Computer Systems Lecturer: Szabolcs Mikulas E-mail: szabolcs@dcs.bbk.ac.uk URL:...

Post on 28-Mar-2015

225 views 2 download

Tags:

Transcript of Computer Systems Lecturer: Szabolcs Mikulas E-mail: szabolcs@dcs.bbk.ac.uk URL:...

Computer Systems• Lecturer: Szabolcs Mikulas• E-mail: szabolcs@dcs.bbk.ac.uk• URL:

http://www.dcs.bbk.ac.uk/~szabolcs/compsys.html• Textbook:

W. Stallings, Operating Systems: Internals and Design Principles, 6/E, Prentice Hall, 2006

• Recommended reading:W. Stallings, Computer Organization and Architecture 7th ed., Prentice Hall, 2008A.S. Tanenbaum, Modern Operating Systems, 2nd or 3rd ed. Prentice Hall, 2001 or 2008

Chapter 1Computer System Overview

Patricia RoyManatee Community College, Venice, FL

©2008, Prentice Hall

With additional inputs from Computer Organization and Architecture, Parts 1 and 2

Operating Systems:Internals and Design Principles, 6/E

William Stallings

Computer Structure - Top Level

Computer

Main Memory

InputOutput

SystemsInterconnection

Peripherals

Communicationlines

CentralProcessing Unit

Computer

The Central Processing Unit - CPU

Computer Arithmeticand Logic Unit

ControlUnit

Internal CPUInterconnection

Registers

CPU

I/O

Memory

SystemBus

CPU

Computer Components - Registers

Control and Status Registers• Used by processor to control the operation of

the processor• Used by privileged OS routines to control the

execution of programs• Program counter (PC): Contains the address of

the next instruction to be fetched• Instruction register (IR): Contains the

instruction most recently fetched• Program status word (PSW): Contains status

information

User-Visible Registers• May be referenced by machine language,

available to all programs – application programs and system programs

• Data• Address

– Index: Adding an index to a base value to get the effective address

– Segment pointer: When memory is divided into segments, memory is referenced by a segment and an offset inside the segment

– Stack pointer: Points to top of stack

Basic Instruction Cycle

Fetch Cycle

• Program Counter (PC) holds address of next instruction to be fetched

• Processor fetches instruction from memory location pointed to by PC

• Increment PC– Unless told otherwise

• Instruction loaded into Instruction Register (IR)

• Processor interprets instruction and performs required actions

Execute Cycle• Data transfer

– Between CPU and main memory– Between CPU and I/O module

• Data processing– Some arithmetic or logical operation on data

• Control– Alteration of sequence of operations, e.g. jump

• Combinations of the above

Characteristics of a Hypothetical Machine

Example of Program Execution

Interrupts

• Interrupts the normal sequencing of the processor – suspends current activity and runs special code

• Program generated: result of an instruction, e.g. division by 0, overflow, illegal machine instruction

• Hardware generated: timer, I/O (when finished or error), other errors (e.g. parity check)

Program Flow of Control

Program Flow of Control

Interrupt Stage

• Processor checks for interrupts• If interrupt occurred

– Suspend execution of program– Execute interrupt-handler routine– Afterwards control may be returned to suspended

program

Transfer of Control via Interrupts

Instruction Cycle with Interrupts

Simple Interrupt Processing

Multiple Interrupts1 Disable interrupts

– Processor will ignore further interrupts whilst processing one interrupt

– Interrupts remain pending and are checked after first interrupt has been processed

– Interrupts handled in sequence as they occur

2 Define priorities– Low priority interrupts can be interrupted by

higher priority interrupts– When higher priority interrupt has been

processed, processor returns to previous interrupt

Sequential Interrupt Processing

Nested Interrupt Processing

Time Sequence of Multiple Interrupts

Connecting

• All the units must be connected• Different type of connection for different type

of unit– Memory– Input/Output– CPU

Computer Modules

Memory Connection

• Receives and sends data• Receives addresses (of locations)• Receives control signals

– Read– Write– Timing

Input/Output Connection(1)

• Similar to memory from computer’s viewpoint• Output

– Receive data from computer– Send data to peripheral

• Input– Receive data from peripheral– Send data to computer

Input/Output Connection(2)

• Receive control signals from computer• Send control signals to peripherals

– e.g. spin disk

• Receive addresses from computer– e.g. port number to identify peripheral

• Send interrupt signals (control)

CPU Connection

• Reads instruction and data• Writes out data (after processing)• Sends control signals to other units• Receives (& acts on) interrupts

Physical Realization of Bus Architecture

Bus Interconnection Scheme

Data Bus

• Carries data– Remember that there is no difference between

“data” and “instruction” at this level

• Width (number of lines) is a key determinant of performance, since this determines how many bits can be transferred in one go (cycle)– 32 to hundreds of bits

Address bus

• Identify the source or destination of data• e.g. CPU needs to read an instruction (data)

from a given location in memory• Bus width determines maximum memory

capacity of system– e.g. 8080 has 16 bit address bus giving 64k

address space

Control Bus

• Memory or I/O read/write signals• Interrupt request/acknowledgment• Clock signals• Bus request/grant signals

Traditional (ISA) (with cache)

Memory Hierarchy

• Faster access time, greater cost per bit• Greater capacity, smaller cost per bit• Greater capacity, slower access speed

The Memory Hierarchy

Going Down the Hierarchy

• Decreasing cost per bit• Increasing capacity• Increasing access time• Decreasing frequency of access to the

memory by the processor (optimally - requires good design)

Performance Balance

• Processor speed increased• Memory capacity increased• Memory speed lags behind processor speed

Logic and Memory Performance Gap

Cache Memory

• Processor speed faster than memory access speed

• Exploit the principle of locality of reference: During the course of the execution of a program, memory references tend to cluster, e.g. loops

Cache and Main Memory

Cache Principles

• Contains copy of a portion of main memory• Processor first checks cache• If not found, block of memory read into cache• Because of locality of reference, likely future

memory references are in that block• Modern systems have several caches

(instruction, data) on different levels (L1 on chip, L2, etc.)

Cache/Main-Memory Structure

Cache Read Operation

Size

• Cache size– Small caches have significant impact on

performance

• Block size– The unit of data exchanged between cache and

main memory– Larger block size results in more hits until

probability of using newly fetched data becomes less than the probability of reusing data that have to be moved out of cache

(Re)placement

• Mapping function– Determines which cache location the block will

occupy

• Replacement algorithm– Chooses which block to replace– Least-recently-used (LRU) algorithm

Write policy

• Dictates when the memory write operation takes place– Write through: occurs every time the block is

updated– Write back: occurs when the block is replaced

• Minimize write operations• Leave main memory in an obsolete state

Dynamic RAM• Bits stored as charge in capacitors• Charges leak• Need refreshing even when powered• Simpler construction• Smaller per bit• Less expensive• Need refresh circuits• Slower• Main memory• Essentially analogue

– Level of charge determines value

Static RAM• Bits stored as on/off switches• No charges to leak• No refreshing needed when powered• More complex construction• Larger per bit• More expensive• Does not need refresh circuits• Faster• Cache• Digital

– Uses flip-flops

I/O Devices

• Programs with intensive I/O demands• Large data throughput demands• Processors can handle this, but memory is limited

and slow• Problem moving data • Solutions:

– Caching– Buffering– Higher-speed interconnection buses– More elaborate bus structures– Multiple-processor configurations

Typical I/O Device Data Rates

Hard disk

Speed

• Seek time– Moving head above the correct track

• (Rotational) latency– Waiting for the correct sector to rotate under

head

• Access time = Seek + Latency• Transfer rate

Input/Output Problems

• Wide variety of peripherals– Delivering different amounts of data– At different speeds– In different formats

• All slower than CPU and RAM• Need I/O modules

I/O Steps

• CPU checks I/O module device status• I/O module returns status• If ready, CPU requests data transfer• I/O module gets data from device• I/O module transfers data to CPU• Variations for output, DMA, etc.

I/O Mapping

• Memory mapped I/O– Devices and memory share an address space– I/O looks just like memory read/write– No special commands for I/O

• Large selection of memory access commands available• Isolated I/O

– Separate address spaces– Need I/O or memory select lines– Special commands for I/O

• Limited set

Input Output Techniques

• Programmed• Interrupt driven• Direct Memory Access (DMA)

Programmed I/O (1)

• CPU has direct control over I/O– Sensing status– Read/write commands– Transferring data

• CPU waits for I/O module to complete operation

• Wastes CPU time

Programmed I/O (2)

• CPU requests I/O operation• I/O module performs operation• I/O module sets status bits• CPU checks status bits periodically• I/O module does not inform CPU directly• I/O module does not interrupt CPU• CPU may wait or come back later

Programmed I/O (3)

• I/O module performs the action• Sets the appropriate bits in the

I/O status register• CPU checks status bits

periodically• No interrupts occur• Processor checks status until

operation is complete

Interrupt Driven I/O

• Overcomes CPU waiting• No repeated CPU checking of device• I/O module interrupts when ready

Interrupt Driven I/O (2)

• CPU issues read command• I/O module gets data from peripheral while

CPU does other work• I/O module interrupts CPU• CPU requests data• I/O module transfers data

Interrupt-Driven I/O (3)

• Processor is interrupted when I/O module ready to exchange data

• Processor saves context of program executing and begins executing interrupt-handler

Simple Interrupt

Processing

Direct Memory Access

• Interrupt driven and programmed I/O require active CPU intervention– Transfer rate is limited– CPU is tied up

• DMA, an additional module (hardware) on bus• DMA controller takes over from CPU for I/O

Typical DMA Module Diagram

DMA Operation

• CPU tells DMA controller:-– Read/Write– Device address– Starting address of memory block for data– Amount of data to be transferred

• CPU carries on with other work• DMA controller deals with transfer• DMA controller sends interrupt when finished

Direct Memory Access

• Transfers a block of data directly to or from memory

• An interrupt is sent when the transfer is complete

• More efficient

DMA Transfer - Cycle Stealing

• DMA controller takes over bus for a cycle• Transfer of one word of data• Not an interrupt

– CPU does not switch context

• CPU suspended just before it accesses bus– i.e. before an operand or data fetch or a data write

• Slows down CPU but not as much as CPU doing transfer

DMA Configurations (1)

• Single Bus, Detached DMA controller• Each transfer uses bus twice

– I/O to DMA then DMA to memory

• CPU is suspended twice

DMA Configurations (2)

• Single Bus, Integrated DMA controller• Controller may support >1 device• Each transfer uses bus once

– DMA to memory

• CPU is suspended once

Improvements in Chip Organization and Architecture

• Increase hardware speed of processor– Fundamentally due to shrinking logic gate size

• More gates, packed more tightly, increasing clock rate• Propagation time for signals reduced

• Increase size and speed of caches– Dedicating part of processor chip

• Cache access times drop significantly

• Change processor organization and architecture– Increase effective speed of execution– Parallelism

Problems with Clock Speed and Logic Density• Power

– Power density increases with density of logic and clock speed

– Dissipating heat

• RC delay– Speed at which electrons flow limited by resistance and

capacitance of metal wires connecting them– Delay increases as RC product increases– Wire interconnects thinner, increasing resistance– Wires closer together, increasing capacitance

• Memory latency– Memory speeds lag processor speeds

• Solution: More emphasis on organizational and architectural approaches

Increased Cache Capacity

• Typically two or three levels of cache between processor and main memory

• Chip density increased– More cache memory on chip - faster cache access

• Pentium chip devoted about 10% of chip area to cache

• Pentium 4 devotes about 50%

More Complex Execution Logic

• Enable parallel execution of instructions• Pipeline works like assembly line

– Different stages of execution of different instructions at same time along pipeline

• Superscalar allows multiple pipelines within single processor– Instructions that do not depend on one another

can be executed in parallel

New Approach – Multiple Cores• Multiple processors on single chip

– Large shared cache• Within a processor, increase in performance

proportional to square root of increase in complexity• If software can use multiple processors, doubling

number of processors almost doubles performance• So, use two simpler processors on the chip rather

than one more complex processor• Example: IBM POWER4

– Two cores based on PowerPC

Intel Microprocessor Performance