ECE 340 ELECTRONICS I OPERATIONAL AMPLIFIERS. OPERATIONAL AMPLIFIER THEORY OF OPERATION...

Post on 24-Dec-2015

224 views 0 download

Tags:

Transcript of ECE 340 ELECTRONICS I OPERATIONAL AMPLIFIERS. OPERATIONAL AMPLIFIER THEORY OF OPERATION...

ECE 340ELECTRONICS I

OPERATIONAL AMPLIFIERS

OPERATIONAL AMPLIFIER

• THEORY OF OPERATION

• CHARACTERISTICS

• CONFIGURATIONS

THEORY OF OPERATION

• AMPLIFIES DIFFERENCE OF TWO INPUT SIGNALS

• PRODUCES SINGLE OUTPUT

• OPERATES OVER WIDE FREQUENCY RANGE

CHARACTERISTICS

• LARGE OPEN LOOP GAIN

• LARGE INPUT IMPEDANCE

• SMALL OUTPUT IMPEDANCE

• LARGE BANDWIDTH

OPAMP DEFINITIONS

• OPEN LOOP GAIN – AO

• INPUT RESISTANCE – RIN

• OUTPUT RESISTANCE – ROUT

• NON-INVERTING INPUT CURRENT – i+

• INVERTING INPUT CURRENT – i-

SYMBOL

+

-

vout

v-

+VPOS

-VNEG

v+

IDEAL OPERATIONAL AMPLIFER

• INFINITE OPEN LOOP GAIN

• INFINITE INPUT RESISTANCE

• ZERO OUTPUT RESISTANCE

• ZERO INPUT CURRENT

IDEAL CHARACTERISTICS

00

0

ii

RR

A

OUTIN

O

IDEAL RELATIONSHIPS

vvvvAv

vvv

Oout

in

CIRCUIT MODEL

vo

+

v+

-

v-

-

vin

Rout

+ AO*vin+

vo-Rin

CONFIGURATIONS

• INVERTING GAIN AMPLIFIER

• NON- INVERTING GAIN AMPLIFIER

• UNITY GAIN AMPLIFIER

• SUMMING AMPLIFIER

• DIFFERENCE AMPLIFIER

CONFIGURATIONS

• VOLTAGE INTEGRATOR

• VOLTAGE DIFFERENTIATOR

INVERTING GAIN AMPLIFIER

RF

vo

+

-

vi

RI

VIRTUAL GROUND

io

ii

CURRENT PROPERTIES

oi

f

oo

i

ii

ii

R

vi

R

vi

VOLTAGE RELATIONSHIPS

i

f

i

o

f

o

i

i

R

R

v

v

R

v

R

v

NON-IDEAL ANALYSIS

oIF

Ii

IF

F

F

o

I

i

IF

IF

F

o

I

i

FIF

o

I

i

vRR

Rv

RR

Rv

R

v

R

v

RR

RRv

R

v

R

vv

RRR

vv

R

vv

11

0

SUBSTITUTION INTO OPAMP EQUATION

iIF

FO

IF

IOo

oIF

Ii

IF

FOo

oIF

Ii

IF

F

Oo

vRR

RA

RR

RAv

vRR

Rv

RR

RAv

vRR

Rv

RR

Rvv

vvAv

1

0

0

VOLTAGE GAIN EQUATION

OI

FI

F

i

o

OI

F

O

I

F

i

o

IOIF

FO

i

o

IF

IO

IF

FO

i

o

AR

RR

R

v

v

ARRA

R

R

v

v

RARR

RA

v

v

RR

RA

RR

RA

v

v

111

1

1

1

GAIN ERROR

%1001

1%

111

111

1

11

1

OI

F

OI

F

I

F

i

o

OI

FI

F

i

o

AR

Rerrorgain

AR

R

R

R

v

v

ARRR

R

v

v

small

HIGH GAIN INVERTING AMPLIFIER

R2 R4

R3

R5

+

-

vO

R1

vI

vx

VOLTAGE AND CURRENT RELATIONSHIPS

21

43232

32

432

32

32

32

R

vi

R

vi

ii

vRRRRR

RRvv

RRR

RR

RRRR

v

XO

II

OI

OXOX

VOLTAGE GAIN CALCULATION

324

1

2

32

43232

1

2

43232

32

21

111

1

RRR

R

R

v

v

RR

RRRRR

R

R

v

v

vRRRRR

RR

Ri

R

vi

I

O

I

O

OOI

I

DESIGN CONSIDERATIONS

3

2

1

2

42

324

1

2

2

111

R

R

R

R

v

v

RRIf

RRR

R

R

v

v

I

O

I

O

NON-INVERTING GAIN AMPLIFIER

io

vi

RI

+

-

vo

RF

IDEAL NON-INVERTING GAIN AMPLIFIER EQUATIONS

i

IF

oo

vv

RR

vi

GAIN CALCULATION

I

F

i

o

oIF

Ii

oIF

IoI

R

R

v

v

vRR

Rvvv

vRR

RviRv

1

NON-IDEAL EQUATIONS

FI

I

O

i

o

FI

IO

O

i

o

iOFI

IOoo

FI

IiOo

oFI

Ii

RRR

Av

v

RRRA

A

v

v

vARR

RAvv

RR

RvAv

vRR

Rvvv

11

1

1

NON-IDEAL EQUATIONS

OI

FII

FI

i

o

IO

FI

FI

i

o

IO

FI

FI

i

o

FI

I

O

i

o

ARRRR

RR

v

v

RARRRR

v

v

RARRRR

v

v

RRR

Av

v

11

1

11

GAIN ERROR CALCULATION

%1001

1%

111

11

11

11

1

OI

F

OI

F

I

FI

i

o

OI

FI

I

FI

i

o

OI

FI

I

FI

i

o

OI

FII

FI

i

o

AR

Rerrorgain

AR

R

R

RR

v

v

AR

RR

R

RR

v

v

AR

RR

R

RR

v

v

ARRRR

RR

v

v

UNITY GAIN AMPLIFIER

vi

+

-

vo

UNITY GAIN AMPLIFIER EQUATIONS

oi

oi

vvvv

vvvv

ii

00

PRACTICAL UNITY AMPLIFIER EQUATIONS

O

O

i

o

O

iOo

oiOoOo

oi

A

A

v

v

A

vAv

vvAvvvAv

vvvv

11

INVERTING SUMMING AMPLIFIER

R2

v3

v1

R1

v2

+

-

RF

voR3 0 V

GAIN CALCULATIONS

33

22

11

3

3

2

2

1

1

321

vR

Rv

R

Rv

R

Rv

R

v

R

v

R

v

R

v

iiii

FFFo

F

o

o

NON-INVERTING SUMMING AMPLIFIER

vO

v2

R3

RF

R2

v3

RA

R1

v1 +

-

VOLTAGE RELATIONSHIPS USING SUPERPOSITION

o

AF

A

oAF

A

vRR

Rv

RRR

RRv

RRR

RRv

RRR

RR

vvvRR

Rv

vRRR

RRv

RRR

RRv

RRR

RRv

3321

212

213

131

132

32

3321

212

213

131

132

32

INPUT VOLTAGE ONE EQUIVALENT

1

32132

321

132

32

1

132

32

32

32

1132

32

vRRRRR

RRv

RRR

RR

v

RRRRR

RRRR

vRRR

RR

INPUT VOLTAGE TWO EQUIVALENT

2

13213

132

213

13

2

213

13

13

13

2213

13

vRRRRR

RRv

RRR

RR

v

RRR

RR

RR

RR

vRRR

RR

INPUT VOLTAGE THREE EQUIVALENT

3

21321

213

321

21

3

321

21

21

21

3321

21

vRRRRR

RRv

RRR

RR

v

RRRRR

RRRR

vRRR

RR

OUTPUT VOLTAGE RELATIONSHIP

oAF

A

oAF

A

vRR

R

vRRRRR

RRv

RRRRR

RRv

RRRRR

RR

vRR

Rv

RRR

RRv

RRR

RRv

RRR

RR

321321

212

13213

131

32132

32

3321

212

213

131

132

32

FINAL OUTPUT VOLTAGE EQUATION

321213132133221

21321

321

13213

213

32132

1321

vRRvRRvRRRRRRRRR

RRv

RRRRR

vRR

RRRRR

vRR

RRRRR

vRR

R

Rv

A

AFo

A

Fo

DIFFERENCE AMPLIFIER

R3

v1

v2

R1

+

-

R2

vo

R4

VOLTAGE EQUATIONS

121

2

21

1

243

4

vRR

Rv

RR

Rv

vRR

Rv

o

EQUATING INPUT VOLTAGES

121

22

43

4

1

21

121

2

21

12

43

4

vRR

Rv

RR

R

R

RRv

vRR

Rv

RR

Rv

RR

R

vv

o

o

DESIGN CONSIDERATIONS

121

2

4231

121

22

43

4

1

21

vvR

Rv

RRandRRIf

vRR

Rv

RR

R

R

RRv

o

o

VOLTAGE INTEGRATOR

+

-vi

R1

R2

vO

C

INTEGRATOR EQUATIONS

io

oi

oi

ooI

i

vCsR

v

sCvR

vii

sCviR

vi

1

1

1

1

PRACTICAL VOLTAGE INTEGRATOR

+

-vI

R1

R2

vO

R3

C

PRACTICAL INTEGRATOR EQUATIONS

io

oi

oi

PP

oo

ii

vCsRR

Rv

vR

CsR

R

vii

CsR

RZ

Z

vi

R

vi

31

3

3

3

1

3

3

1

1

1

1

1

VOLTAGE DIFFERENTIATOR

+

-vI

C

R2

vO

R1

DIFFERENTIATIOR EQUATIONS

io

oioi

ooii

vCsRv

R

vsCvii

R

visCvi

1

1

1

PRACTICAL VOLTAGE DIFFERENTIATOR

+

-vi

CR1

R2

vO

R3

PRACTICAL DIFFERENTIATOR EQUATIONS

io

oioi

ooS

S

ii

vCsR

CsRv

R

v

CsR

sCvii

R

vi

sCRZ

Z

vi

1

3

31

31

1

1

1

INSTRUMENTATION AMPLIFIER

R2

+

-

vo

+

-

R4

R4

i1

R3

+

-

R1

vo2R3R2

vo1

vi2

vi1

VOLTAGE AND CURENT RELATIONSHIPS

12202

12101

1

211

iRvv

iRvv

R

vvi

i

i

ii

VOLTAGE SUBSTITUTIONS

11

22

1

202

1

212202

21

21

1

201

1

212101

1

1

iiii

i

iiii

i

vR

Rv

R

Rv

R

vvRvv

vR

Rv

R

Rv

R

vvRvv

OUTPUT VOLTAGE CALCULATION

121

2

3

40

01023

40

21 ii vv

R

R

R

Rv

vvR

Rv