Analytical Mechanics 7th Edition Fowles Solutions Manual · 2019-02-18 · Analytical Mechanics 7th...

Post on 13-Mar-2020

92 views 7 download

Transcript of Analytical Mechanics 7th Edition Fowles Solutions Manual · 2019-02-18 · Analytical Mechanics 7th...

1!

··~, ~-

Analytical Mechanics 7th Edition Fowles Solutions ManualFull Download: https://testbanklive.com/download/analytical-mechanics-7th-edition-fowles-solutions-manual/

Full download all chapters instantly please go to Solutions Manual, Test Bank site: TestBankLive.com

CHAPTER 1 FUNDAMENTAL CONCEPTS: VECTORS

1.1 (a) A + l3 = ( i + ]) + (j + k) = i + 2} + k I

IA+Bl=(l+4+l)2 = J6

(b) 3A - 2l3 = J(i + })- 2(} + ;; ) = 31+}-2k

( c) A · B = (I)( 0) + (1 )(l) + ( O )( I ) = I

i j k (d) AxB= I I 0 =l(l-0)+}(0-I)+k(l-O)=i-J+k

0 I I

I

I A x 81 = (I + I + I): = J3

1.2 (a) A. ( B + c) = ( 2i + J) · (i + 4 J + k) = (2 )(I)+ (l )( 4) + (O)(l) = 6

(Ii + B) · c = ( 3i +) + k) · 4 J = (3)( o) + (1><4 > + (I)( o) = 4

2 I 0 (b) A · ( Bx c) = 1 o I = -8

0 4 0

(Ax l3). c =A. ( l3 x c) = -8

(c) ,.1x(BxC)=(A·C)li-(A-8)t=4(i+i)-2(4J)=4i-8]+4k

(A x l3) x c = -t x (A x l3) = -[ ( c. s) .4 - ( t .. 4) s J = -[ 0 ( 2i + J )- 4 ( i + k) J = 4j + 4k

cosB = A· B = (a)(a) + (2a)(2a) + (0)(3a) = 5a2

1.J AB J5:1.JI4a 2 </J5JI4

1.4

A

I

1.5

l.6

B=cos- 1 {& ::::::53°

(a) A= i +) + k : boc(v diagonal

A=l,4·.1l=JJ.i+ )·)+k·k =J3 -------:, (b) B = l +) : face diagonal

'I r ------(I B=IB·Bl=J2 I

I I I I I

I I I I

,__ _ __.,_,_..,. A

1/ J i

(c) C=AxB= I

I

A-B 1-1 (d) cosB=--= =0 :.B=90"

AB JjJ2

-j k

1 0

B =IBI =IAxCI =ACsinO :. C = C sin 0 = B Y A

A . c = Ac cos() = ll : . c = c cos e = !!.... x A ex'A

-----+

-+ c C- A c Bx A c - II - Bx .4 ( B) =- + --A+-- -

A x IBx Aj Y A2 AB A

u - I - -=-2 A+-, Bx A

A A-

dA :d( ) ·.d( ') ·d( 3) ~ ". . ' - = 1- at + ;- jJr +k- yt == ra+ ;2/3t+k3yr dt dt dt dt

d 2 A - · -2 = j2/3 + k6yt dt

2

I . 7 O = A · B = ( q) ( q) + ( 3) ( -q) + (I) ( 2) = q 2 - 3q + 2

(q-2)(q-1)=0, q = 1 or 2

2:=Je Iii IAI

IA· Bl= iABcosBi = liilliJlicosBi ~liilliJI Bcose ~ B

Bcos8

t. 9 Show Ax (.Bx t) = ( .4 · c) lJ -(A . B) t i j k

or AxB, BY B. =(AxC .. +AYCY+A.C:)i3-(A,B .. +AYBY+A0 Bz)t c.. Cy CZ

= ( A .. BxCx + ArB,CY + A.BxC: -A,BxC, -A_1.B_1.C, -A.B,C, )i +( A,ByCx + AYB.1 CY + A.B.,.C, -AxBxCy -AYBYCY -A,B,C_.. )J +( A,.B:Cx + AyB:C_,- + A=B=C= -A .• BxCz -A .. B_..C, -A=B=C= )k

( A,.BxCy + A=BxC: -A_..B_,.Cx -A,B,C, )i = +( AXB_l.CX + AZB)'CZ -AXBXCY -A,B:Cy )J

+( AxB:Cx + A}'BZC)' -A.,B.C, -A)'ByCz ).k

3

i

A x

I.IO

1.11

1.12

j

A •. BzCx -BxC:

. k A,

B,C,. -ByCx

f ( AyBxCy -AyByCx -A,B:Cx + A:BxC:)

=~(~~~-~~~-~~~+~~~) +k ( AxB,C, - AxBxC: - A • .ByC: + AyB:Cy)

y =A sin()

A= 2(k·'Y )+ y(B-x} = xy+ yB-xy = A.BsinO

I

A·(BxC)=.1· Bx

x

A ,,

ex

, I , I,

,/

j k

B!. B, =

c ... C,

z

Ax A-" A, Bx B.r B. B x B,. B: =- Ax A,. A= =-B·(Axc) C, c_.. c: ex C,. c,

x

Let A = (Ax,Ay,Az), B = (OJ3yJ)) and C = (O,Cy,Cz)

Cz is the perpendicular distance between the plane A. B and its opposite. 11 =B xC is

directed along the x-axis since the vectors B. c are in the y,z plane. ll, =IB x cl = ByCz

is the area of the parallelogram formed by the vectors B , C. Multiply that area times the height of plane A . B =Ax to get the volume of the parallopiped

v =Au =A B c = A•(ilxc) XX .l'J'Z

4

1.13 For rotation about the z axis: ,,., J

f.f'=cos</J=J·]'. k·k'=l f. }' =-sin <jJ

] .f' =sin </J

For rotation about the y' axis:

1.14

,,., I

,,. I

""-----"'---+ k f.f'=cosB=k·k'. }·]'=I f .k' =sine k. :, . e · ·1 =-sm

_ [cose o T= 0 I

sinB 0

-sinOJ[ co.s</J 0 -smt/J

cos() 0

sin¢ cos </J

0

OJ [cos 0 cos</> 0 = -sin</> 1 sinBcos</J

: :, 30" J3 l •l =COS =-2

~ :, . ,, , I J •l = Sill.)O =-. 2

: ·., . " I I·J =-sm30 =--. 2

~ ·., 30° J3 1· 1 =cos =-. . 2 k·J'=O

• A A A

i ·k' =0 j·k' =0 k·k'= I

J3 I 0 J3+~ -

[Al 2 2

UJ= 2

J3 0 ~J3-1 A. -y 2 2 2 A_. 0 0 -1

A= 3.2321' + i.598 )' -k'

cos0sin¢ cos </J

sinBsin¢

-sin OJ 0

cosO

5

1.15

0

1. Rotate thru </J about z-axis </J = 45"

2. Rotate thru () about x' -axis 0=45°

3. Rotate thru If/ about z' -axis If/= 45"

3,z' z

""-·- ~~2 ___.-.v' -~~

// x

0 0

I I

J2. J2. 1 I

- J2. J2.

"- B

'-= "-

,, A i;: - >ti

x

R = \"

1

I I

J2. J2. I 1

- J2. J2. 0 0

1 I

2- 2J2. I I

R(lf/,B.</J) = R\"R0 R; = -2- lJ2.

I

2

.v

0

0

R., =

I I -+-2 J2. I I

--+--2 2J2.

I

2

I

J2. I

- J2.

I

2 I

2 I

0

J2.

R;

Re

RI/I

I

J2. I

J2. 0

Condition is: x' =RS: where i' = [ ~ J and i = [ ~ J Since ;r · .i = 1 we have: f// 2 + f3 2 + a 2 = I

I J2. 1 J2. 1 After a lot of algebra: a = - - - . fJ = - + - y = -

2 4' 2 4' 2

1.16 v=vi=cti - . ~ v2 . . c 2 I 2 • a= vz-+-n = cz-+-11

p b

()

0

6

{b - A r;-b d - o o at I= v-;;. v = rvoc an a= cr+cn

v·a c~ I cos(}=--= =-

va ~Jki J2. (} = 45°

1.17 v (t) = -lboJsin (wt)+ }2bwcos( wt) I I

lvl = { b2o/ sin 2 {J)f + 4h2

(1)2 cos 2 oJt )2 = brv (I+ 3 cos 2 wt )2

ii ( t) = -ibo/ cos wt - }2bw2 sin wt I

!al = boJ2 (I + 3 sin 2 wt )2

at t = 0, lvl = 2hrv; at Jr t=-

2w · lvl = h(IJ

1.18 v (I)= fbrv cos wt - ]brv sin rvt + k 2ct

a ( t) = -fbcv 2 sin wt - }lxv2 cos rvt + k2c

1.19 v = ,:e + rfJe = bke*1 e + bce*1 e r 0 r (}

- (•• 0" 2 )• ( e"" 2·e")A b(ck) J) K/' 2h k kt• a = ,. - ,. er + ,. + r eo = ,- - c· e er + c e e(}

J ( ' ' ) '/..1 , , 'kt v. a b-k k· - c- e- + 2b-c ke-cos ¢ = -- =

1

va be*' ( e + c2 )~hi' [ ( k 2 - c 2 )

2 + 4c2k 1 r

k ( k2 +c2) k

cos¢= 1 = 1 , a constant ( k2 + c2 )1 { k 2 + c2) { k 2 + c2 )2

1.20 a =(R-R¢)eR +(21?¢+R¢>)e~ +ze= a = -bOJ= eR + 2ce.

I

lol = (b2w4 + 4c2 )2

7

1.21 r(t)=i(1-e-k')+ )ekl r (t) =Ike-*'+ }ke*' -() ~k2 -kl 'k2 kl r t = -1 e + J · e

6 S.6 S.2 4.8 4.4 ~

y(t) 3.6 - 3.2

2.8 2.4

2 1.6 1.2

Trajectmy: k=1

1234567890.

i...c::=-_,_ _ __,_ __ _.__ _ _._ _ ____J

1.22

0 0

v = e ,~ + e r<f>sin e + e re r - 0

0.2 0.4 0.6 0.8

x(t)

V ~ e,bmsin {; [I+± cos( 4rvt) ]}-e,b; msin( 4mt)

v = e~bw cos [; cos ( 4wt) ]- eobw; sin ( 4fut)

I

1 vi~ hm [cos' (;cos 4rvi)+ :' sin' 4,,,, J' Path is sinusoidal oscillation about the equator.

1.23 v · v = v2

dv ___ dv 2

. -·v+v·-= vv dt dt

- - . v·a=vv

8

1.2.i !!_ [ r . ( v x a) J = dr . ( v x £7) + r . !!_ ( v x a) dt dt dt

_ (- _) _ [( dV -) (- da )] = v · v x a + r · dt x a + v x dt

=O+r-[ o+(vxa)] !!_[r ·(vxa)] = r·(vxa) dt

1.25 v = i·f and a= arf + a,,11

v·a v ·a= var. so a = --

r V

I

a2 =a; +a,:. so a,, = ( a 2 - a; )2

1.26

1.27

For l.14. -b2 o.l cos OJI· sin wt+ b2 ro 3 sin wt· cos wt+ 4c21

llr =

(Jr= I

( b2 w2 + 4c212 )2 I

an = (b20/ + 4c2 - 1 I ~c4t2 1 ')2 b-oi- + 4c-r

_ b2k(k2-c2 )e2M +2b2c 2keu' 1

Forl.l:l, ar= I =bkek'(k2+c2 )2 bek' ( k2 + c2 )2

I

[b2 2kt(k2 2)2 b2k2 2kt(k2 2)]2 b "'(k2 2)~ an= e . +c - e r +c = ce +c

' - " - . " v- . v = vr. a = vr +-n p ' 3

I- -1 v- v vxa =v·an =v-=-P p

9

1.28

-+-+ v,ao

l:r = fbsinB+ }bcosB vre1 =ibBcose-}bBsinO are/= ih( fj cosB-e= sin 0 )-Jb( Bsin 0 + rP cosO)

. () ir at the po mt = - . 2

So, lv, .. 1 I = b(j = v . v

() =-b

v =-v rel

.. v a 0=-=-=-

h b . • v2 t . • v2 .

Now. a =v r+....!!_11=ar+-11 r<'i rel p 0 b

I

v . (

4 l-:;-la,c1I = a; + b=

I

larl=a0 (2+2cos0+ ~4

2 _lv2

sinB]2

a,b a,,b

ar is a maximum at 0 = 0, i.e .. at the top of the wheel. . 2v=

-2sm0--cos0 = 0 a,h

0 = tan-1 (-~] a.,h

1 Therefore. x = J2

The transformation represents a rotation of 45° about the z-axis (see Example 1.8.2)

10

1.30 A A

(a) a= i cosB+ jsin 0 ' A

b = i cos rp+ jsin rp a

a· b =cos ( B- rp) = (i cos e +)sin B) · (i cos rp +)sin rp)

cos ( 0 - rp) = cos ()cos rp + sin B sin rp

(b) bxa = jkjsin ( B-rp) = j( i cosO+ }sin B )x ( i cosrp+ )sin rp )j sin ( B-rp) =sin Bcos rp- cos Bsin <p

11

CHAPTER2 NEWTONIAN MECHANICS:

RECTILINEAR MOTION OF A PARTICLE

2 1 ( .. I (F' ) • a) x =- ... +ct

2.2

m . 11( ) F c, x = 1 - F.. +ct dt = _ .. t +-r

m m 2m

'( F c , ) F , c j x= J. -' t+-r dt =-·· r+-t 111 2m m 6111

.b) .. F . ( X = -· Sll1 ct

111

.\- = IF. sin ct dt = - F: cosctJ' = ~(1-cosct) Ji 111 cm 0 cm

x = J, ~( 1-cosct)dt = F. (i-_!_sin ct) cm cm c

.. F ,., (c) x=-e

111

. F: "'I' F (. l'/ 1·) x=-e =- e -c111 ° cm

F ( I .. , I ) F: ( er ) x = - -e - - - t = ----i- e -1- ct cm c c cm

d\- d\- dr: cfr (a) r=-=-·-=\--

- dt dr: dt - dr: di: I

.\·- =-(F +ex) dr: 111

.\-d\- = _!_ ( F + ex) dr: m

-x =- .x+-I .. 2 I ( F _ cx2

)

2 /11 ° 2

. [ x (2 L' )]~ x= - r,. +ex m

(b) .. . d\- I F _," r= r-=- e - - dr: m 0

2.3

2.4

2.5

.d. I F -ad x x=- oe \'. m

I ·.2 - r: ( -c.t l) - F. (I e-CJ) -x --- e - -- -2 cm cm

I

.t=[2F. (l-e-a)J2 cm

( ) .. . di I (F ) c x=x-=- .. coscx dx m

.d. F d x r = _, cos ex · x 111

I ·' F . -x- =-0 sm ex 2 cm

I

. ( 2F,, . )2 x= -smcx cm

, ex· (a) V(x)=-f, (F+cx)d,·=-F:x--·-+c

J 2

(b) F( ) f,'F C.1 L r: -c.x c . 11 x =- ·"e cx=-e + .{ c

( c) v ( x) = - r· r: cos ex <fr = - F:. sin ex + c ! c

dV( x) (a) F(x)=- · =-h

dx

) J·' I ' v ( x = h dt = -h· ) 2 {b) 7;. =T(x)+V(x)

I . T ( x) = T,, - V ( x) = 2 k ( A - x~ )

(c) E = T = _!_ kA 2

' 2 (d) turning points@ T(x1 ) ~ 0 :. x, =±A

hJ (a) F(x)-kx+y

(b) T(x) = T -V (x) = T _ _!_h2 +_!_ kx4

0

" 2 4 A2

(c) E=T,,

0.5 1 x 1

2

2.6

2.7

2.8

(d) V (x) has maximum at IF (xm)I ~ 0

kx - kxm3 = 0 m Az x,,, =±A

V(x )=..!_kA2_..!_ kA4 =..!_kA2 m 2 4 A2 4

If E < V (xm) turning points exist.

Turning points @ T ( x1 ) ~ 0 let u = -<' I 1 ku 2

E--ku+--=0 2 4 A 2

solving for u, we obtain

? [ ( 4£ )+] u=A· 1± 1- kA 2

or

0.25 0.2

0.1

0 OL.......L __ ;---'-~'---.....L.....1

?

f '( ) .. ma· x =mx=--l-x·

Mg

L' .• • di r =mx=nn:-

.i = bx-3

di - 3b --1 --- x dt

d'(

F = 111( bx-3 )(-3bx-1) F =-3mb2x-7

' .. a . a· x=-2x=--3

x x

F~MgsinO

-2 0 -2 ll

2 2

2.9 (a) v = mgx = (.145kg l( 9.8 _;: )c12so ft )(.3048 1;;) = 541./

3

(b) T=_!_mv 2 =2-mv 2 =_!_m(mgJ=_!_ m2g

2 2 I 2 C2 2 .22D2

(.145kg )2 (9.8

11~) T = 8 = 87J

(2)(.22)[(2)(.0366)]2 kg m

J /'tfr = J-cv'dr = -c J v' dt = -c ( -v, tanh (fl J d1

=cv,'r[-~tanh'U)+ Jtanh(; H ~ )] = cv,' r [- ~ tanh' ( ~) + ln cosh (;)]

Nmv tanh 2 (~)=I for I« -r

Meanwhile x = J vd1 = (-i·,tanh (;) )dt = v,r ln cosh (;)

(I) r In cosh - =---' v,-r

x = (12so}i{3o4s;,) = 38 l m

I

( m) 2 (.145kg) 9.82 ----'---s----'"- = 34. 72 ~ (.22)(.0732)2 kg s

m

I

( m J2 (.145kg) -r= - = ------'---'----- =3.543s

C2g ( .22 )( .0732 )2 kg (9.8 /~) m s-

f Fdr = (.22 )(.0732 )2

(34.72 )3 (3.543)[-.s + (

3·81

] = 454J 34.72)(3.54)

V - T = 54 IJ - 87 J = 454J

2.10 For F 1 F 7

0$/ $/1 : v=-" I, x=-_::_r m 2 m

F: F;, 2 t, $ / $ 2/J: \'0 =-{I' X 0 =-{I ' m 2m

For

4

2.11

At

F ') F 1 2F ') x =-

0 r +-0 t (1-1 )+--' (1-1 )-. 2m I Ill I I 2 /11 I

F ') F J F ') SF ') f = 2fl : X = _, ti - + _o /I - +-" /I - = -' t, -

2m m m 2m

dv dv dx dv c ~ a=-=-·-=v·-=--v 2

dt d--c dt dr: m I -- c

v 2dv=--dr: m

I r ~ I rr,,., c _,. J, .. v -cv= --ux

I /1l

~ c -2V"2 = --Xmax

m I

2mv:;-x"",' = --"-

c

2.12 Going up: F_, =-mg sin 30° - µmg cos 30"

2.13

-~ = -g( sin 30' + 0.1 cos3o··) = -5.749 .~~

v = v0 +at

at the highest point v = 0 so t,,P = - v, = 0.174v0s

a l ? ? ? ?

x,,P = vJ,,P +2 at,;P = O.l 74v.,- -.087v,.· = 0.087v,-m

Going down: x0

1 = 0.087v0

2, v' = 0. a'= -9.8( 0.5-0.0866)

2 1 ?

Xdown = 0 = 0.087 V0 -2 4.051 Jt,/mm

{down = 0.207v"S llotal = t,,P + tdown = 0.38 lvos

g

e 2kx"""'~ = k g +v2 k '

At the top v = 0 so

Coming down XO = xmax and at the bottom x = 0

v2 = g -(g)' I (l) = (fr.' k k (g 2) g 2 -+v -+v. k 0 k .

5

vv I " V= I,

( " 12 + v"2 )2 v, = /g = r;g­

~k v~

2.14 Goingup: r~=-mg-c2v2

2.15

dv , (I= v- =-g-h,-'

dr

f, vdv _ f' _ ----~ - 1 cl\

· -g-kv-

1 , I" --tn(-g-h-) = x 2k \'

g + kv2 -zk.t

- i = e g+kv.

' c· k=-

m

v2 =(~ +v,2 )e-2kr -! Going down: F, =-mg +c2v?

dv , v- = -g + h'V-

lfr r __ v_d_v_ = f' cb: 1-g+kv2 J)

21k ln(-g+kv2

)[ =x-x,

I k 2 21...-. -2kx --v =e e g

v2 = ! -( ! e-2kr )e2u

dv , m- = mg-c1v-c,v-dt -

r di r dv .b -;;; = 1 mg - c

1 v - c

2 v2

f dr _ I 1

2cx+b-.Jb2 -4ac Using - n-----====

a+hx+cx2 .Jh2 -4ac 2cx+b+.Jb2 -4ac'

6

-2c2v-c, -Jc, 2 +4mgc2 = In --m Jc, 2 +4mgc2 -2c2v-c1 +Jc, 2 +4mgc2 0

1 , .!. (1c2 v+c1 +Jc, 2 +4mgc2 )(c,-~c1 2 +4mgc2 ) -( c - + 4mgc, )2 = In -,-------;::====\"7""----;::====­m

1 • ( 2c2 v + c, - J c1

2 + 4mgc2 ) ( c, + Jc, 2 + 4mgc2 )

as t~oo. 2c2v,+c,-Jc,2 +4mgc2 =0

Alternatively. when v = v1 •

dv , m- = 0 = mg-c1v1

-c,v1

dt -

2.16 dv k _,

a=v-=--x -dr m

r' i' kd'( vdv= ---1> mx2

_!_ / = !_(_!_ _ _!_) 2 m x b

v= d'( =[2k(_!_ _ _!_)]~ =[3!5._(b-x)]~ dt m x b mb x

I

r dt = ri[mb (~)]~ dr = ( mb3 )~ f [ i ]' d(.::) li Ji, 2k b - x 2k I _.:: b

b

· b x · 'e Smee x ~ , say - = sm· b I I

r= -- = -- sm ode (mb3 )2 r sin0(2sin0cos0d0) (2mb3 )2 r . 2

2k ·~ cos() k ·f I

I=(';~' r 1'

7

2.17

2.18

2.19

dv dv . m- = mv- = j (x)•g( v) dt dr

mvdv =f( )d ( )

x x g v

. . ( ) d-r; By 111tcgrat1on, get v = v x = -dt

If F(x,t) = f(x)•g(t):

m c/2 ~ = m!!._( d-r;) = J (x )·g(t) di- dt dt

This cannot. in general. be solved by integration. If F ( v. I) = f ( v )• g ( t):

dv m- = J { v)•g(t) dt

mdi· _ ( )d -(-)-gt I f v

Integration gives v = v(t) cfr { ) -=v I dt dr = v(t )dt

A second integration gives x = x(t)

c, = ( l.55x 10--1){10-2 ) = l.55x 10-6 kg s

c2 =(0.22)(10 2)

2 =2.2xl0-5 kg

s I

, =- l.55xl0-6 [( 1.55x10-6 ]

2 (10-')(9.8)]2 i, -5 + _, + -~ 2 x 2.2 x 10 2x2.2x10 - 2.2x10 .

v, = 0.179 /11

s

Using equation 2.29, v, =

F ( x) = -Ae"·i = 111.:r or

( 10-? )(9.8) /11 -'-----'--_- = 0.211-2.2 x io-' s

F( v) = -Ae"" = mv

dv=~= du aea\' au

8

2.20

Integrating

1 I A ---=-at and substituting eav = /1 II U

0 m

I [ A al' ] (a) v=v,--ln l+-e at a 111

(b) t =T@v= 0

av, = ln [1 + A em ar] m

av l A m· T e = +-e a ,,, ( ) dv A a" c v-=v=--e

dr m

T = _!!!__[ 1-e-m· J aA

vdv A -=--d'( a.-e m

again. let /1 =ea·· du = audv or dv = du

F

but

au

[ _!_In u] du a au = _ !!._ d'l: Integrating and solving

II /11

m [t (I ) -a .. J X =-,- - +av0

e a-A

d(mv) ---=mv+vm=mg

dt 4 3

1n = p -1rr '3

I v=-lnu

a

(9"· ~--~--.: i·--~-11' I :vdt : P,1 1!. I I

I

l Now .£J_:::;; 10-3

p, so, second term is negligible-small -- - _,.

hence v:::;; g and Iv::::: gtl speed x t but

. 4 2. , m = p, 1rr r = p1 1rr-v or Hence r ::::: _.!._ Pi gt and rate of 4 p,

growth oc t The exact differential equation from ( 1) above is: , 4 4p .. 4p/ - 4 - 7rp,r --' r + 7rp, -- = 3 7rpfg 3 P1 p,

9

which reduces to: 3,:2

P+-=Ag

20

e .! "' .:! 10

"O ~ a:

0 0

r 4p, Using Mathcad. solve the above non-linear d.e. letting

A~ I 0-3 and K <=:; 0.0 Imm (small raindrop). Graphs Po

show that

v oc ,~ oc t and r oc t 2

Radius vs Time Rate of Growth vs Time .. ";' .... e .! 2 -T.5 .... a: "C

0 5 10 0 5 10

Time(s) Time (s)

10

CHAPTER3 OSCILLATIONS

3.1 x=0.002sin[2Jr(512s-1)1] [m]

.Xmax = ( 0.002){2Jr )( 512)[ l~l] = 6.43 [~:l]

.~max= ( 0.002){27r)2

( 5 J 2 )2 [~~:] = 2.07X10

4 [;:]

3.2 x = 0.1 sin ruJ [m] .\: = 0.1 [u, COS CUJ [ /c:.l]

When t = 0. x = 0 and .\- = 0.5 [ '.~] = O. l ro_ ')

T = -ir = 1.26s OJ,

3.3 x ( t) = x, cos co)+ i" sin OJ) and {u0 = 2Tr/

OJ,

x = 0.25cos(20m) + 0.00 l 59sin (20m)[m]

3.4 cos( a- P) =cos a cos fJ +sin a sin p

3.5

x =A cos( OJJ-¢) =A cos¢ cos (l)J +A sin ¢sin ruJ

x= Acos(J)J+BsinwJ, A= Acos¢. B = Asinrp

1 .2 1 2 1 .2 I 2 -mx1 +-h1 =-nix, +-k.x, 2 2 2 - 2 -

k ( x~ - x~ ) = m ( .x; - .\-~ ) I

( :r; - .\-,2 )2

Cu= = -o X12 -x;

3.6

3.7 For springs tied in parallel: F, (x) = -k1x-k2x = -(k1 + k2 )x

For springs tied in series: The upward force m is k,.q x. Therefore, the downward force on spring k2 is keq x.

The upward force on the spring k2 is k1x' where x' is the

displacement of P, the point at which the springs are tied.

Since the spring k2 is in equilibrium, k1x' = keq x.

Meanwhile, The upward force at P is k

1x' .

The downward force at Pis k2 (x-x').

Therefore, k1x' = k2 ( x - x')

I k2X x=-~-

k1 +k2

And k., x = k, ( k,k~:, J

3.8 For the system (k!+m), -kX=(:if+m)X

The position and acceleration of m are the same as for (!vi+ m) :

k xm =- xm

j\1 +m

xm=Acos( ~t+o)=dcos ~t v~ v~ The total force on m. Fm = nt:.C,,, =mg- F;

2

mk mkd IE F = mg + x = mg + cos I r A1+m "' M+m M+m

For the block to just begin to leave the bottom of the box at the top of the vertical oscillations. Fr= 0 at x"' = -d:

0 mkd

=mg-Af +m

g(iH +m) d=-'-----

k

3.9 x = e-rr A cos( Wi-¢)

dlx = -e-11 A(!Jd sin ( (!)) -¢ )- ye-r' A cos( rodt -¢) (/

maxima at dr = O = m 1 sin ((!)41 -¢) + r cos ( rvdt -<P) dt ' .

tan ( rv 4t - ¢) = _ _L {!)d

thus the condition of relative maximum occurs every time that t increases by 2Jr : rv,1

2Jr fi+I =f;+­

(J)d

Fortheith maximum: X; =e-r1·Acos(rvdt;-¢)

3.10 (a)

(b)

(c)

C I r=-=3s-2m

2 J J 16 _, UJ d = rv: - y- = s -:. (J)r = J7 s-'

F 48 ~ax =-"-=--m=0.2 m

Crv" 60.4

tan¢= 2yrvr = 2y{J)r = (J)r = J7 ( rv; - rv;) 2y1 r 3

:. ¢ ~ 41.4°

3

Analytical Mechanics 7th Edition Fowles Solutions ManualFull Download: https://testbanklive.com/download/analytical-mechanics-7th-edition-fowles-solutions-manual/

Full download all chapters instantly please go to Solutions Manual, Test Bank site: TestBankLive.com