Chapter 1 - Introduction to Electronics

Post on 06-Jan-2016

31 views 2 download

Tags:

description

Chapter 1 - Introduction to Electronics. Introduction Microelectronics Integrated Circuits (IC) Technology Silicon Chip Microcomputer / Microprocessor Discrete Circuits. Signals Signal processing. http://www.eas.asu.edu/~midle/jdsp/jdsp.html. Signals Voltage Sources Current Sources - PowerPoint PPT Presentation

Transcript of Chapter 1 - Introduction to Electronics

Chapter 1 - Introduction to Electronics

Introduction

Microelectronics

Integrated Circuits (IC) Technology

Silicon Chip

Microcomputer / Microprocessor

Discrete Circuits

Signals

Signal processing

http://www.eas.asu.edu/~midle/jdsp/jdsp.html

Signals

Voltage Sources

Current Sources

Thevenin & Norton

http://www.clarkson.edu/%7Esvoboda/eta/ClickDevice/refdir.htmlhttp://www.clarkson.edu/%7Esvoboda/eta/Circuit_Design_Lab/circuit_design_lab.htmlhttp://www.clarkson.edu/%7Esvoboda/eta/CircuitElements/vcvs.html

Signals

Voltage Sources

Current Sources

http://www.clarkson.edu/~svoboda/eta/ClickDevice/super.htmlhttp://javalab.uoregon.edu/dcaley/circuit/Circuit_plugin.html

Signals

Voltage Sources

Current Sources

Frequency Spectrum of Signals

Fourier Series

Fourier Transform

Fundamental and Harmonics

http://www.educatorscorner.com/experiments/spectral/SpecAn3.shtml

x

frequency

time

Defining the Signal or Function to be Analyzed:

f t( ) sin 0 t t( ) .2 cos 7 0 t

0 1 2 3 4 5 62

0

2

f t( )

t

Frequency Spectrum of Signals

Fourier Series

http://www.jhu.edu/%7Esignals/fourier2/index.html

Frequency Spectrum of Signals

Fourier Series

Fourier Series (Trigonometric form) of f(t):

a01

T 0

T

tf t( )

d a0 0 average value

an

2

T0

T

tf t( ) cos n 0 t

d cosine coefficients

n varying from 1 to N

10 20 30 40 50 600

0.1

an

0

n

Frequency Spectrum of Signals

Fourier Series

bn

2

T0

T

tf t( ) sin n 0 t

d sine coefficients

10 20 30 40 50 600

0.5

1

bn

0

n

Frequency Spectrum of Signals

Fourier Series

Rearranging total expression to include a0 in the complete spectrum

a1n

an

b1n

bn

c1n

1

2a1

n 2 b1n 2 c

0a0

0 10 20 30 40 50 600

0.2

0.4

c1n

0

n

Frequency Spectrum of Signals

Fourier Series

Reconstruction of time-domain function from trig. Fourier series:

f2 t( )

n1

an1

cos n1 0 t bn1

sin n1 0 t a0

0 1 2 3 4 5 62

0

2

f2 t( )

f t( )

t

Frequency Spectrum of Signals

Fourier SeriesFourier Series (Complex Form) of f(t):

wn

1

2N

n

Cn

1

T 0

tf t( ) ei wn 0 t

d

0 10 20 30 40 50 600

0.02

0.04

Cn

0

n

Fourier Transform of f(t) gives:

1

2N

12

N .25

1

2N

F 0

tf t( ) ei t

d

30 20 10 0 10 20 300

0.1

0.2

0.3

F ( )

0

The magnitude of F( ) yields the continuous frequency spectrum, and it is obviously of the form of the sampling function. The value of F(0) is A . A plot of |F( )| as a function of does not indicate the magnitude of the voltage present at any given frequency. What is it, then? Examination of F shows that, if f(t) is a voltage waveform, then F is dimensionally "volts per unit frequency," a concept that may be strange to most of us.

Frequency Spectrum of Signals

http://www.jhu.edu/%7Esignals/fourier2/index.html

Frequency Spectrum of Signals

http://www.jhu.edu/%7Esignals/listen/music1.html

http://www.jhu.edu/%7Esignals/phasorlecture2/indexphasorlect2.htm

Analog and Digital Signals

Sampling Rate http://www.jhu.edu/%7Esignals/sampling/index.html

Binary number systemhttp://scholar.hw.ac.uk/site/computing/activity11.asp

Analog-to-Digital Converterhttp://www.astro-med.com/knowledge/adc.htmlhttp://www.maxim-ic.com/design_guides/English/AD_CONVERTERS_21.pdf

Digital-to-Analog Converter

http://www.maxim-ic.com/ADCDACRef.cfm

Amplifiers

Signal Amplification

Distortion

Non-Linear Distortion

Symbols

Gains – Voltage, Power, Current

Decibels

Amplifier Power SuppliesEfficiency

Voltage_Gain Av vo

vi

Power_Gain Ap load_power PL input_power PI

vo io

vI iI

Current_Gain Ai io

iI

Ap Av Ai

Voltage_gain_in_decibels 20 log Av dB

Coltage_gain_in_decibels 20 log Ai dB

Power_gain_in_decibels 10 log Ap dB

Amplifiers

Example 1.1

PL 40.5 mW

PI Virms Iirms PI 0.05 mW

Ap

PL

PI Ap 810

W

W

Ap 10 log 810 Ap 29.085 dB

Pdc 10 9.5 10 9.5 Pdc 190 mW

Pdissipated Pdc PI PLPdissipated 149.55 mW

PL

Pdc100 21.316 %

Av9

1 Av 9 Ii 0.0001

Av 20 log 9 Av 19.085 dB

Io9

1000

Io 9 103 A Ai

Io

Ii Ai 90

A

A

Ai 20 log Ai Ai 39.085 dB Vorms9

2 Iorms

9

2

PL Vorms Iorms Virms1

2 Iirms

0.1

2

An amplifier transfer characteristic that is linear except for output saturation.

Amplifiers

Saturation

An amplifier transfer characteristic that shows considerable nonlinearity. (b) To obtain linear operation the amplifier is biased as shown, and the signal amplitude is kept small.

Amplifiers

Non-Linear Transfer Characteristics and Biasing

Amplifiers

Example 1.2

vI 0.6 0.61 0.69

vo vI 10 1011

e40 vI

0.58 0.6 0.62 0.64 0.66 0.68 0.70

5

10

vo vI

vI

vI 0.673vI Find vI

vo 10 1011

e40 vI

givenvo 5

vI 0

Lplus 10Lplus vo 0( )

vo vI 10 1011

e40 vI

vI 0

vI 0.69vI Find vI

vo 10 1011

e40 vI

given

inital valuevI 0vo 0.3

Lminus 0.3

Amplifiers

Example 1.2

Amplifiers

Example 1.2

highlight equation use symbolicsthen differentiate10 10

11e

40 vI

12500000000

exp 40 vI

12500000000

exp 40 0.673( ) 196.457

Circuit Models For Amplifiers

Voltage Amplifiers

Common Models

Show example on board

Circuit Models For Amplifiers

Example 1.3

Class assignment

Circuit Models For Amplifiers

Other Amplifiers

Current

Transconductance

Transresistance

Circuit Models For Amplifiers

Example 1.4

Large-signal equivalent-circuit models of the npn BJT operating in the active mode.

Frequency Response of Amplifiers

Bandwidth

Single-Time Constant Networks

http://www.clarkson.edu/%7Esvoboda/eta/plots/FOC.html

http://www.clarkson.edu/%7Esvoboda/eta/acWorkout/Switched_RCandRL.html

Frequency Response of Amplifiers

Bandwidth

RC Circuits – Class Exercise

(a) Magnitude and (b) phase response of STC networks of the low-pass type.

Frequency Response of Amplifiers

Bandwidth

Frequency Response of Amplifiers

Frequency Response of Amplifiers

Bandwidth

(a) Magnitude and (b) phase response of STC networks of the high-pass type.

Frequency Response of Amplifiers

Frequency Response of Amplifiers

Example 1.5

Class assignment

Frequency Response of Amplifiers

Classification of Amplifiers Based on Frequency Response

Frequency Response of Amplifiers

Exercise 1.6

Class assignment

The Digital Logic Inverter

Function

Transfer Characteristics

Noise Margins

The Digital Logic Inverter

Function

Transfer Characteristics

Noise Margins

The Digital Logic Inverter

Inverter Implementation