r a t i n g o f t he t r a n s fo r m e r i n kVA15   f = 6 0 ;   // F re qu en cy i n Hz16

17   / / Open c i r c u i t t e s t d a t a18   V_oc = 208 ;   // Open c i r c u i t v o l t a ge i n v o l t19   I_oc = 85 ;   // Open c i r c u i t c u r r e n t i n A20   P _oc = 18 00 ;   / / Power m ea su re d i n W21

22   // S h o rt c i r c u i t t e s t d a t a23   V_sc = 95 ;   // S h o r t c i r c u i t v o l t a g e i n v o l t

24   I_ sc = 2 17. 4 ;   // S h o rt c i r c u i t c ur r e nt i n A25   P _sc = 82 00 ;   / / Power m ea su re d i n W26

27   / / C a l c u l a t i o n s28   / / P r e l i m i na r y c a l c u l a t i o n s29   S_b = S ;   // B as e v o l t a g e i n kVA30   Psc = 8.2 ;   / / P ow er m e as u re d i n kW d u r i n g SC−t e s t31   P _Cu_ pu = Psc / S_b ;   // p er u n i t v al ue o f P Cu a t

r a t ed l o ad32

33   Poc = 1.8 ;  / / P ow er m e as u re d i n kW d u r i n g OC−t e s t34   P _CL_ pu = Poc / S_b ;   // p er u n i t v al ue o f P CL a t

r a t ed l o ad35

36   / / c as e a37   LF1 = 3/4 ;   // Load f r a c t i o n o f r at ed l oa d38   PF1 = 1 ;   // u n it y Power f a c t o r39   e ta _p u_ LF 1 = ( L F1 * P F1 ) / (( L F1 * P F1 ) + P _C L_ pu + ( L F1

) ^2* P _C u_ pu ) * 1 00 ;   // E f f i c i e n c y a t r at ed l o a d, u n i t y PF

40

41   / / c as e b42   LF2 = 1/4 ;   // Load f r a c t i o n o f r at ed l oa d43   PF2 = 0.8 ;   // 0 . 8 l a g g i n g PF44   e ta _p u_ LF 2 = ( L F2 * P F2 ) / (( L F2 * P F2 ) + P _C L_ pu + ( L F2

) ^2* P _C u_ pu ) * 1 00 ;   // E f f i c i e n c y a t 1 /4 r at ed

369

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 371/412

l oa d , 0 . 8 l a g g i n g PF

4546   / / c as e c47   LF3 = 5/4 ;   // Load f r a c t i o n o f r at ed l oa d48   PF3 = 0.8 ;   // 0 . 8 l e a d i ng PF49   e ta _p u_ LF 3 = ( L F3 * P F3 ) / (( L F3 * P F3 ) + P _C L_ pu + ( L F3

) ^2* P _C u_ pu ) * 1 00 ;   // E f f i c i e n c y a t r 1 / 4 r at edl oa d , 0 . 8 l e a d i n g PF

50

51

52   // D is pl ay t h e r e s u l t s53   disp ( ”E x ampl e 14−24 S o l u t i o n : ” ) ;

5455   printf ( ”   \n E f f i c i e n c y ( pu ) : \ n ” ) ;

56   printf ( ”   \n a : p u a t %. 2 f r a t e d −l o a d = %. 2 f  p e r c e n t   \n” , L F 1 , e t a _ p u _ L F 1 ) ;

57

58   printf ( ”   \n b : p u a t %. 2 f r a t e d −l o a d = %. 2 f  p e r c e n t   \n” , L F 2 , e t a _ p u _ L F 2 ) ;

59

60   printf ( ”   \n c : p u a t %. 2 f r a t e d −l o a d = %. 2 f  p e r c e n t   \n” , L F 3 , e t a _ p u _ L F 3 ) ;

Scilab code Exa 14.25  Zpu2 St S2 S1 LF

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−258

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

370

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 372/412

10

11   / / G iv en d a ta12   kVA_1 = 500 ;   // Power r a t i n g o f t he t r an s f o r me r 1in kVA

13   R _1 _p u = 0 .0 1 ;   / / p er −u ni t v al ue o f r e s i s t a n c e o f  t he t r an s f o r m er 1

14   X _1 _p u = 0 .0 5 ;   / / p er −u ni t v al ue o f r e a c t a nc e o f  t he t r an s f o r m er 1

15   Z _1 _p u = R _1 _p u + %i * X _1 _p u ;   / / p e r −u ni t v al ue o f  i mp ed an ce o f t he t r a n s f or m e r 1

16

17   P F = 0.8 ;   // l a g g i n g power f a c t o r

18   V_2 = 400 ;   // S ec on da ry v o l t a g e i n v o l t19   S _l oa d = 750 ;   // I n c r e a s e d s ys te m l o ad i n kVA20

21   kVA_2 = 250 ;   // Power r a t i n g o f t h e t r a n sf o r m e r 2in kVA

22   R _ pu _2 = 0 .0 15 ;   // p er −u ni t v a lu e o f r e s i s t a n c e o f  t he t r an s f o r m er 2

23   X _p u_ 2 = 0 .0 4 ;   / / p er −u ni t v al ue o f r e a c t a nc e o f  t he t r an s f o r m er 2

24

25  // s m a l l er t r an s f o r m er s ec on da ry v o l t a g e i s same a sl a r g e r t r an s f or m e r

26

27   / / C a l c u l a t i o n s28   / / P r e l i m i na r y c a l c u l a t i o n s29   Z _p u_ 1 = R _p u_ 2 + %i * X _p u_ 2 ;   / / New t r a n s f o r m e r p . u

. i m p ed a n ce30

31   / / C a l c u l a t i o n s32   / / c as e a33   V_b1 = 400 ;   // b a se v o l t a ge i n v o l t

34   V_b2 = 400 ;   // b a se v o l t a ge i n v o l t35   Z _p u _2 = ( k V A_ 1 / k VA _2 ) * ( V _b 1 / V _b 2 ) ^2 * ( Z _ pu _1 ) ;   //

New t r a n s f o r m e r p . u i m pe d an c e36   Z _2 _p u = Z _p u_ 2 ;   / /New t r a n s f o r m e r p . u i m pe d an c e37

371

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 373/412

38   / / c as e b

39   c o s_ th et a = P F ;   // Power f a c t o r40   s i n _ th e t a =   sqrt ( 1 - ( c os _t he ta ) ^2 ) ;

41   S _ t_ c on j ug a te = ( k V A_ 1 + k VA _2 ) * ( c o s_ t he t a + % i *

s i n _ t h e t a ) ;   // kVA o f t o t a l l oa d42

43   / / c as e c44   S _ 2 _ co n ju g at e = S _ t_ c on j ug a te * ( Z _1 _p u / ( Z _1 _p u +

Z _2 _p u ) ) ;   // P or ti on o f l oa d c a r r i e d by t h es m a l l e r t r a n s fo r m e r i n kVA

45   S _ 2 _ c o n j ug a t e _ m =   abs ( S _ 2 _ c o n j u g a t e ) ; //S 2 c o n j u g a t e m=m ag ni tu de o f S 2 c o n j u g a t e i n kVA

46   S _ 2 _ c o n j ug a t e _ a =   atan ( imag ( S _ 2 _ c o nj u g a te ) / real (S _ 2 _ c o n j u g a t e ) ) * 1 8 0 / % p i ; / / S 2 c o n j u g a t e a =p h a sea ng l e o f S 2 c o nj u ga t e i n d e g r ee s

47

48   / / c as e d49   S _ 1_ c on j ug a te = S _ t_ c on j ug a te * ( Z _2 _p u / ( Z _1 _ pu +

Z _2 _p u ) ) ;   // P or ti on o f l oa d c a r r i e d by t h eo r i g i n a l t r an s f o r m er i n kVA

50   S _ 1 _ c o n j ug a t e _ m =   abs ( S _ 1 _ c o n j u g a t e ) ; //S 1 c o n j u g a t e m=m ag ni tu de o f S 1 c o n j u g a t e i n kVA

51   S _ 1 _ c o n j ug a t e _ a =   atan ( imag ( S _ 1 _ c o nj u g a te ) / real (

S _ 1 _ c o n j u g a t e ) ) * 1 8 0 / % p i ; / / S 1 c o n j u g a t e a =p h a sea ng l e o f S 1 c o nj u ga t e i n d e g r ee s

52

53   / / c as e e54   S _ 1 = S _ 1_ c on j ug a te _ m ;

55   S_ b1 = k VA_ 1 ;   // b as e power i n kVA o f t r a n c s fo r m e r1

56   LF1 = ( S_1 / S _b 1) *1 00 ;   // Load f r a c t i o n o f t heo r i g i n a l t r a n s f o r me r i n p e r ce nt

57

58   / / c as e f  59   S _ 2 = S _ 2_ c on j ug a te _ m ;

60   S_ b2 = k VA_ 2 ;   // b as e power i n kVA o f t r a n c s fo r m e r2

61   LF2 = ( S_2 / S _b 2) *1 00 ;   // Load f r a c t i o n o f t he

372

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 374/412

o r i g i n a l t r a n s f o r me r i n p e r ce nt

6263   // D is pl ay t h e r e s u l t s64   disp ( ”E x ampl e 14−25 S o l u t i o n : ” ) ;

65

66   printf ( ”   \n a : New t r a n s f o r m e r p . u i mp ed an ce : \ nZ p . u . 2 i n p . u = ” ) ; disp ( Z _ p u _ 2 ) ;

67

68   printf ( ”   \n b : kVA o f t o t a l l oa d : \ n S∗   t i n kVA= ” ) ; disp ( S _ t _ c o n j u g a t e ) ;

69

70   printf ( ”   \n c : P or ti on o f l oa d c a r r i e d by t he

s m a l l e r t r a n s fo r m e r i n kVA : ” ) ;71   printf ( ”   \n S∗   2 i n kVA = ” ) ; disp ( S _ 2 _ c o n j u g a t e )

;

72   printf ( ”   \n S∗   2 = %. 1 f    <%. 2 f kVA ( i n d u c t i v e l o a d) \n” , S _ 2 _ c o n j u g a te _ m , S _ 2 _ c o n j u g a t e _ a ) ;

73

74   printf ( ”   \n d : P or ti on o f l oa d c a r r i e d by t heo r i g i n a l t r an s f o r m er i n kVA : ” ) ;

75   printf ( ”   \n S∗   2 i n kVA = ” ) ; disp ( S _ 1 _ c o n j u g a t e ) ;

76   printf ( ”   \n S∗   2 = %. 1 f    <%. 2 f kVA ( i n d u c t i v e l o a d

) \n”, S _ 1 _ c o n j u g a te _ m , S _ 1 _ c o n j u g a t e _ a ) ;

77

78   printf ( ”   \n e : Load f r a c t i o n o f t h e o r i g i n a lt r an s f o r me r : \ n L . F . 1 = %. 1 f p e r c e n t \n” , L F 1 ) ;

79

80   printf ( ”   \n f : Load f r a c t i o n o f t h e o r i g i n a lt r an s f o r me r : \ n L . F . 2 = %. 1 f p e r c e n t \n” , L F 2 ) ;

81

82   printf ( ”   \n g : Yes . R ed uc e t h e no−l oa d v o l t a ge o f  t he new t r a n s fo r m e r t o some v a lu e ” ) ;

83   printf ( ”   \n be l o w th a t o f i t s p r e s e n t v a l u e s o

t ha t i t s s ha r e o f t he l oa d i s r ed uc ed . ” ) ;

373

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 375/412

Scilab code Exa 14.26  Vb Ib Zb Z1 Z2 I1 I2 E1 E2

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−268

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

1011   / / G i ve n d a t a ( From Ex . 1 4 −2 5)12   kVA_1 = 500 ;   // Power r a t i n g o f t he t r an s f o r me r 1

in kVA13   R _1 _p u = 0 .0 1 ;   / / p er −u ni t v al ue o f r e s i s t a n c e o f  

t he t r an s f o r m er 114   X _1 _p u = 0 .0 5 ;   / / p er −u ni t v al ue o f r e a c t a nc e o f  

t he t r an s f o r m er 115   Z _1 _p u = R _1 _p u + %i * X _1 _p u ;   / / p e r −u ni t v al ue o f  

i mp ed an ce o f t he t r a n s f or m e r 116

17   P F = 0.8 ;   // l a g g i n g power f a c t o r18   V = 400 ;   // S ec on da ry v o l t ag e i n v o l t19   S _l oa d = 750 ;   // I n c r e a s e d s ys te m l o ad i n kVA20

21   kVA_2 = 250 ;   // Power r a t i n g o f t h e t r a n sf o r m e r 2in kVA

22   R _ pu _2 = 0 .0 15 ;   // p er −u ni t v a lu e o f r e s i s t a n c e o f  t he t r an s f o r m er 2

23   X _p u_ 2 = 0 .0 4 ;   / / p er −u ni t v al ue o f r e a c t a nc e o f  t he t r an s f o r m er 2

2425   // s m a l l er t r an s f o r m er s ec on da ry v o l t a g e i s same a s

l a r g e r t r an s f or m e r26

27   / / C a l c u l a t i o n s

374

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 376/412

28   / / P r e l i m i na r y c a l c u l a t i o n s

29   Z _p u_ 1 = R _p u_ 2 + %i * X _p u_ 2 ;   / / New t r a n s f o r m e r p . u. i m p ed a n ce30

31   / / c as e a32   V_b = V ;   / / ( g i v e n )33

34   / / c a s e b35   S _ b = 5 00 * 10 0 0 ;   // b a se p ower i n VA36   I_b = S_b / V_b ;   // b a se c u rr e n t i n A37

38   / / c as e c

39   Z_b = V ^2/ S _b ;   / / B as e i m pe da n ce i n ohm40

41   / / c as e d42   Z_1 = Z_b * Z_1_p u * 1000 ;   // A ct u al i mp ed an ce o f  

l a r g e r t r a n sf o r m e r i n m i l l i −ohm43   Z _ 1_ m =   abs ( Z _ 1 ) ; / / Z 1 m=m ag n it ud e o f Z 1 i n ohm44   Z _ 1_ a =   atan ( imag ( Z _1 ) / real ( Z _ 1 ) ) * 1 8 0 / % p i ; / / Z 1 a =

p h a se a n g l e o f Z 1 i n d e g r e e s45

46   / / c as e e47   V_b1 = V_b ;

  // b a se v o l t a ge i n v o l t48   V_b2 = V_b ;   // b a se v o l t a ge i n v o l t49   Z _p u _2 = ( k V A_ 1 / k VA _2 ) * ( V _b 1 / V _b 2 ) ^2 * ( Z _ pu _1 ) ;   //

New t r a n s f o r m e r p . u i m pe d an c e50   Z _2 _p u = Z _p u_ 2 ;   / /New t r a n s f o r m e r p . u i m pe d an c e51

52   Z_2 = Z_b * Z _2 _p u *1 00 0 ;   // A ct u al i mp ed an ce o f  s m a l l e r t r a n sf o r m e r i n m i l l i −ohm

53   Z _ 2_ m =   abs ( Z _ 2 ) ; / / Z 2 m=m ag n it ud e o f Z 2 i n ohm54   Z _ 2_ a =   atan ( imag ( Z _2 ) / real ( Z _ 2 ) ) * 1 8 0 / % p i ; / / Z 2 a =

p h a se a n g l e o f Z 2 i n d e g r e e s

5556   / / c as e f  57   c os _t he ta = 0 .8 ;   // Power f a c t o r58   s i n _ th e t a =   sqrt ( 1 - ( c os _t he ta ) ^2 ) ;

59   S _ T = ( k V A_ 1 + k VA _2 ) * ( c o s_ t he t a - % i * si n _t h et a ) ;   //

375

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 377/412

kVA o f t o t a l l oa d

6061   I _T = S_T * 10 00 / V_b ;   // T o ta l c u r r e n t i n A62

63   I _1 = I _T * ( Z_ 2 /( Z _1 + Z _2 ) ) ;   // A ct ua l c u r r e ntd e l i v e r e d by l a r g e r t r a n sf o r m e r i n A

64   I _ 1_ m =   abs ( I _ 1 ) ; // I 1 m=m ag ni tu de o f I 1 i n A65   I _ 1_ a =   atan ( imag ( I _1 ) / real ( I _ 1 ) ) * 1 8 0 / % p i ; / / I 1 a =

p h a s e a ng le o f I 1 i n d e g r e e s66

67   / / c as e g68   I _2 = I _T * ( Z_ 1 /( Z _1 + Z _2 ) ) ;   // A ct ua l c u r r e nt

d e l i v e r e d by l a r g e r t r a n sf o r m e r i n A69   I _ 2_ m =   abs ( I _ 2 ) ; // I 2 m=m ag ni tu de o f I 2 i n A70   I _ 2_ a =   atan ( imag ( I _2 ) / real ( I _ 2 ) ) * 1 8 0 / % p i ; / / I 2 a =

p h a s e a ng le o f I 2 i n d e g r e e s71

72   / / c as e h73   Z 1 = Z_ 1 /1 00 0 ;   // Z 1 i n ohm74   E_1 = I_1 * Z1 + V_b ;   / / No−l oa d v o l t a g e o f l a r g e r Tr

. i n v o l t75   E _ 1_ m =   abs ( E _ 1 ) ; // E 1 m=m ag ni tu de o f E 1 i n v o l t76   E _ 1_ a =   atan ( imag ( E _1 ) / real ( E _ 1 ) ) * 1 8 0 / % p i ;

// E 1 a=p h a se a n g l e o f E 1 i n d e g r e e s77

78

79   / / c as e i80   Z 2 = Z_ 2 /1 00 0 ;   // Z 2 i n ohm81   E_2 = I_2 * Z2 + V_b ;   / / No−l oa d v o l t a ge o f s m a l l e r

Tr . i n v o l t82   E _ 2_ m =   abs ( E _ 2 ) ; // E 2 m=m ag ni tu de o f E 2 i n v o l t83   E _ 2_ a =   atan ( imag ( E _2 ) / real ( E _ 2 ) ) * 1 8 0 / % p i ; // E 2 a=

p h a se a n g l e o f E 2 i n d e g r e e s

8485   // D is pl ay t h e r e s u l t s86   disp ( ”E x ampl e 14−26 S o l u t i o n : ” ) ;

87

88   printf ( ”   \n a : Base v o l t a ge : \ n V b = %d   <0 V (

376

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 378/412

g i v e n ) \n” , V _ b ) ;

8990   printf ( ”   \n b : Base c u r r e nt : \ n I b = %. 2 f A   \n” ,

I _ b ) ;

91

92   printf ( ”   \n c : B as e i mp ed an ce : \ n Z b = %. 2 f ohm\n” , Z _ b ) ;

93

94   printf ( ”   \n d : A ct ua l i mp ed an ce o f l a r g e rt r an s f o r me r : \ n Z 1 i n m =   \n” ) ; disp ( Z _ 1 ) ;

95   printf ( ”   \n Z 1 = %. 2 f    <%. 2 f m   \n ” , Z _ 1 _ m , Z _ 1 _ a

) ;

9697   printf ( ”   \n e : A ct ua l i mp ed an ce o f s m a l l e r

t r an s f o r me r : \ n Z 1 i n m =   \n” ) ; disp ( Z _ 2 ) ;

98   printf ( ”   \n Z 1 = %. 2 f    <%. 2 f m   \n ” , Z _ 2 _ m , Z _ 2 _ a

) ;

99

100   printf ( ”   \n f : A c tu a l c u r r e n t d e l i v e r e d by l a r g e rt r an s f o r me r : \ n I 1 in A = ” ) ; disp ( I _ 1 ) ;

101   printf ( ”   \n I 1 = %. 2 f    <%. 2 f A   \n ” , I _ 1 _ m , I _ 1 _ a ) ;

102

103   printf (”   \n g : A ct ua l c u r r e nt d e l i v e r e d by s m a l l ert r an s f o r me r : \ n I 2 in A = ” ) ; disp ( I _ 2 ) ;

104   printf ( ”   \n I 1 = %. 2 f    <%. 2 f A   \n ” , I _ 2 _ m , I _ 2 _ a ) ;

105

106   printf ( ”   \n h : No−l o ad v o l t a g e o f l a r g e r Tr : \ nE 1 i n v o l t = ” ) ; disp ( E _ 1 ) ;

107   printf ( ”   \n E 1 = %. 2 f    <%. 2 f V   \n ” , E _ 1 _ m , E _ 1 _ a ) ;

108

109   printf ( ”   \n i : No−l o ad v o l t a g e o f s m a l l e r Tr : \ nE 2 i n v o l t = ” ) ; disp ( E _ 2 ) ;

110   printf ( ”   \n E 1 = %. 2 f    <%. 2 f V   \n ” , E _ 2 _ m , E _ 2 _ a ) ;

377

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 379/412

Scilab code Exa 14.27  RL ZbL ZLpu Z2pu Z1pu IbL ILpu VRpu VSpu

VS VxVxpu

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−278

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e and

c o n s o l e .10

11   / / G iv en d a ta12   / / From d ia g ra m i n f i g . 14 −23 a13   P_L = 14400 ;   / / Load o ut p ut p ower i n W14   V_L = 120 ;   // Load v o l t a ge i n v o l t15   V_b1 = 120 ;   // b a s e v o l t a g e a t p oi nt 1 i n v o l t16   V_b2 = 600 ;   // b a s e v o l t a g e a t p oi nt 2 i n v o l t17   V_b3 = 120 ;   // b a s e v o l t a g e a t p oi nt 3 i n v o l t18   S _b3 = 14 .4 ;   // b a s e p ow er i n kVA19   X_2 = %i * 0. 25 ;

  // r e a c t a nc e i n p . u20   X _1 = %i * 0. 2 ;   // r e a c t a n ce i n p . u21   I_L = 120 ;   // Load c u r r e nt i n A22

23   / / C a l c u l a t i o n s24   / / c as e a25   R_L = P_L / ( V_L ^ 2) ;   // R e s i st a nc e o f t h e l oa d i n

ohm26

27   / / c as e b28   Z _ b L = ( V _ b 3 ^ 2) / ( S _ b 3 * 1 0 00 ) ;   // B as e i m pe da nc e i n

ohm29

30   / / c as e c31   Z_L _pu = R_L / Z_bL ;   // p er u n i t l o ad i mp ed an ce32

378

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 380/412

33   / / c as e d

34   Z _2 _p u = X_2 ;   // p er u n i t i mp ed an ce o f Tr . 235

36   / / c as e e37   Z _1 _p u = X_1 ;   // p er u n i t i mp ed an ce o f Tr . 138

39   / / c as e g40   I _ bL = ( S _b 3 * 1 00 0 ) / V_ b3 ;   // Base c u r r e n t i n l oa d i n

A41

42   / / c as e h43   I_L _pu = I_L / I_bL ;   // p er u n i t l oa d c u r r e n t

4445   / / c as e i46   V _R _p u = I _L _p u * Z _L _p u ;   // p er u n i t v o l t a ge

a c r o s s l oa d47

48   / / c as e j49   I _S _p u = I _L _p u ;   // p er u n it c u r r e nt o f s o ur c e50   Z _T _p u = Z _L _p u + Z _1 _p u + Z _2 _p u ;   / / T o t a l p . u

i mpe danc e51   V _S _p u = I _S _p u * Z _T _p u ;   // p e r u ni t v o l t a g e o f  

s o u r c e52   V _ S _ pu _ m =   abs ( V _ S _ p u ) ; / / V S p u m=m a g n i t ud e o f  V S p u i n p . u

53   V _ S _ pu _ a =   atan ( imag ( V _ S_ pu ) / real ( V _ S _ p u ) ) * 1 8 0 / % p i ;

// V S pu a=p ha se a n gl e o f V S pu i n d e g re e s54

55   / / c as e k56   V_S = V_S_pu * V_b1 ;   // A ct ua l v o l t a g e a c r o s s

s o u r c e i n v o l t57   V _ S_ m =   abs ( V _ S ) ; // V S m=m ag ni tu de o f V S i n v o l t58   V _ S_ a =   atan ( imag ( V _S ) / real ( V _ S ) ) * 1 8 0 / % p i ; / / V S a=

p h a se a n g l e o f V S i n d e g r e e s59

60

61   / / c as e l62   I _x _p u = I _L _p u ;   / / p . u c u r r e nt a t p o in t x

379

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 381/412

63   Z _x _p u = Z _L _p u + Z _2 _p u ;   / / p . u i m pe da n ce a t p o i n t

x64   V _x _p u = I _x _p u * Z _x _p u ;   / / p . u v o l t a g e a t p o in t x65

66   // c as e m67   V_x = V_x_pu * V_b2 ;   // A ct u a l v o l t a ge a t p o i nt x

i n v o l t68   V _ x_ m =   abs ( V _ x ) ; // V x m=m ag ni tu de o f V x i n v o l t69   V _ x_ a =   atan ( imag ( V _x ) / real ( V _ x ) ) * 1 8 0 / % p i ; / / V x a =

p h a se a n g l e o f V x i n d e gr e e s70

71

72   // D is pl ay t h e r e s u l t s73   disp ( ”E x ampl e 14−27 S o l u t i o n : ” ) ;

74

75   printf ( ”   \n a : R e s i s t a n c e o f t h e l o ad : \ n R L =%d   \n” , R _ L ) ;

76

77   printf ( ”   \n b : B as e i mp ed an ce : \ n Z bL = %d   \n” , Z _ b L ) ;

78

79   printf ( ”   \n c : p er u n it l oa d i mp eda nce : \ n Z L ( pu

) = ”) ; disp ( Z _ L _ p u ) ;

80

81   printf ( ”   \n d : p er u n i t i mp ed an ce o f Tr . 2 : \ n Z 2( p u ) = ” ) ; disp ( Z _ 2 _ p u ) ;

82

83   printf ( ”   \n e : p er u n it i mp eda nce o f Tr . 1 : \ n Z 1( pu ) = ” ) ; disp ( Z _ 1 _ p u ) ;

84

85   printf ( ”   \n f : S ee F i g .14 −23 b   \n” ) ;

86

87   printf ( ”   \n g : Base c u r r e n t i n l oa d : \ n I b L = %d

A ( r e s i s t i v e ) \n” , I _ b L ) ;88

89   printf ( ”   \n h : p e r u ni t l oa d c ur r e nt : \ n I L p u =” ) ; disp ( I _ L _ p u ) ;

90

380

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 382/412

91   printf ( ”   \n i : p e r u ni t v o l t a g e a c r o s s l oa d : \ n

V R p u ” ) ; disp ( V _ R _ p u ) ;92

93   printf ( ”   \n j : p e r u ni t v o l t a g e o f s ou rc e : \ nV S pu = ” ) ; disp ( V _ S _ p u ) ;

94   printf ( ”   \n V S pu = %. 3 f    <%.2 f p . u   \n” ,V_S _pu_m ,

V _ S _ p u _ a ) ;

95

96   printf ( ”   \n k : A ct u a l v o l t a ge a c r o s s s o u r c e : \ nV S i n v o l t = ”) ; disp ( V _ S ) ;

97   printf ( ”   \n V S = %. 1 f    <%. 2 f V   \n” , V _ S _ m , V _ S _ a ) ;

98

99   printf ( ”   \n l : p . u v o l t a ge a t p oi nt x : \ n V x ( pu )= ” ) ; disp ( V _ x _ p u ) ;

100

101   printf ( ”   \n m: A c t u a l v o l t a g e a t p oi nt x : \ n V xi n v o l t = ” ) ; disp ( V _ x ) ;

102   printf ( ”   \n V S = %. 1 f    <%. 2 f V   \n” , V _ x _ m , V _ x _ a ) ;

Scilab code Exa 14.28  ZT1 ZT2 Zbline3 Zlinepu VLpu IbL IL ILpu VSpu

VS

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−288

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .10

11   / / G iv en d a ta12   / / From d ia g ra m i n f i g . 14 −24 a

381

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 383/412

13   V_1 = 11 ;   / / Tr . 1 v o l t a g e i n kV

14   V_b1 = 11 ;   // Bas e Tr . 1 v o l t a g e i n kV15   S_1 = 50 ;   / / KVA r a t i n g o f po wer f o r Tr . 116   S_2 = 100 ;   / / KVA r a t i n g o f p ower f o r Tr . 217   Z _1 _p u = %i * 0. 1 ;   // p e r u n i t i mp ed an ce o f Tr . 118   Z _2 _p u = %i * 0. 1 ;   // p e r u n i t i mp ed an ce o f Tr . 219   V_b2 = 55 ;   // Base Tr . 2 v o l t a g e i n kV20   S_b = 100 ;   // b a s e p ow er i n kVA21   P F = 0.8 ;   / / power f a c t o r o f t he Tr . s22

23   Z _l in e = %i * 20 0 ;   // l i n e i mp ed an ce i n ohm24

25   V_L = 10 ; // Load v o l t a g e i n kV26   V_Lb3 = 11 ;   // b a s e l i n e v o l t a g e a t p oi nt 327

28   V_b3 = 11 ;   // l i n e v ol t a g e a t p o in t 329

30   P_L = 50 ;   / / Power r a t i n g o f e ac h Tr . s i n kW31   c os _t het a_L = 0 .8 ;   / / PF o p e r a t i o n o f e ac h Tr . s32

33   / / C a l c u l a t i o n s34   / / c as e a35   Z _T 1 = Z _1 _p u * ( V _1 / V _b 1 ) ^2 * ( S _2 / S _1 ) ;

  // p . ui m p ed a n ce o f Tr . 136

37   / / c as e b38   Z _T 2 = Z _2 _p u * ( V _1 / V _b 3 ) ^2 * ( S _2 / S _1 ) ;   // p . u

i m p ed a n ce o f Tr . 139

40   / / c as e c41   V_b = 55 ;   // b as e v o l t a ge i n v o l t42   Z _b _l in e = ( V _b ^ 2) / S_ b * 1 00 0 ;   // b a s e l i n e

i m p ed a n ce i n ohm

43   Z _l in e_ pu = Z _l in e / Z _b _l in e ;   / / p . u i m p ed a n ce o f  t h e t r an s m i s s i o n l i n e

44

45   / / c as e d46   V _L _p u = V_L / V _L b3 ;   / / p . u v o l t a g e a c r o s s l oa d

382

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 384/412

47

48   / / c as e e49   / / S e e F i g . 14 −24 b50

51   / / c as e f  52   I_bL = S_b / V_b3 ;   // b a s e c ur r e n t i n l oa d i n A53

54   / / c as e g55   VL = 11 ;   // l oa d v o l t a ge i n kV56   c os _t he ta _L = 0 .8 ;   // power f a c t o r57   I _L = P _L / ( VL * c os _t he ta _L ) ;

58   I_L _pu = I_L / I_bL ;   // p . u l o a d c u r r e n t

59   t he ta = a co sd ( 0 . 8) ;60   I _L pu = I _ L_ pu * ( c os d ( t he ta ) - % i * si nd ( t h et a ) ) ; / / p .

u c u r r e nt i n c om ple x fo rm61

62   / / c as e h63   Z _s er ie s_ pu = Z _T 1 + Z _l in e_ pu + Z _T 2 ;   // p . u

s e r i e s i mp eda nce o s t he t r an s m i s s i o n l i n e64   V _S _p u = I _L pu * Z _s er ie s_ pu + V _L _p u ;   // p . u

s o ur c e v o l t a g e65   V _ S _ pu _ m =   abs ( V _ S _ p u ) ; / / V S p u m=m a g n i t ud e o f  

V S p u i n p . u66   V _ S _ pu _ a =   atan ( imag ( V _ S_ pu ) / real ( V _ S _ p u ) ) * 1 8 0 / % p i ;

// V S pu a=p ha se a n gl e o f V S pu i n d e g re e s67

68   / / c as e i69   V_S = V _S _p u_ m * V_ b1 ;   // A ct ua l v al u e o f s o ur c e

v o l t a g e i n kV70   V _ s ou r ce = V _S * exp ( % i * ( V _ S _ p u _ a ) * ( % p i / 1 8 0 ) ) ;   / / V S

i n e x p on e n t i a l form71   V _ s o u rc e _ m =   abs ( V _ s o u r c e ) ; / / V s o u r ce m =m a gn i tu d e o f  

V s o u rc e i n p . u

72   V _ s o u rc e _ a =   atan ( imag ( V _ so u rc e ) / real ( V _ s o u r c e ) )* 1 8 0 / % p i ; // V s o u r c e a=p ha se a n g l e o f V s o ur ce i nd e g r e e s

73

74

383

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 385/412

75   // D is pl ay t h e r e s u l t s

76   disp ( ”E x ampl e 14−28 S o l u t i o n : ” ) ;77

78   printf ( ”   \n a : p . u i mp ed an ce o f Tr . 1 : \ n Z T1 = ”) ; disp ( Z _ T 1 ) ;

79

80   printf ( ”   \n b : p . u i mp ed an ce o f Tr . 2 : \ n Z T2 = ”) ; disp ( Z _ T 2 ) ;

81

82   printf ( ”   \n c : b as e l i n e i mpe danc e i n ohm : \ n Z b( l i n e ) = %d ohm   \n” , Z _ b _ l i n e ) ;

83   printf ( ”   \n p . u i mp eda nce o f t he t r an s m i s s i o n

l i n e : \ n Z ( l i n e ) pu = ” ) ; disp ( Z _ l i n e _ p u ) ;84

85   printf ( ”   \n d : p . u v o l t a ge a c r o s s l oa d : \ n V L pu= ” ) ; disp ( V _ L _ p u ) ;

86

87   printf ( ”   \n e : S ee F ig . 14 −24 b   \n” ) ;

88

89   printf ( ”   \n f : b a s e c ur r e nt i n l oa d : \ n I b L = %. 3 f A   \n” , I _ b L ) ;

90

91   printf (”   \n g : Load c u r r e nt : \ n I L = %f A   \n”

,

I _ L ) ;

92   printf ( ”   \n p . u l o a d c u rr e n t : \ n I L p u = %. 3 f  a t % . 1 f PF l a g g i n g   \n” , I _ L _ p u , P F ) ;

93   printf ( ”   \n p . u c u r r e n t i n c ompl ex f orm : \ nI L p u = ” ) ; disp ( I _ L p u ) ;

94

95   printf ( ”   \n h : p e r u ni t v o l t a g e o f s ou rc e : \ nV S pu = ” ) ; disp ( V _ S _ p u ) ;

96   printf ( ”   \n V S pu = %. 3 f    <%.2 f p . u   \n” ,V_S _pu_m ,

V _ S _ p u _ a ) ;

9798   printf ( ”   \n i : A c tu a l v o l t a ge a c r o s s s o ur c e : \ n

V S i n kV = ”) ; disp ( V _ s o u r c e ) ;

99   printf ( ”   \n V S = %. 1 f    <% . 2 f kV   \n” ,V_source_m ,

V _ s o u r c e _ a ) ;

384

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 386/412

Scilab code Exa 14.29  Z1pu Z2pu Vbline Zlinepu ZMs

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS

7   / / E xa mp le 1 4−298

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   / / From d ia g ra m i n f i g . 14 −25 a13   Z _p u_ 1 = %i * 0. 1 ;   / / p . u i mp ed an ce14   MVA_2 = 80 ;   / / MVA r a t i n g o s s y st em 215   MVA_1 = 100 ;   / / MVA r a t i n g o f Tr . s 1 and 216   V_2 = 30 ;   // v o l t a g e i n KV17   V_1 = 32 ;   // v o l t a g e i n KV18

19   Z _p u_ 2 = %i * 0. 15 ;   / / p . u i m pe da n ce20

21   V_b1 = 100 ;   // b as e v o l t a g e o f Tr . 122

23   Z _ li ne = %i * 60 ;   // L i n e i mp ed an ce24

25   M V A_ M1 = 20 ;   // MVA r a t i n g o f mo to r l o a d 126   Z _p u_ M1 = %i * 0. 15 ;   / / p . u i m pe da n ce o f m ot or l o a d

M127

28   M V A_ M2 = 35 ;   // MVA r a t i n g o f mo to r l o a d 229   Z _p u_ M2 = %i * 0. 25 ;   / / p . u i m pe da n ce o f m ot or l o a d

M2

385

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 387/412

30

31   M V A_ M3 = 25 ;   // MVA r a t i n g o f mo to r l o a d 332   Z _p u_ M3 = %i * 0. 2 ;   / / p . u i mp ed an ce o f m ot or l o a d M333

34   V_M = 28 ;   // v o l t a g e a c r o s s m oto r l o a d s M1 , M2 ,M3 i nkV

35

36   / / C a l c u l a t i o n s37   / / c as e a38   Z _ 1 _ pu = Z _ pu _ 1 * ( M V A_ 2 / M V A _ 1 ) *( V _ 2 / V _ 1 ) ^ 2 ;   // p . u

i m ep e da n ce o f T139

40   / / c as e b41   Z _ 2 _ pu = Z _ pu _ 2 * ( M V A_ 2 / M V A _ 1 ) *( V _ 2 / V _ 1 ) ^ 2 ;   // p . u

i m ep e da n ce o f T242

43   / / c as e c44   V _ b_ li n e = V _b 1 * ( V_ 1 / V_ 2 ) ;   // b as e v o l t a ge o f t he

l o n g −t r an s m i s s i o n l i n e i n kV45

46   / / c as e d47   MVA_b = 80 ;   // MVA r a t i ng48   V _b = V _b _l in e ;

49   Z _ l i n e _p u = Z _ li n e * ( M V A _b / ( V _ b ) ^ 2 ) ;   / / p . u i m p e d an c eo f t h e t r a n s m i s s i o n l i n e

50

51   / / c as e e52   Z _ M1 _ pu = Z _ pu _ M1 * ( M V A_ 2 / M VA _ M1 ) * ( V _M / V _1 ) ^ 2 ;   //

p . u i mp ed an ce o f m ot or l o a d M153   Z _ M2 _ pu = Z _ pu _ M2 * ( M V A_ 2 / M VA _ M2 ) * ( V _M / V _1 ) ^ 2 ;   //

p . u i mp ed an ce o f m ot or l o a d M254   Z _ M3 _ pu = Z _ pu _ M3 * ( M V A_ 2 / M VA _ M3 ) * ( V _M / V _1 ) ^ 2 ;   //

p . u i mp ed an ce o f m ot or l o a d M3

5556   // D is pl ay t h e r e s u l t s57   disp ( ”E x ampl e 14−29 S o l u t i o n : ” ) ;

58

59   printf ( ”   \n a : p . u i me pe da nc e o f T1 : \ n Z 1 ( pu ) =

386

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 388/412

” ) ; disp ( Z _ 1 _ p u ) ;

6061   printf ( ”   \n b : p . u i me pe da nc e o f T2 : \ n Z 2 ( pu ) =

” ) ; disp ( Z _ 2 _ p u ) ;

62

63   printf ( ”   \n c : b as e v o l t a ge o f t h e l o n g −t r a n s m i s s i o nl i n e : \ n V b ( l i n e ) = %. 1 f kV   \n” , V _ b _ l i n e ) ;

64

65   printf ( ”   \n d : p . u i mp ed an ce o f t he t r a n s m i s s i o nl i n e : \ n Z ( l i n e ) pu = ” ) ; disp ( Z _ l i n e _ p u ) ;

66

67   printf ( ”   \n e : p . u i mp ed an ce o f m oto r l o a d M1 : \ n

Z M1 ( p u ) = ” ) ; disp ( Z _ M 1 _ p u ) ;68

69   printf ( ”   \n f : p . u i mp ed an ce o f m oto r l o a d M1 : \ nZ M2 ( p u ) = ” ) ; disp ( Z _ M 2 _ p u ) ;

70

71   printf ( ”   \n g : p . u i mp ed an ce o f m oto r l o a d M1 : \ nZ M3 ( p u ) = ” ) ; disp ( Z _ M 3 _ p u ) ;

72

73   printf ( ”   \n h : S ee F ig . 14 −25 b . ”) ;

Scilab code Exa 14.30  ST ST Sxformer

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS

7   / / E xa mp le 1 4−308

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

387

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 389/412

11   / / G iv en d a ta

12   // s u b s c r i p t s a , b , c f o r t he c ur re nt , v o l t a g e si n d i c a t e s r e s p e c t i v e c a s e s a , b , c .13   / / f ro m f i g .1 4 −27 a14   V _pa = 10 00 ;   // Phase v o l t a ge i n v o l t15   I_1a = 1 ;   // l i n e c u r r e n t i n p r i ma r y i n A16   V_2a = 100 ;   // v o lt a g e a c r o s s s ec on da ry i n V17   Ic_a = 10 ;   // c u r r e n t i n l ow er h a l f o f auto −

t r an s f o r me r i n A18

19   / / f ro m f i g .1 4 −26 b20   V_s = 100 ;   // v o l t a g e i n s ec on da ry wdg i n V

21   I_2b = 10 ;   // c u r r e n t i n s ec on da ry i n A22   V _1b = 10 00 ;   // v o l t a ge a c r o s s p ri m a ry i n V23   Ic_b = 1 ;   // c u r r e n t i n l ow er h a l f o f auto −

t r an s f o r me r i n A24

25   / / C a l c u l a t i o n s26   / / c as e a27   S _ T1 = ( V _p a * I _1 a + V _2 a * I _1 a ) / 10 00 ;   / / T o t a l kVA

t r a n s f e r i n s t e p −down mode28

29  / / c as e b30   S _T 2 = ( V _s * I _2 b + V _1 b * I_ 2b ) / 10 00 ;   / / T o t a l kVA

t r a n s f e r i n s t e p −up mode31

32   / / c as e c33   S _ x_ f or m er _ c = V _p a * I _1 a / 10 00 ;   // kVA r a t i n g o f t h

a u t o t r a n sf o rm e r i n Fi g . 14 −27 a34

35   / / c as e d36   V _1 = V_pa ;

37   S _x _f or me r_ d = V _1 * I c_ b / 10 00 ;   // kVA r a t i n g o f t h

a u t o t r a n sf o rm e r i n Fi g . 14 −26 b38

39

40   // D is pl ay t h e r e s u l t s41   disp ( ”E x ampl e 14−30 S o l u t i o n : ” ) ;

388

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 390/412

42

43   printf ( ”   \n a : T ot al kVA t r a n s f e r i n s te p−down mode: \ n S T = %. 1 f kVA t r a n s f e r r e d   \n” , S _ T 1 ) ;

44

45   printf ( ”   \n b : T ot al kVA t r a n s f e r i n s te p−up mode : \n S T = %. 1 f kVA t r a n s f e r r e d   \n” , S _ T 2 ) ;

46

47   printf ( ”   \n c : kVA r a t i n g o f t h a u t o t r a n sf o rm e r i nF i g . 1 4 −27 a : \ n S x−fo rm er = %d kVA   \n ” ,

S _ x _ f o r m e r _ c ) ;

48

49   printf ( ”   \n d : kVA r a t i n g o f t h a u t o t r a n sf o rm e r i n

F i g . 1 4 −2 6 b : \ n S x−fo rm er = %d kVA   \n ” ,S _ x _ f o r m e r _ d ) ;

50

51   printf ( ”   \n e : Both t r a n s f o r m e r s h av e t h e same kVAr a t i n g o f 1 kVA s i n c e t he same ” ) ;

52   printf ( ”   \n a ut o tr an sf or m er i s u s e d i n bot h p a rt s. Both t r a n s f o r m e r s t r an s fo r m ” ) ;

53   printf ( ”   \n a t o t a l o f 1 KVA. But th e s te p −downt r an s f o r me r i n p ar t ( a ) c on du ct s ” ) ;

54   printf ( ”   \n o n l y 0 . 1 kVA w h il e th e s t e p −up

t r a n s fo r m e r i n t he p a rt ( b ) c on d uc ts 10 ”) ;

55   printf ( ”   \n kVA from t he p r i m a r y t o t h e s ec on da ry. ” ) ;

Scilab code Exa 14.31   Wc tabulate allday efficiency

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−31

389

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 391/412

8

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .10

11   / / G iv en d a ta12   S = 500 ;   // kVA r a t i n g o f d i s t r i b u t i o n t r an s f o r m er13   / / g i ve n d at a from ex . 14 −2014   V _1 = 2300 ;   // Pr imary v o l t a g e i n v o l t15   V_2 = 208 ;   // S ec on da ry v o l t a g e i n v o l t16   f = 6 0 ;   // F re qu en cy i n Hz17

18   / / SC−t e s t d at a

19   P _sc = 82 00 ;   // w at tm et er r e a di n g i n W20   I_ sc = 2 17. 4 ;   // S h o rt c i r c u i t c ur r e nt i n A21   V_sc = 95 ;   // S h o r t c i r c u i t v o l t a g e i n V22

23   // OC−t e s t d at a24   P _oc = 18 00 ;   // w at tm et er r e a di n g i n W25   I_oc = 85 ;   // Open c i r c u i t c u r r e n t i n A26   V_oc = 208 ;   // Open c i r c u i t v o l t a ge i n V27

28   LF_1 = 20 ;   // Load f r a c t i o n i n p e r c e nt29   LF_2 = 40 ;

  // Load f r a c t i o n i n p e r c e nt30   LF_3 = 80 ;   // Load f r a c t i o n i n p e r c e nt31   LF_fl = 100 ;   // r at ed l oa d i n p e r ce nt32   LF_4 = 125 ;   // Load f r a c t i o n i n p e r ce nt33

34   LF1 = 0.2 ;   // Load f r a c t i o n35   LF2 = 0.4 ;   // Load f r a c t i o n36   LF3 = 0.8 ;   // Load f r a c t i o n37   L F4 = 1.25 ;   // Load f r a c t i o n38

39   PF1 = 0.7 ;   // power f a c t o r

40   PF2 = 0.8 ;   // power f a c t o r41   PF3 = 0.9 ;   // power f a c t o r42   PF_fl = 1 ;   // power f a c t o r43   P F4 = 0.85 ;   // power f a c t o r44

390

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 392/412

45   t1 = 4 ;   // p e r i o d o f o p er a t i on i n h ou rs

46   t2 = 4 ;   // p e r i o d o f o p er a t i on i n h ou rs47   t3 = 6 ;   // p e r i o d o f o p er a t i on i n h ou rs48   t_fl = 6 ;   // p e r i o d o f o p er a ti o n i n h ou rs49   t4 = 2 ;   // p e r i o d o f o p er a t i on i n h ou rs50

51   / / C a l c u l a t i o n s52   / / c as e a53   t = 2 4 ;   // h rs i n a day54   P_c = P_oc ;   / / w at tm et er r e a d i n g i n W (OC t e s t )55   W_c = ( P_c * t )/1000 ;   // COre l o s s o v er 24 h ou r

p e r i o d

5657   / / c as e b58   P s c = P _s c / 10 00 ;   / / w at tm et er r e a di n g i n W ( SC t e s t

)59   P _ l os s _1 = ( L F1 ^ 2 ) * Ps c ;   // Power l o s s i n kW f o r 20%

Load60   P _ l os s _2 = ( L F2 ^ 2 ) * Ps c ;   // Power l o s s i n kW f o r 40%

Load61   P _ l os s _3 = ( L F3 ^ 2 ) * Ps c ;   // Power l o s s i n kW f o r 80%

Load62   P _l os s_ fl = P sc ;

  / / Power l o s s i n kW f o r 1 00% Load63   P _ l os s _4 = ( L F4 ^ 2 ) * Ps c ;   // Power l o s s i n kW f o r 12 5% Load

64

65   / / e ne rg y l o s s i n kWh66   e ne rg y_ lo ss 1 = P _l os s_ 1 * t1 ;   // E ne gr y l o s s i n kWh

f o r 2 0% L oa d67   e ne rg y_ lo ss 2 = P _l os s_ 2 * t2 ;   // E ne gr y l o s s i n kWh

f o r 4 0% L oa d68   e ne rg y_ lo ss 3 = P _l os s_ 3 * t3 ;   // E ne gr y l o s s i n kWh

f o r 8 0% L oa d

69   e n e r gy _ lo s s_ f l = P _ lo s s_ f l * t _f l ;   // Eneg ry l o s si n kWh f o r 1 0 0% L oa d

70   e ne rg y_ lo ss 4 = P _l os s_ 4 * t4 ;   // E ne gr y l o s s i n kWhf o r 1 2 5% Lo ad

71

391

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 393/412

72   / / T ot al e ne rg y l o s s e s i n 24 h rs

73   W _ lo s s_ t ot a l = e n er g y_ l os s 1 + e n er g y_ l os s 2 +e n er g y_ l os s 3 + e n er g y_ l os s _f l + e n er g y_ l os s 4 ;

74

75   / / c as e c76   P _ 1 = L F1 * S* P F1 ;   // Power o ut p ut f o r 2 0% l o a d77   P _ 2 = L F2 * S* P F2 ;   // Power o ut p ut f o r 4 0% l o a d78   P _ 3 = L F3 * S* P F3 ;   // Power o ut p ut f o r 8 0% l o a d79   P_ fl = S * PF_ fl ;   // Power o u tp ut f o r 1 00% l o a d80   P _ 4 = L F4 * S* P F4 ;   // Power o ut p ut f o r 1 25% l o a d81

82   E ne rg y_ 1 = P _1 * t1 ;   // En erg y d e l i v e r e d i n kWh f o r

20%load83   E ne rg y_ 2 = P _2 * t2 ;   // En erg y d e l i v e r e d i n kWh f o r

40%load84   E ne rg y_ 3 = P _3 * t3 ;   // En erg y d e l i v e r e d i n kWh f o r

80%load85   E n e r gy _ fl = P _f l * t _f l ;   // E ne rg y d e l i v e r e d i n kWh

f o r 1 00 % lo ad86   E ne rg y_ 4 = P _4 * t4 ;   // En erg y d e l i v e r e d i n kWh f o r

125%l oad87

88  // T ot al e ne rg y d e l i v e r e d i n 24 h rs89   W _o ut _t ot al = E ne rg y_ 1 + E ne rg y_ 2 + E ne rg y_ 3 +

E n er g y_ f l + E n er g y_ 4 ;

90

91   / / c as e d92   e t a = W _o ut _t ot al / ( W _o ut _t ot al + W _c +

W _l os s_ to ta l ) * 1 00 ;   // A ll −day e f f i c i e n c y93

94   // D is pl ay t h e r e s u l t s95   disp ( ”E x ampl e 14−31 S o l u t i o n : ” ) ;

96

97   printf ( ”   \n a : T ot a l e ne rg y c or e l o s s f o r 24 h rs ,i n c l u d i ng 2 h ou rs a t no−loa d , ” ) ;

98   printf ( ”   \n W c = %. 1 f kWh   \n ” , W _ c ) ;

99

100   printf ( ”   \n b : From SC t e s t , e q u i v a l e n t c op pe r l o s s

392

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 394/412

a t r a te d l oa d = %. 1 f kW, ” , P s c ) ;

101   printf ( ”   \n and t h e v a r i ou s en e r g y l o s s e s d u r i n gt h e 2 4 h r p e r i o d a re t ab u l a te d a s : \ n” ) ;

102

103   printf ( ”   \n

” ) ;

104   printf ( ”   \n P e r c e n t Rated l o a d   \ t P ow er l o s s (kW)\ t Tim e p e r i o d ( h o u r s )   \ t E ne rg y l o s s (kWh ) ” ) ;

105   printf ( ”   \n

” ) ;

106   printf ( ”   \n\ t \t%d   \ t %f    \ t \ t \ t %d   \ t \ t \ t %. 2 f    \n ” ,L F _1 , P _ l o s s _1 , t 1 , e n e r g y _ l o s s 1 ) ;

107   printf ( ”   \n\ t \t%d   \ t %f    \ t \ t \ t %d   \ t \ t \ t %. 2 f    \n ” ,

L F _2 , P _ l o s s _2 , t 2 , e n e r g y _ l o s s 2 ) ;

108   printf ( ”   \n\ t \t%d   \ t %f    \ t \ t \ t %d   \ t \ t \ t %. 2 f    \n ” ,

L F _3 , P _ l o s s _3 , t 3 , e n e r g y _ l o s s 3 ) ;

109   printf ( ”   \n\ t \t%d   \ t %f    \ t \ t \ t %d   \ t \ t \ t %. 2 f    \n ” ,

L F _f l , P _ l o s s _f l , t _ fl , e n e r g y _ l o s s _ f l ) ;

110   printf ( ”   \n\ t \t%d   \ t %f    \ t \ t \ t %d   \ t \ t \ t %. 2 f    \n ” ,

L F _4 , P _ l o s s _4 , t 4 , e n e r g y _ l o s s 4 ) ;

111   printf (”   \n

” ) ;

112   printf ( ”   \n T o t a l e n e r g y l o a d l o s s e s o ve r 24 hourp e ri o d ( e x cl u di n g 2 h r s a t no−l o a d ) = %. 2 f ” ,

W _ l o s s _ t o t a l ) ;

113   printf ( ”   \n

\n\n” ) ;

114

115   printf ( ”   \n c : T ot al e ne rg y o ut pu t o ve r t he 24 hour

p e r io d i s t ab ul at ed a s :   \n” ) ;116

117   printf ( ”   \n

” ) ;

393

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 395/412

118   printf ( ”   \n P e r c e n t Rated l o a d   \ t PF   \ t kW   \ t

Time p e r i o d ( h o u r s )   \ t E ne rg y d e l i v e r e d (kWh ) ” ) ;119   printf ( ”   \n

” ) ;

120   printf ( ”   \n\ t \t%d   \ t %. 1 f    \ t % . f    \ t \ t %d   \ t \ t \ t % d ”, L F _ 1 , P F 1 , P _ 1 , t 1 , E n e r g y _ 1 ) ;

121   printf ( ”   \n\ t \t%d   \ t %. 1 f    \ t % . f    \ t \ t %d   \ t \ t \ t % d ”, L F _ 2 , P F 2 , P _ 2 , t 2 , E n e r g y _ 2 ) ;

122   printf ( ”   \n\ t \t%d   \ t %. 1 f    \ t % . f    \ t \ t %d   \ t \ t \ t % d ”, L F _ 3 , P F 3 , P _ 3 , t 3 , E n e r g y _ 3 ) ;

123   printf ( ”   \n\ t \t%d   \ t %. 1 f    \ t % . f    \ t \ t %d   \ t \ t \ t % d ”

, L F _ f l , P F 1 , P _ f l , t _ f l , E n e r g y _ f l ) ;124   printf ( ”   \n\ t \t%d   \ t %. 1 f    \ t % . f    \ t \ t %d   \ t \ t \ t % d ”

, L F _ 4 , P F 4 , P _ 4 , t 4 , E n e r g y _ 4 ) ;

125   printf ( ”   \n

” ) ;

126   printf ( ”   \n T o t a l e n e r g y r e q ui r e d by l o a d f o r 24hour p e ri o d ( e x cl u di n g 2 h r s a t no−l o a d ) = %d ” ,

W _ o u t _ t o t a l ) ;

127   printf ( ”   \n

\n\n” ) ;

128

129   printf ( ”   \n d : A ll −day e f f i c i e n c y = %. 1 f p e r ce n t ” ,

e t a ) ;

Scilab code Exa 14.32   I2 Ic

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

394

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 396/412

6   // Ch ap te r 1 4 : TRANSFORMERS

7   / / E xa mp le 1 4−328

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   S_1 = 10 ;   // VA r a t i n g o f s m al l t r an s f o r m er13   V = 115 ;   // v o l t a g e r a t i ng o f t ra n s f o r m e r i n v o l t14   V_2_1 = 6.3 ;   // v o l t a g e r a t i n g o f one p ar t o f  

s e co n da r y w in di ng i n v o l t15   V_2_2 = 5.0 ;   // v o l t a g e r a t i n g o f o th er p ar t o f  

s e co n da r y w in di ng i n v o l t16   Z_2_1 = 0.2 ;   // i mp ed an ce o f on e p a rt o f s e co n da r y

w i nd i n g i n ohm17   Z _2 _2 = 0. 15 ;   // i mpe danc e o f o t he r p ar t o f  

s e c on d a r y w in d in g i n ohm18

19

20   / / C a l c u l a t i o n s21   / / c as e a22   V_2 = V_2_1 + V_2_2 ;   // v o l t a g e a c r o s s s ec on da ry

w in di ng i n v o l t23   I_2 = S_1 / V_2 ;   // Rated s e co n da r y c u r r e nt i n Awhen t he LV s e c o n d a r i e s a r e

24   // c on ne ct ed i n s e r i e s −a i d i n g25

26   / / c as e b27   I_c = ( V _2_ 1 - V _2 _2 ) / ( Z_ 2_ 1 + Z _2 _2 ) ;   //

C i r c u l a t i n g c u r r e nt when LV w i nd i ng s a r e p a r a l l e d28   p er ce nt _o ve rl oa d = ( I_ c / I _2 ) * 10 0 ;   // p e r ce n t

o v e r l o a d p r od u ce d29

30   // D is pl ay t h e r e s u l t s31   disp ( ”E x ampl e 14−32 S o l u t i o n : ” ) ;

32

33   printf ( ”   \n a : Both c o i l s must be s e r i e s −c o n n e c t e dand u se d t o a cc ou nt f o r t he ” ) ;

395

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 397/412

34   printf ( ”   \n f u l l VA r a t i n g o f t h e t ra n s f o r m e r .

Hence , t he r a t ed c u r r e n t i n 5 V ” ) ;35   printf ( ”   \n and 6 . 3 V w i n d i n g i s :   \n” ) ;

36   printf ( ”   \n I 2 = %. 3 f A   \n\n” , I _2 ) ;

37

38   printf ( ”   \n b : When t he w in d in g s a r e p a r a l l e l e d , t hen e t c i r c u l a t i n g c u r r en t i s ” ) ;

39   printf ( ”   \n t h e ne t v o lt ag e ap p li ed a c r o s s t h et o t a l i n t e r n a l i mpeda nce o f ” ) ;

40   printf ( ”   \n t h e w i n d i n g s , o r : \ n” ) ;

41   printf ( ”   \n I c = %. 2 f A   \n ” , I _ c ) ;

42

43   printf ( ”   \n The p er c en t o v e r lo ad i s = %f p er c en t%. f p e rc e n t ” ,perce nt_overload ,

p e r c e n t _ o v e r l o a d ) ;

Scilab code Exa 14.33  Zeh Zel I2rated I2sc overload

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−338

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta

12   S = 2 0 ;   // kVA r a t i n g o f t r a n s fo r m e r13   N_1 = 230 ;   // Number o f p r im a ry t u r n s14   N_2 = 20 ;   // Number o f s e c o n d a r y t u r n s15

16   V_1 = 230 ;   // P ri mary v o l t ag e i n v o l t

396

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 398/412

17   V_2 = 20 ;   // S ec o nd ar y v o l t a g e i n v o l t

1819   / / f ro m F ig . 14 −31 a20   / / HV s i d e SC t e s t d at a21   V_sc = 4.5 ;   // s ho rt c i r c u i t v ol t a g e i n v o l t22   I_sc = 87 ;   // s ho r t c i r c u i t c ur r e nt i n A23   P_sc = 250 ;   / / Power m ea su re d i n W24

25   / / C a l c u l a t i o n s26   / / c as e a27   V _h = V_sc ; // s ho r t c i r c u i t v o l t a g e i n v o l t on HV

s i d e

28   I _h = I_sc ; // s h o r t c i r c u i t c u r r e n t i n A on HV s i d e29   Z_eh = V_h / I_h ;   // E q u i v a le n t immpedance r e f f e r e d

t o t he h ig h s i d e when c o i l s a re s e r i e s c o nn ec te d30

31   / / c as e b32   Z _e l = Z _e h * ( N_ 2 / N_ 1 )^2 ;   / / E q u i v a l e n t i mm pe da nc e

r e f f e r e d t o t h e l ow s i d e33   / / when c o i l s a re s e r i e s c on ne ct ed34

35   / / c as e c36   I _ 2_ r at e d = ( S * 10 00 ) / V _2 ;

  // R at ed s e c o n d a r yc u r r e n t when c o i l s a re s e r i e s c on ne ct ed37

38   / / c as e d39   I_2 _sc = S / Z_el ;   // S ec on d ar y c u r r e n t when t h e

c o i l s i n F i g .14 −31 a a r e40   / / s h or t −c i r c u i t e d w i t h r at ed v o l t a ge a p pl i ed t o t h e

HV s i d e41

42   p e r c e n t _o v e r lo a d = ( I _ 2 _ sc / I _ 2 _ r a t ed ) * 1 00 ;   //p e r ce n t o v e r lo a d

4344

45   // D is pl ay t h e r e s u l t s46   disp ( ”E x ampl e 14−33 S o l u t i o n : ” ) ;

47

397

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 399/412

48   printf ( ”   \n S l i g h t v a r i a t i o n s i n an s w e r s ar e due

t o non−a p pr ox im at ed c a l c u l a t i o n s ” ) ;49   printf ( ”   \n i n s c i l a b \ n\n” ) ;

50   printf ( ”   \n a : E q ui v al e n t immpedance r e f f e r e d t o t heh i gh s i d e when c o i l s a re s e r i e s c on ne ct ed : ” ) ;

51   printf ( ”   \n Z e h = %f ohm   \n ” , Z _ e h ) ;

52

53   printf ( ”   \n b : E q ui v al e n t immpedance r e f f e r e d t o t hel ow s i d e when c o i l s a re s e r i e s c on ne ct ed : ” ) ;

54   printf ( ”   \n Z e l = %f ohm   \n ” , Z _ e l ) ;

55

56   printf ( ”   \n c : Rated s e co n da r y c u r r e n t when c o i l s

a re s e r i e s c on ne ct ed : ” ) ;57   printf ( ”   \n I 2 ( r a te d ) = %d A   \n” , I _ 2 _ r a t e d ) ;

58

59   printf ( ”   \n d : S ec on da ry c u r r e nt when t he c o i l s i nF i g . 1 4 −31 a a r e s ho rt −c i r c u i t e d : ” ) ;

60   printf ( ”   \n w i t h r at e d v ol t a g e a pp l i e d t o th e HVs i d e : ” ) ;

61   printf ( ”   \n I 2 ( s c ) = %d A   \n” , I _ 2 _ s c ) ;

62   printf ( ”   \n The p e rc e n t o v e r l o a d i s = %d pe rc e n t ”, p e r c e n t _ o v e r l o a d ) ;

Scilab code Exa 14.34  PT kVA phase and line currents kVAtransformers

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−348

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

398

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 400/412

10

11   / / G iv en d a ta12   I_L = 100 ;   // Load c u r r e nt i n A13   c os _t he ta = 0 .7 ;   // power f a c t o r l a g g i n g14

15   // Y−   d i s t r i b u t i o n t r a ns f o rm e r16   S = 6 0 ;   // kVA r a t i n g o f t r a n s fo r m e r17   V _1 = 2300 ;   // p ri ma ry v o l t a g e i n v o l t18   V_2 = 230 ;   // s ec on da ry v o l t a ge i n v o l t19

20   / / C a l c u l a t i o n s21   / / c as e a

22   V_L = 230 ;   // v o l t a g e a c r o s s l oa d i n v o l t23   P_T = ( sqrt ( 3) * V _ L * I _ L * c o s _t h e ta ) / 1 0 0 0 ;   / / p ow er

co ns um ed by t h e p l a n t i n kW24   k V A _T = P _T / c o s _t h et a ;   // a p p a r en t p ow er i n kVA25

26   / / c as e b27   kVA = S ;   // kVA r a t i n g o f t r a n s fo r m e r28   V_p = V_2 ;   // p ha se v o l t a g e i n v o l t ( d el t a −

c on n e ct i o n on l oa d s i d e )29   I _ P 2 _ r at e d = ( k V A * 1 0 00 ) / ( 3 * V _ p ) ;   // R at ed s e c o n d a r y

p ha se c u r r e nt i n A30   I _ L 2 _ ra t e d =   sqrt ( 3) * I _ P 2 _ r a te d ;   // R at ed s e c o n d a r yl i n e c ur r e nt i n A

31

32   / / c as e c33   // p e r ce n t l o ad on e ac h t r a n s fo r m e r = ( l o ad c u r r e n t

p er l i n e ) / ( r at ed c u rr e n t p er l i n e )34   p er ce nt _l oa d = I _L / I _L 2_ ra te d * 1 00 ;

35

36   / / c as e d37   / / s u b s c r i p t d f o r V L i n d i c a t e s c as e d , V L

38   V _L _d = 23 00 ;39   I _P 1 = ( k V A_ T * 1 00 0) / ( sqrt ( 3 ) * V _ L _ d ) ;   // p r im a ry

p ha se c u r r e nt i n A40   I _L1 = I_ P1 ;   // p ri ma ry l i n e c u r r e nt i n A(Y−

c o n n e c t i o n )

399

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 401/412

41

42   / / c as e e43   k VA _t ra ns fo rm er = k VA / 3 ;   // kVA r a t i n g o f e ac ht r a n s f o r m e r

44

45   // D is pl ay t h e r e s u l t s46   disp ( ”E x ampl e 14−34 S o l u t i o n : ” ) ;

47

48   printf ( ”   \n a : p ower cons umed by t h e p l a n t : \ nP T = %. 1 f kW   \n ” , P _ T ) ;

49   printf ( ”   \n a p p a r e n t power : \ n kVA T = %. 1 f  kVA   \n” , k V A _ T ) ;

5051   printf ( ”   \n b : Rated s e co n da r y p ha se c u r r e nt : \ n

I P2 ( r at ed ) = %f A %. f A   \n” ,I_P2_rated ,

I _ P 2 _ r a t e d ) ;

52   printf ( ”   \n Rated s e c o n d a r y l i n e c ur re n t : \ nI L2 ( r at ed ) = %f A %. 1 f A   \n” ,I_L2_rated ,

I _ L 2 _ r a t e d ) ;

53

54   printf ( ”   \n c : p e rc e n t l oa d on e a ch t r an s f o r m er = %. 1 f p e r ce n t   \n ” , p e r c e n t _ l o a d ) ;

55

56   printf ( ”   \n d : p ri ma ry p ha se c u r r e nt : \ n I P 1 = %. f A   \n” , I _ P 1 ) ;

57   printf ( ”   \n p r i m a r y l i n e c u r r e n t : \ n I L 1 = %.f A   \n” , I _ L 1 ) ;

58

59   printf ( ”   \n e : kVA r a t i n g o f e ac h t r a n s f or m e r = %dkVA” , k V A _ t r a n s f o r m e r ) ;

Scilab code Exa 14.35  PT ST phase and line currents kVAtransformers

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow

400

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 402/412

3   // P r en t i c e H al l o f I n d i a

4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−358

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   I_L = 100 ;   // Load c u r r e nt i n A13   c os _t he ta = 0 .7 ;   // power f a c t o r l a g g i n g

1415   //   −   d i s t r i b u t i o n t r a n s f o r m e r16   S = 6 0 ;   // kVA r a t i n g o f t r a n s fo r m e r17   V _1 = 2300 ;   // p ri ma ry v o l t a g e i n v o l t18   V_2 = 230 ;   // s ec on da ry v o l t a ge i n v o l t19

20   / / C a l c u l a t i o n s21   / / c as e a22   V_L = 230 ;   // v o l t a g e a c r o s s l oa d i n v o l t23   P_T = ( sqrt ( 3) * V _ L * I _ L * c o s _t h e ta ) / 1 0 0 0 ;   / / p ow er

co ns um ed by t h e p l a n t i n kW24   k V A _T = P _T / c o s _t h et a ;   // a p p a r en t p ow er i n kVA25

26   / / c as e b27   kVA = S ;   // kVA r a t i n g o f t r a n s fo r m e r28   V_p = V_2 ;   // p h a s e v o lt a g e i n v o l t29   I _ P 2 _ r at e d = ( k V A * 1 0 00 ) / ( 3 * V _ p ) ;   // R at ed s e c o n d a r y

p ha se c u r r e nt i n A30   I _ L 2 _ ra t e d =   sqrt ( 3) * I _ P 2 _ r a te d ;   // R at ed s e c o n d a r y

l i n e c ur r e nt i n A31

32   / / c as e c33   // p e r ce n t l o ad on e ac h t r a n s fo r m e r = ( l o ad c u r r e n t

p er l i n e ) / ( r at ed c u rr e n t p er l i n e )34   p er ce nt _l oa d = I _L / I _L 2_ ra te d * 1 00 ;

35

401

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 403/412

36   / / c as e d

37   / / s u b s c r i p t d f o r V L i n d i c a t e s c as e d , V L38   V _L _d = 23 00 ;

39   I _P 1 = ( k V A_ T * 1 00 0) / ( sqrt ( 3 ) * V _ L _ d ) ;   // p r im a ryp ha se c u r r e nt i n A

40   I _ L1 =   sqrt ( 3) * I _ P1 ;   // p r i ma r y l i n e c u r r e n t i n A41

42   / / c as e e43   k VA _t ra ns fo rm er = k VA / 3 ;   // kVA r a t i n g o f e ac h

t r a n s f o r m e r44

45   // D is pl ay t h e r e s u l t s

46   disp ( ”E x ampl e 14−35 S o l u t i o n : ” ) ;47

48   printf ( ”   \n a : p ower cons umed by t h e p l a n t : \ nP T = %. 1 f kW   \n ” , P _ T ) ;

49   printf ( ”   \n a p p a r e n t power : \ n kVA T = %. 1 f  kVA   \n” , k V A _ T ) ;

50

51   printf ( ”   \n b : Rated s e co n da r y p ha se c u r r e nt : \ nI P2 ( r at ed ) = %f A %. f A   \n” ,I_P2_rated ,

I _ P 2 _ r a t e d ) ;

52   printf (”   \n Rated s e c o n d a r y l i n e c ur re n t : \ nI L2 ( r at ed ) = %f A %. 1 f A   \n” ,I_L2_rated ,

I _ L 2 _ r a t e d ) ;

53

54   printf ( ”   \n c : p e rc e n t l oa d on e a ch t r an s f o r m er = %. 1 f p e r ce n t   \n ” , p e r c e n t _ l o a d ) ;

55

56   printf ( ”   \n d : p ri ma ry p ha se c u r r e nt : \ n I P 1 = %. f A   \n” , I _ P 1 ) ;

57   printf ( ”   \n p r i m a r y l i n e c u r r e n t : \ n I L 1 = %f  A %. 1 f A   \n” , I _ L 1 , I _ L 1 ) ;

58   printf ( ”   \n The pr i m a r y l i n e c ur r e nt drawn by a−   bank i s 3 t i m e s t h e ” ) ;

59   printf ( ”   \n l i n e c u r r e n t drawn by a Y−   bank . \ n”) ;

60

402

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 404/412

61   printf ( ”   \n e : kVA r a t i n g o f e ac h t r a n s f or m e r = %d

kVA” , k V A _ t r a n s f o r m e r ) ;

Scilab code Exa 14.36  find line currents and their sum

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om

56   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−368

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   // 3−phas e ,3 − w i r e   −c o nn ec te d t r a n s f o r m e r shown i n

F i g . 1 4 −4213   V_L = 33 ;   // l i n e v o l t a g e i n kV

1415   f = 6 0 ; // f r e q ue n cy i n Hz16

17   / / p ower f a c t o r18   P F1 = 1;   // u ni ty power f a c t o r f o r I AB19   P F2 = 0 .7 ;   // 0 . 7 l a g g i n g power f a c t o r f o r I BC20   P F3 = 0 .9 ;   // 0 . 9 l a g g i n g power f a c t o r f o r I CA21

22   / / C a l c u l a t i o n s23   V _ AB = V _L * exp ( % i * ( 0) * ( % p i / 1 8 0) ) ;   // l i n e v o l t a g e

i n kV t a k e n a s r e f e r e n c e v o l t a ge24

25   V _ BC = V _L * exp ( % i * ( - 1 20 ) * ( % p i / 1 80 ) ) ;   // l i n ev o l t a g e i n kV

26   V _ B C_ m =   abs ( V _ B C ) ; / / V BC m=m a g n i t ud e o f V BC i n kV

403

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 405/412

27   V _ B C_ a =   atan ( imag ( V _B C ) / real ( V _B C ) ) * 18 0/ % p i - 1 80

; / /V BC a=p ha s e a n g l e o f V BC i n d e g r e e s28   / / 180 i s s u b t r a c t e d from I BC a t o make i t s i m i l a rt o t ex t bo o k a n g le

29

30   V _ CA = V _L * exp ( % i * ( - 2 40 ) * ( % p i / 1 80 ) ) ;   // l i n ev o l t a g e i n kV

31   V _ C A_ m =   abs ( V _ C A ) ; //V CA m=magni t ude of V CA i n kV32   V _ C A_ a =   atan ( imag ( V _C A ) / real ( V _C A ) ) * 18 0/ % p i - 1 80

; / /V CA a=p ha s e a n g l e o f V CA i n d e g r e e s33   / / 180 i s s u b t r a c t e d from I BC a t o make i t s i m i l a r

t o t ex t bo o k a n g le

3435   t h et a _1 = a co sd ( P F1 ) ;   / / PF1 a n g l e36   t h et a _2 = a co sd ( P F2 ) ;   / / PF2 a n g l e37   t h et a _3 = a co sd ( P F3 ) ;   / / PF3 a n g l e38

39

40   I _ AB = 1 0* exp ( % i * ( t h e ta _ 1 ) * ( % pi / 1 8 0 ) ) ;   / / I ABc u r r e nt i n kA

41   I _ A B_ m =   abs ( I _ A B ) ; / / I AB m=m a g ni t ud e o f I AB i n kA42   I _ A B_ a =   atan ( imag ( I _A B ) / real ( I _ A B ) ) * 1 8 0 / % p i ; //

I AB a=p ha se a n gl e o f I AB i n d e gr e e s43

44   I _ BC = 1 5* exp ( % i *( - 1 20 - t h et a _2 ) * ( % pi / 1 80 ) ) ;   //I BC c u r r e nt i n kA

45   I _ B C_ m =   abs ( I _ B C ) ; / / I BC m=m ag n it ud e o f I BC i n kA46   I _ B C_ a =   atan ( imag ( I _B C ) / real ( I _B C ) ) * 18 0/ % p i - 1 80 ;

// I BC a=p ha se a n g le o f I BC i n d e g r e es47   / / 180 i s s u b t r a c t e d from I BC a t o make i t s i m i l a r

t o t ex t bo o k a n g le48

49   I _ CA = 1 2* exp ( % i *( - 2 40 + t h et a _3 ) * ( % pi / 1 80 ) ) ;   //

I CA c u r r e nt i n kA50   I _ C A_ m =   abs ( I _ C A ) ; / / I CA m=m a g ni t ud e o f I CA i n kA51   I _C A_ a = 180 +   atan ( imag ( I _C A ) / real ( I _ C A ) ) * 1 8 0 / % p i ;

// I CA a=p ha se a n g le o f I CA i n d e g r e es52   / / 1 80 i s added t o I BC a t o make i t s i m i l a r t o

404

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 406/412

t e xt b o ok a n g l e

5354   / / c as e a55   I_ AC = - I_C A ;

56   I _A = I_AB + I_AC ;   // p ha se c u r r e nt i n kA57   I _ A_ m =   abs ( I _ A ) ; // I A m=m ag ni tu de o f I A i n kA58   I _ A_ a =   atan ( imag ( I _A ) / real ( I _ A ) ) * 1 8 0 / % p i ; / / I A a =

p h a se a n g l e o f I A i n d e gr e e s59

60   / / c as e b61   I_ BA = - I_A B ;

62   I _B = I_BC + I_BA ;   // p ha se c u r r e nt i n kA

63   I _ B_ m =   abs ( I _ B ) ; // I B m=m ag ni tu de o f I B i n kA64   I _ B_ a =   atan ( imag ( I _B ) / real ( I _ B ) ) * 1 8 0 / % p i ; / / I B a =

p h a s e a ng le o f I B i n d e g r e e s65

66   / / c as e c67   I_ CB = - I_B C ;

68   I _C = I_CA + I_CB ;   // p ha se c u r r e nt i n kA69   I _ C_ m =   abs ( I _ C ) ; // I C m=m ag ni tu de o f I C i n kA70   I _ C_ a =   atan ( imag ( I _C ) / real ( I _ C ) ) * 1 8 0 / % p i ; / / I C a =

p h a se a n g l e o f I C i n d e g r e e s71

72   / / c as e d73   ph as or_ su m = I_A + I_B + I_C ;

74

75

76   // D is pl ay t h e r e s u l t s77   disp ( ”E x ampl e 14−36 S o l u t i o n : ” ) ;

78

79   printf ( ”   \n We m ust f i r s t w r i t e e ac h o f t h e p ha s ec u r r e nt s i n p o l a r form . ” ) ;

80   printf ( ”   \n S i n ce r e f e r e n c e v o lt a g e , V AB i s assumed

a s 33   <0 kV , we may w r i t e \n” ) ;81

82   printf ( ”   \n I AB = %d   <%d kA ( un i t y PF ) , \ n” , I _ A B _ m ,

I _ A B _ a ) ;

83   printf ( ”   \n But I BC l a g s V BC , whi ch i s %. f    <%d kV”

405

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 407/412

, V _ B C _ m , V _ B C _ a ) ;

84   printf ( ”   \n by = a co sd (%. 1 f ) =   −%. 2 f l a g , andc o n s e q u e n t l y ” , P F 2 , t h e t a _ 2 ) ;

85   printf ( ”   \n I B C = %. f    <% . 2 f kA   \n” , I _ B C _ m , I _ B C _ a ) ;

86

87   printf ( ”   \n S i m i l a r l y , I CA l e a d s V CA = %. f    <%. f kV”, V _ C A _ m , V _ C A _ a ) ;

88   printf ( ”   \n by = a c o sd (%. 1 f ) = %. 2 f l ea d , andc o n s e q u e n t l y ” , P F 3 , t h e t a _ 3 ) ;

89   printf ( ”   \n I C A = % d   <%. 2 f kA   \n” , I _ C A _ m , I _ C A _ a ) ;

90

91   printf ( ”   \n W ri ti ng t h r e e p ha se c u r r en t s i n c o mp le s

form y i e l d s . \ n” ) ;92   printf ( ”   \n I AB i n kA = ”) ; disp ( I _ A B ) ;

93   printf ( ”   \n I BC i n kA = ” ) ; disp ( I _ B C ) ;

94   printf ( ”   \n I CA i n kA = ”) ; disp ( I _ C A ) ;

95

96   printf ( ”   \n From c o n v e n ti o n a l t h r e e p ha se t h eo r y f o ru n b a l a n c e d   −c o n n e c te d l o a d s ” ) ;

97   printf ( ”   \n a nd f ro m F i g . 1 4 −4 2 , we h a ve \n” ) ;

98

99   printf ( ”   \n a : I A i n kA = ” ) ; disp ( I _ A ) ;

100   printf (”   \n I A = %. 2 f  

  <

% . 2 f kA   \n”, I _ A _ m , I _ A _ a ) ;

101

102   printf ( ”   \n b : I B i n kA = ” ) ; disp ( I _ B ) ;

103   printf ( ”   \n I B = %. 2 f    <% . 2 f kA   \n” , I _ B _ m , I _ B _ a ) ;

104

105   printf ( ”   \n c : I C i n kA = ” ) ; disp ( I _ C ) ;

106   printf ( ”   \n I C = %. 2 f    <% . 2 f kA   \n” , I _ C _ m , I _ C _ a ) ;

107

108   printf ( ”   \n d : P ha so r sum o f t he l i n e c u r r e n t s : ” ) ;

109   printf ( ”   \n I L in kA = ” ) ; disp ( p h a s o r _ s u m ) ;

Scilab code Exa 14.37   kVAcarry loadtransformer VVkVA ratiokVA in-creaseload

406

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 408/412

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs

2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−378

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta

12   //   −   t r a n s f o r m e r s i n Ex . 3 513   kVA_1 = 20 ;   // kVA r a t i n g o f t r an s f o r m er 114   kVA_2 = 20 ;   // kVA r a t i n g o f t r an s f o r m er 215   kVA_3 = 20 ;   // kVA r a t i n g o f t r an s f o r m er 316

17   V _1 = 2300 ;   // Pr imary v o l t a g e i n v o l t18   V_2 = 230 ;   // S ec on da ry v o l t a g e i n v o l t19

20   kVA = 40 ;   / / kVA s u p p l i e d by t h e bank21   P F = 0.7 ;   // l a g g i n g power f a c t o r a t which bank

s u p p l i e s kVA22

23   // one d e f e c t i v e t r an s f o r me r i s removed24

25   / / C a l c u l a t i o n s26   / / c as e a27   k V A _ tr a ns f or m er = k VA /   sqrt ( 3 ) ;   // kVA l o a d c a r r i e d

by e ac h t r a n s fo r m e r28

29   / / c as e b30   p e rc e nt _ ra t ed l oa d _T r = k V A_ t ra n sf o rm e r / k VA _1 * 1 00

;   // p e rc e n t l oa d c a r r i e d by e ac h t r an s f o r me r31

32   / / c as e c33   k V A _V _ V =   sqrt ( 3) * k V A_ 1 ;   // T ot al kVA r a t i n g o f t he

t r a n s fo r m e r bank i n V−V

407

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 409/412

34

35   / / c as e d36   r at io _b an ks = k VA _V _V / ( k VA _1 + k VA _2 + k VA _3 ) *

100;   // r a t i o o f V−V b ank t o   −   bank Trr a t i n g s

37

38   / / c as e e39   kVA _Tr = kVA / 3 ;

40   p e rc e nt _ in c re a se _ lo a d = k V A_ t ra n sf o rm e r / k VA _ Tr *

100 ;   // p e r ce nt i n c r e a s e i n l oa d on e a cht r a n s f o r m e r when o ne Tr i s rem oved

41

4243   // D is pl ay t h e r e s u l t s44   disp ( ”E x ampl e 14−37 S o l u t i o n : ” ) ;

45

46   printf ( ”   \n a : kVA l o ad c a r r i e d by e ac h t r a n s fo r m e r= % . 1 f kVA/ t r a n s f o r m e r \n” , k V A _ t r a n s f o r m e r ) ;

47

48   printf ( ”   \n b : p e r c e nt r at ed l oa d c a r r i e d by e a c ht r a n s f o r m e r = %. 1 f p e r c e n t   \n” ,

p e r c e n t _ r a t e d l o a d _ T r ) ;

49

50   printf ( ”   \n c : T ot al kVA r a t i n g o f t he t r an s f or m e rbank i n V−V = %. 2 f kVA   \n” , k V A _ V _ V ) ;

51

52   printf ( ”   \n d : r a t i o o f V−V b ank t o   −   bank Trr a t i n g s = %. 1 f p e r ce n t   \n” , r a t i o _ b a n k s ) ;

53

54   printf ( ”   \n e : kVA l o ad c a r r i e d by e ac h t r a n s fo r m e r (V−V ) = %. 2 f kVA/ t r a n s f o r m e r \n” , k V A _ T r ) ;

55   printf ( ”   \n p e r c e n t i n c r e a s e i n l o a d on e a c ht r a n s f o r m e r when o ne Tr i s rem oved : ” ) ;

56   printf ( ”   \n = %. 1 f p e r c e n t ” ,p e r c e n t _ i n c r e a s e _ l o a d ) ;

408

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 410/412

Scilab code Exa 14.38   IL alpha Ia kVA

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS7   / / E xa mp le 1 4−388

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

11   / / G iv en d a ta12   // 3−pha se SCIM13   V = 440 ;   // r a te d v o l t a g e i n v o l t o f SCIM14   h p = 100 ;   // r a t e d p ower i n hp o f SCIM15   P F = 0.8 ;   // power f a c t o r16   V_1 = 155 ;   // p r i ma r y v o l t a ge i n v o l t o f Tr

17   V_2 = 110 ;   // s ec on da ry v o l t a ge i n v o l t o f T r18

19   V_a = 110 ;   // a rm at ur e v o l t a g e i n v o l t20   V_L = 440 ;   // Load v o l t a ge i n v o l t21   eta = .98 ;   // e f f i c i e n c y o f t h e Tr .22

23   / / C a l c u l a t i o n s24   / / c as e a25   / / r e f e r r i n g t o a pp e n d i x A−3 , T a b l e 4 30 −150 f o o t n o t e s26   I _L = 1 24 *1 .2 5 ;   // Motor l i n e c u rr e n t i n A27

28   / / c as e b29   a lp ha = V _a / V_ L ;   // T ra n sf o rm a ti o n r a t i o30

31   / / c as e c

409

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 411/412

32   I_a = ( sqrt ( 3) / 2) * ( I _L / ( a lp ha * e ta ) ) ;   / / C u rr e nt

i n t he p r i m a ry o f t he s c o t t t r an s f o r me r s33

34   / / c as e d35   k V A = ( V _a * I _a ) / (( sqrt ( 3 ) / 2 ) * 1 0 0 0 ) ;   / / kVA r a t i n g o f  

t he main a nd t e a s e r t r a n s f o r m e r s36

37   // D is pl ay t h e r e s u l t s38   disp ( ”E x ampl e 14−38 S o l u t i o n : ” ) ;

39

40   printf ( ”   \n a : Motor l i n e c u rr e n t : \ n I L = %d A\n ” , I _ L ) ;

4142   printf ( ”   \n b : T ra ns fo rm at io n r a t i o : \ n a l p h a =

N 1 / N 2 = V a / V L = %. 2 f    \n” , a l p h a ) ;

43

44   printf ( ”   \n c : C ur re nt i n t he p ri ma ry o f t he s c o t tt r a n sf o r m er s : \ n I a = %. f A   \n” , I _ a ) ;

45

46   printf ( ”   \n d : kVA r a t i n g o f t he main and t e a s e rt r a n sf o r m er s : \ n kVA = %. 1 f kVA” , k V A ) ;

Scilab code Exa 14.39  VL ST Idc Sac Sdc per line

1   / / E l e c t r i c M ac hi ne ry and T r an s f or m e rs2   / / I r v i n g L k osow3   // P r en t i c e H al l o f I n d i a4   / / 2 nd e d i t i om5

6   // Ch ap te r 1 4 : TRANSFORMERS

7   / / E xa mp le 1 4−398

9   clear ;   clc ;   close ;   // C l ea r t he work s p ac e andc o n s o l e .

10

410

8/10/2019 Electric Machinery and Transformers_I. L. Kosow

http://slidepdf.com/reader/full/electric-machinery-and-transformersi-l-kosow 412/412

11   / / G iv en d a ta

12   I_L = 1 ;   // Load c u r r e n t i n kA13   V_m = 750 ;   // Peak v o l t a g e i n kV14

15   / / C a l c u l a t i o n s16   / / c as e a17   V _ L = ( V _m ) / sqrt ( 2 ) ;   / / Max . a l l o w a b l e Vrms i n kV

t ha t may be a p p l i e d t o t he l i n e s u si ng ac18

19   / / c as e b20   S _ T _a c =   sqrt ( 3 ) * V _L * I _ L ;   // T ot al 3−p h as e a p p a r en t

power i n MVA

2122   / / c as e c23   I_rms = I_L ;   // rms v al ue o f l oa d c u r r e n t i n kA24   I _ dc = I _ r ms * sqrt ( 2 ) ;   / / Max . a l l o w a b l e c u r r e n t i n kA

t ha t can be d e l i v e r e d by d c t r a n s mi s s i o n25

26   / / c as e d27   V_dc = V_m ;   // dc v o l t a ge i n kV28   S _T _d c = V _d c * I_ dc ;   // T o ta l dc a p pa r en t p ower

d e l i v e r e d by two l i n e s i n MVA29

30   / / c as e e31   S _a c_ li ne = S _T _a c / 3 ;   // Power p er ac l i n e32

33   / / c as e f  34   S _d c_ li ne = S _T _d c / 2 ;   // Power p er dc l i n e35

36   // D is pl ay t h e r e s u l t s37 disp ( ”E x ampl e 14−39 S o l u t i o n : ” ) ;