1 La transformada de Laplace. 2 Sea f(t) una función definida para t ≥ 0, su transformada de...

Post on 29-Jan-2016

214 views 0 download

Tags:

Transcript of 1 La transformada de Laplace. 2 Sea f(t) una función definida para t ≥ 0, su transformada de...

1

0

)()()( dttyetyLsY st

0

)()()( dttyetyLsY st

La transformada de Laplace

2

Sea f(t) una función definida para t ≥ 0, su transformada de Laplace se define como:

donde s es una variable compleja

Se dice que la transformada de Laplace de f(t) existe si la integral converge.

dtetfsFtfL st

0

)()()}({

.iws

La transformada de Laplace

3

Pierre-Simon Laplace (1749 - 1827)

"Podemos mirar el estado presente del universo como el efecto del pasado y la causa de su futuro.Se podría condensar un intelecto que en cualquier momento dado sabría todas las fuerzas que animan la naturaleza y las posiciones de los seres que la componen, si este intelecto fuera lo suficientemente vasto para someter los datos al análisis, podría condensar en una simple fórmula el movimiento de los grandes cuerpos del universo y del átomo más ligero; para tal intelecto nada podría ser incierto y el futuro así como el pasado estarían frente sus ojos."

4

Observa que la transformada de Laplace es una

integral impropia, uno de sus límites es infinito:

0 0

( ) lim ( )h

s t s t

he f t dt e f t dt

( ) ( ),f t F sL

( ) ( ),

( ) ( ), etc.

y t Y s

x t X s

L

L

Notación:

5

Condiciones suficientes de existencia de la TL

Si f(t) es continua a trozos en [0, ∞) y

),0[,|)(| tMetf at

Es decir, f(t) es de orden exponencial en el infinito:

0|)(|lim

bt

tetftqb

Entonces:

L{f(t)} = F(s) existe s > a.

dtetfsFtfL st

0

)()()}({

6

Unicidad de la TL

Si f1(t) y f2(t) poseen la misma TL:

)()()(

:por definida nulafunción lay0

0)(

21

0

tftftN

N(t)a

dttNa

L{f1(t) } = L{f2(t) }= F(s),

Entonces el teorema de Lerch garantiza que

7

se

sdtesFL tsst 11

1)(1

0

1

0

Calcula la transformada de f(t) = 1:

ssFtf

1)(1)(

Nota: Obviamente L{a} = a/s y L{0} = 0.

8

1

0

1

0

1

0

0 )(

nstn

stn

stnstnn

tLs

ndtet

s

n

dts

ent

s

etdtetsFtL

Calcula la transformada de f(t) = tn:

1

!)(1)(

ns

nsFtf

10

1

!

1

nn

nn

s

ntL

stL

tLs

ntL

9

1

1

1

1

)(

0

1

0

1

0

se

s

dtedteesFeL

ts

tssttt

Calcula la transformada de f(t) = e-t:

1

1)()(

ssFetf t

10

asas

Ae

as

A

dtAedteAesFAeL

tas

tasstatat

,)(

)(

0

0

0

Calcula la transformada de f(t) = Aeat:

asas

AsFAetf at

,)()(

11

dteatsens

a

s

adt

s

eatsena

s

eat

s

a

dts

eata

s

eatsendteatsensFatsenL

ststst

ststst

0 22

0

0

0

0

0

)()()cos(

)cos()()()()(

Calcula la transformada de f(t) = sen(at):

22)()()(

as

asFatsentf

222

2

2

2

;1as

aI

s

aI

s

a

Ejercicio: calcula F(s) para f(t) = cos(at)

12

)()cos(

11

)(

)()cos(

2222

22

0

0

0

atseniLatLas

ai

as

s

as

ias

ias

ias

iase

ias

dtedteesFeL

atseniate

tias

tiasstiatiat

iat

Calculemos la transformada de f(t) = eiat:

13

c

1

t

0 if ( )

1 if

t cu t c

t c

La función Heaviside o escalón unidad:

c0

1

0

1 1

( ) ( ) lim

lim lim ( )

hs t s t

hc

h s cs t s h s cs sch h

u t c e u t c dt e dt

ee e e s

L

14

Función delta de Dirac

/1

a a

área = 1Sea la función parametrizada:

t

)(lim)( 0 tfat

s

ee

s

e

s

etfL

sas

saas

11

)()(

ass

ass

as es

see

s

eetfL

000 lim1

lim)(lim

)(tf

)()(1

)( atuatutf

Observemos que

15

ta

1)(

)(

tL

eatL as

)( at )(t

Así la transformada de la función delta de Dirac es:

16

Step function and delta function

There are two common functions which are used to represent very rapidly changing quantities. The first of these is the step function, u(t), defined by:

00

01)(

t

ttu

t

u(t)

17

Step function and delta function

If the step function ‘switches on’ at t = a it is defined by:

at

atatu

0

1)(

u(t-a)

t =a t

18

Step function and delta function

The step function can be considered as the limiting case of a very steep “ramp” function:

2b

19

Step function and delta function

The 2nd function is the delta function which is used to represent point loads and other large inputs applied over very small areas. It is defined by:

0

00)(

t

tt

But it also satisfies:

1)(

dtt

20

Step function and delta function

The delta function can be considered as a limiting case as shown below:

0 lim b

1/2b

2b

(t)

t

21

Step function and delta function

The delta function for a point load at t=a is given by:

1)(

a

a

dtat

It has the properties:

at

atat

0)(

)()()( afdttfata

a

22

Laplace transform of the step function

For the step function

The Laplace transform is:

00

01)(

t

ttu

0

0 0

10

11)}({ e

se

sdtetuL stst

stuL

1)}({

23

Laplace transform of the step function

For the step function centred at t=a

The Laplace transform is:

s

eatuL

as

)}({

at

atatu

0

1)(

a

st

a

sta

st es

dtedteatuL1

010)}({0

24

Laplace transform of the delta function

For the delta function

The Laplace transform is:

1)}({ tL

1)()}({0

0

t

stst edttetL

0

00)(

t

tt

25

Laplace transform of the delta function

For the delta function centred at t=a

The Laplace transform is:

aseatL )}({

as

at

stst eedtateatL

0

)()}({

at

atat

0)(

26

Funciones periódicas

Supongamos que f (t) es una función periódica de periodo T. Entonces:

)(1

1)()( 1 sF

etfLsF

sT

donde F1(s) es la tranformada de Laplace de la función f(t) sobre el primer periodo y cero fuera.

T

st dttfesF0

1 )()(

t t

T

27

)()(

)()(

,)()(

)()(

)()(

0

00

0

)(

0

0

0

sFedttfe

dfeedttfe

TtdTfedttfe

dttfedttfe

dttfesF

sTT

st

ssTT

st

TsT

st

T

stT

st

st

Demostración

28

Ejemplo: onda cuadrada

a 2a

aT 2

)(1

1)( 12

sFe

sFas

asasa

a

sta

st ees

dtedttfesF 222

0

1

1)()(

)1(

1

)1()(

2

2

asas

asas

eses

eesF

29

Tabla de transformadas de Laplace

2 2

2 2

2 2

2 2

1

sen

cos

sen

cos

!

at

at

n atn

ts

st

s

e ts a

s ae t

s a

nt e

s a

ase

s

nt

t

s

t

at

nn

1

!

s

1

1 1

1

1

2

30

31

32

33

34

35

La TF es un caso particular de la TL

dtetffFtfF ti )()(ˆ)()]([

Supongamos que es complejo: = + i

dteetfdtetfif tittii )()()(ˆ )(

Antitransformando tendríamos:

deifetf tit )(ˆ2

1)(

36

Recordemos que = + i:

deife

tf tit

)(ˆ2

)(

deiftf tii )()(ˆ2

1)(

)Im(

)(ˆ2

1)( deftf ti

Re ()

Im()

tief )(ˆ es analítica para todo perteneciente a la región en rojo.Haciendo s = i( + i) llegamos a la transformada de Laplace.

37

Al proceso inverso de encontrar f(t) a partir de F(s) se le conoce como transformada inversa de Laplace y se obtiene mediante:

conocida también como integral de Bromwich o integral de Fourier-Mellin.

i

i

st tdsesFi

tfsFL

0,)(

2

1)()}({1

Transformada inversa de Laplace

38

Re(s)

Im(s)

γ

i

i

st tdsesFi

tfsFL

0,)(

2

1)()}({1

γ determina un contorno vertical en el plano complejo,tomado de tal manera que todas lassingularidades de F(s) queden a su izquierda.

Con condiciones de existencia:

)(lim)2(

0)(lim)1(

ssF

sF

s

s

39

Por ejemplo, determinemos:

Puesto que la función a invertir tiene un polo en s = -1, entonces basta con tomar γ > -1. Tomemos γ = 0 y el contorno de integración C de la figura.

21

)1(

1

sL

Re(s)

Im(s)

γ=0-1

C1R

-R

ds

s

e

idsesF

i C

sti

i

st2)1(2

1)(

2

1

iR

iRC

stst

s

e

ids

s

e

i1

22 )1(2

1

)1(2

1

0 por la desigualdad ML cuando R→∞ con t≥0.

21

121 )1(

1lim

)1(Res

2

2

sLtee

ds

d

s

e

i

i tst

s

st

s

Haciendo R→∞ y utilizando teoría de residuos:

40

Sea F(s) una función analítica, salvo en un número finito de polos que se encuentran a la izquierda de cierta vertical Re(s) = γ. Y supongamos que existen m, R, k > 0 tq. para todo s del semiplano Re(s) γ y |s| > R, tenemos que

ks

msF |)(|

).( de polos losson s,...,s,s donde

)(Res)}({

n21

1

1

sF

sFesFLn

k

st

ss k

Entonces si t > 0:

En particular, sea F(s) = N(s)/D(s), con N(s) y D(s) polinomios de grado n y d respectivamente, d > n; entonces podemos usar la igualdad anterior.

41

Ejemplo, determinar:

21

)1)(2(

1)(

ssLtf

.1sy 2s :doble otroy simple uno polos, dos posee

)1)(2()(

21

2

ss

esFe

stst

9

3

2lim

)1(lim

)1)(2(Res

)1)(2(Res)(

2

122

2122

tttst

s

st

s

st

s

st

s

etee

s

e

ds

d

s

e

ss

e

ss

etf

42

1. Linealidad: Si c1 y c2 son constantes, f1(x) y f2(x) son funciones cuyas transformadas de Laplace son F1(x) y F2(x), respectivamente;

entonces:

).()()}()({ 22112211 sFcsFctfctfcL

La transformada de Laplace es un operador lineal.

Propiedades

43

)()(

)()(

)()(

)()(

2211

0 22

0 11

0 2211

2211

tfLctfLc

dtetfcdtetfc

dtetfctfc

tfctfcL

stst

st

Demostración:

44

2. Desplazamiento temporal

)(

)(

)(

)()()(

)()(

0

0

0

0

0

0

0

00

0

sFe

tt

dfee

dtttfe

dtttuttfesX

dttfesF

st

sst

t

st

st

st

0

000 ,0

),()()()(

tt

ttttfttutftg

)()}()({

)()}({0

0 sFettutfL

sFtfLst

45

Ejemplo:

3

31

s

eL

s

3

2 2

stL

332 2

)3()3(s

etutL s

)3()3(2

1 23

31

tuts

eL

s

3t

46

Shift in t

Remember the definition of the Laplace transform:

Answer: The Laplace transform assumes all functions are zero for t<0.

Mostly we do not need to know this.

Question: What happens to f(t) for t<0 ?

0

)()( dttfesF st

47

Shift in t

Define a shifted function by:

atatf

attg

)(

0)(

t

f(t-a) f(t)

t = a

48

Shift in t

The shifted function can also be defined by:

)()()( atfatutg

The Laplace transform of the shifted function is given by:

00

)()()()( dtatfatuedttgesG stst

a

sta

st dtatfedtatfesG )(1)(0)(0

a

st dtatfesG )(0)(

49

Shift in t

Substitute =t-a:

)()()(0

sFedfeesG sassa

)()()( sFetgLsG sa

aa

as dfesG

)()( )(

50

Example - Shift in t

Calculate the Laplace transform of a square wave shown by the diagram below

1

t=a t=2a t=4a t=0

51

Example - Shift in t

Note that the 1st pulse can be constructed as superposition of two step functions:

Step Function: u(t)

Step Function: -u(t-a)

t=0

t=a

52

Example - Shift in t

Then, the Laplace transform of the first pulse is :

)()(pulse 1st atuLtuLL

asas

ess

e

sL

1

1

1pulse 1st

53

Example - Shift in t

To obtain the Laplace transform of the 2nd pulse, we note that it is the 1st pulse shifted in time by 2a:

1

t=a t=2a t=4a t=0

1

t=a t=2a t=4a t=0

54

Example - Shift in t

Thus the Laplace transform is given by:

pulse 1pulse 2 st2nd LeL as

Similarly the Laplace transform of the 3rd pulse is (it is shifted by 4a):

pulse 1pulse 3 st4rd LeL as

55

Example - Shift in t

Thus the Laplace transform of the whole square wave is given by:

pulse 3pulse 2pulse 1

wavesquarerdndst LLL

L

pulse 11 st42 Lee asas

asasas es

ee 11

1 42

56

Example - Shift in t

In this case we can sum the series (it is a geometric series): 1242 11

asasas eee

Thus:

asas

ese

L

1

1

1

1 wavesquare

2

)1(

11

1

)1)(1(

1as

asasas es

esee

57

)(

)()()(

)()(

0

)(

0

0

asF

dttfedttfeesX

dttfesF

tasatst

st

22 )(

11

asteL

stL at

3. Desplazamiento en frecuencias

Ejemplo:

)()}({

)()}({

asFtfeL

sFtfLat

58

4. Cambio de escala en tiempo

)/()/1(

)(1

)()(

)()(

0

)/(

0

0

asFa

atdfea

dtatfesX

dttfesF

as

st

st

a

sF

aatfL

sFtfL

1)}({

)()}({

59

5. Derivada de la transformada de Laplace

)(

)(

)()(

)()(

0

0

0

ttfL

dtttfe

dttfeds

dsF

ds

d

dttfesF

st

st

st

)()(

)}({)(

ttfLsF

tfLsF

60

6. Transformada de Laplace de las derivadas de una función

La transformada de Laplace de la derivada de una función está dada por:

donde f(0) es el valor de f(t) en t = 0.

La transformada de Laplace de la segunda derivada de una función está dada por:

)0()()}('{ fssFtfL

)0(')0()()}(''{ 2 fsfsFstfL

61

En forma similar:

Demostración:

)0()0(')0()()}({ )1(21)( nnnnn ffsfssFstfL

)0()()()0(

)()()(')('

0

00

0

fssFdttfesf

dttfsetfedttfetfL

st

ststst

0)(lim

tfe st

t

62

Supongamos que:

)0()0(')0()()}({ )2(321)1( nnnnn ffsfssFstfL

)0()0(')0()(

)0()()()0(

)()()()(

)1(21

)1()(

0

)1()1(

0

)1(

0

)1(

0

)()(

nnnn

nnnstn

nstnstnstn

ffsfssFs

ftfsLdttfesf

dttfsetfedttfetfL

Entonces: 0)(lim )1(

tfe nst

t

63

64

Gracias a esta propiedad y a la linealidad de la TL podemos convertir una ec. diferencial como

" 3 ' 4 ( 1)

(0) 1, '(0) 2

y y y t u t

y y

en una ec. algebraica

2

2 1( )*( 3 4) ( 1) ss

s eY s s s s

Resolver paray(t)

Resolver para Y(s)

Ec. Diferencial

Transformada de Laplace

Ec. Algebraica

Si resolvemos la ec. algebraica:

2

2 2

( 1) ( 1)( )

( 3 4)

s ss s e eY s

s s s

y encontramos la transformada inversa de Laplace de la solución, Y(s), encontraremos la solución de la ec. diferencial.

Ec. Algebraica

Solución de la Ec. Diferencial

Inversa de la Transformada

de Laplace

La transformada inversa de Laplace de:

es

4 43 32 15 80 4 16

4325 5

( ) ( 1)( + ( ) )

( )( ( ) )

t tee

t t

y t u t e e t

u t e e

2

2 2

( 1) ( 1)( )

( 3 4)

s ss s e eY s

s s s

4 43 32 15 80 4 16

4325 5

( ) ( 1)( + ( ) )

( )( ( ) )

t tee

t t

y t u t e e t

u t e e

es la solución de la ec. diferencial:

" 3 ' 4 ( 1)

(0) 1, '(0) 2

y y y t u t

y y

De modo que:

Para conseguirlo hemos aplicado:

Primero, que la TL y su inversa son lineales:

1 1 -1

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( )

cf t g t c f t g t

cF s G s c F s G s

L = L +L

L = L +L

2

'( ) ( ) (0),

''( ) ( ) (0) '(0)

f t s f t f

f t s f t s f f

L = L

L = L

and

etc...

Y segundo, la TF de las derivadas de una función son:

A este método se le conoce como cálculo de Heaviside.

Por ejemplo:

012

1

012

01

)0()0(')0()(

0)()}0()({)}0(')0()({

0)()(')(''

asas

fafsfsF

sFafssFafsfsFs

tfatfatf

Y antitransformando obtendremos la solución.

Veamos un ejemplo concreto: Resolver la ec. diferencial

)4)0(y0()(2)(' 3 ftetftf t

tt

t

tt

eetfss

sF

ssFssF

ssFfssF

eLtfLtfL

etftfLetftf

32

3

33

5)(3

1

2

5)(

03

1)(24)(

03

1)(2))0()((

0}{)}({2)}('{

0})(2)('{;0)(2)('

74

Ejemplo

Resolver

2222 )1()1(

1)(

s

e

ssY

s

0)0()0(,0

0sin

yyt

ttyy

11

1

)sin()(sin

sin)(sin)()(

22

2

s

e

s

ttutL

ttutLsYsYs

s

tt

tttt

ttttutttty

cos

0cossin

)cos()()sin()(cossin)(

21

21

21

21

75

Ejemplo:

2

1

1

1

23

1)(

)(2)(3)(

2

2

sse

ssesY

esYssYsYs

ss

s

)1(2)1()1()( tt eetuty

Resolver 0)0()0(),1(23 yytyyy

76

7. Transformada de Laplace de la integral de una función

s

sFtfL

sduufL

t )()}({

1)(

0

)(1

)(11

)(

)()(

)()(

000

00

0

sFs

dttfes

es

df

dtdfesX

dttfesF

ststt

tst

st

Si existe la TL de f(t) cuando Re(s) > p ≥ 0, entonces:

para Re(s) > p.

77

s

sFduufL

t )()(

0

)(2

)(1

1

1

1}{;

2

20

sarctguarctgduut

tsenL

stsenLdte

t

tsen

t

tsenL

ss

st

sduuF

t

tfL )(

)(

)()(con tfLsF Ejemplo:

8. Transformada de Laplace de f(t)/t

78

Useful theorems - Integration

Integration. Given:

Then

0

)()()( dttfetfLsF st

t

dfsFs

L0

1 )()(1

79

Example - Integration

Use the integration result to find the inverse transform of:

Put

)1(

1

ss

tt

tt

ee

edess

L

1)1(

)1

110

0

1

tetfs

sF

)()1(

1)(

Then

80

)cos()()(Si attftg

24

222

2222

0

4

2

222

2

)()()()(

)(1

)(

as

aaisa

aisa

i

aiasa

aiasa

i

dtet

atsensG

atsent

tg

st

2

)()()(

iasFiasFsG

acon

Ejemplo:

)()()(Si atsentftg

2

)()()(

iasFiasFisG

acon

9. TF de f(t)cos(at) y f(t)sen(at)

81

10. Teorema del valor final

Si existe, entonces:

11. Teorema del valor inicial

El valor inicial f(0) de la función f(t) cuya transformada de Laplace es F(s), es:

)(lim tft

)(lim)(lim 0 ssFtf st

)(lim)(lim)0(0

ssFtff st

82

Recordemos que

la operación se conoce

como la convolución de y y se denota como

La transformada de Laplace de esta operación está dada por:

dtff )()( 21

)(1 tf ),(2 tf

)}({)}({)}(*)({

)()()}(*)({

2121

2121

tfLtfLtftfL

sFsFtftfL

).(*)( 21 tftf

12. Integral de convolución

83

0,0

0,)()()(*)( 0

t

tdtgftgtft

Si trabajamos con funciones que son cero para para t < 0, entonces la convolución queda:

Así que para estas funciones podemos definirla convolución como:

t

tdtgftgtf0

)0(,)()()(*)(

84

44

1

2

)()()(*)(

2

0

22

0

)(2

ttt

t t

etdee

dedtgftgtf

)}({)}({)}(*)({ 2121 tfLtfLtftfL Ejemplo: Verificar que funciona para f(t) = t y g(t) = e-2t

con valores 0 para t < 0.

)2(

1

)2(

1

4

11

4

11

2

1

}{4

1}1{

4

1}{

2

1

44

1

2

2

2

2

2

ss

sss

eLLtL

etL

t

t

)2(

1

)2(

11

)2(

1}{;

1}{

22

22

ssss

seL

stL t

85

De hecho, podemos utilizar la convolución para encontrar transformadas inversas de Laplace:

1

1

11

)1(

1

0

21

21

tede

etss

Lss

L

tt

t

t

86

Convolution theorem

For any functions f(t) and g(t) with:

0

)()()( dttfetfLsF st

0

)()()( dttgetgLsG st

Then

)()()()(0

sGsFdgtfLt

convolution integral

87

Convolution theorem and inversion

For any functions F(s) and G(s) with:

)()(1 tfsFL

Then

)()(1 tgsGL

t

dgtfsGsFL0

1 )()()()(

Do not use unless really necessary!

t

dtgfsGsFL0

1 )()()()( Or

88

Convolution theorem – example

Use the convolution theorem to invert: 22 )1( s

s

Put

Thus

)1()(

2

s

ssF

)1(

1)(

2

ssG

ttf cos)( ttg sin)(

89

Convolution theorem – example

Now use

t

dgtfsGsFL0

1 )()()()(

Thus

t

dts

sL

022

1 )sin()cos()1(

90

Convolution theorem – example

Expand out

After much work (see notes)

tts

sL sin

2

1

)1( 221

tt

t

dtdt

dts

sL

00

022

1

sinsinsin sincoscos

)sin()cos()1(

91

1

1)(

41)(;

1

10)}(*{41)(

1

1)0()}({4)0()(

}{)(4)(;)()(4)(

)(1

)}({}{

)()(*

0

2

ssX

sssX

stxtLsssX

shthsLxssX

eLthdt

dLtx

dt

dLedssxst

dt

dtx

dt

d

sXs

txLtL

tt

thtxt

t

1)0(;)()(4)(0

xedssxsttx

dt

d tt

Resolver la ec.integro-diferencial:

92

ttt eeetx

ssssX

sss

ssX

ssX

sssX

22

2

3

1

3

1)(

2

1

3

1

2

1

1

1

3

1)(

)3)(2)(1()(

1

1)(

41)(

Antitransformando:

93

Raíces del denominador D(s) o polos de F(s):

Caso I – Polos reales simples

Caso II – Polos reales múltiples

Caso III – Polos complejos conjugados

Caso IV – Polos complejos conjugados múltiples

)( as 2)( as

))(( *asas

01

1

01

1

)(

)()(

bsbs

asasa

sD

sNsF

mm

m

nn

nn

Desarrollo en fracciones parciales: Se utiliza para facilitar el cálculo de la transformada inversa, descomponiendo la función en componentes más sencillos.

2*))(( asas

94

Caso I – Polos reales simples )( as

32

)3)(2(

1

6

1

)(

)()(

23

s

C

s

B

s

A

sss

s

sss

s

sD

sNsF

Ejemplo

as

A

95

15

2

)2(

1

3

10

3

)3(

1

2

6

1

)3)(2(

1

3

2

0

s

s

s

ss

s

s

C

ss

s

s

B

ss

s

s

A

32)3)(2(

1)(

s

C

s

B

s

A

sss

ssF

assD

sNasA

)(

)()(

96

)3)(2(

)2()3()3)(2(326

123

sss

sCssBsssAs

C

s

B

s

A

sss

s

)2()3()3)(2(1 sCssBsssAs

Ass

s

s

0)3)(2(

1

)6()23()(

)2()3()6(12

222

ACBAsCBAs

ssCssBssAs

16;123;0 ACBACBA

métodoalternativo

y resolver...

97

3

1

15

2

2

1

10

31

6

132

6

1)(

23

sss

s

C

s

B

s

Asss

ssF

La transformada inversa de Laplace es:

tt eetf 32

15

2

10

3

6

1)(

98

Otro ejemplo

2

1

1

2

1

1

211

)2)(1)(1(

372

)2)(1(

372)(

2

2

2

ssss

C

s

B

s

A

sss

ss

ss

sssF

1)1)(3(

3148

)1)(1(

372

2)3)(2(

372

)2)(1(

372

1)1)(2(

372

)2)(1(

372

2

2

1

2

1

2

s

s

s

ss

ssC

ss

ssB

ss

ssA Transformada inversa de Laplace:

ttt eeetf 22)(

99

Caso II – Polos reales múltiples 2)( as

12)1)(2(

44

)(

)()(

22

23

s

D

s

C

s

B

s

A

sss

ss

sD

sNsF

Ejemplo

)()( 2 as

B

as

A

Polos realessimples

Polos realesmúltiples

100

3)1)(2(

44

2)1)(2(

44

0

230

23

2

s

s

ss

ss

ds

d

s

B

ss

ss

s

A

assD

sNasA

)(

)()( 2

assD

sNas

ds

dB

)(

)()( 2

)1)(2(

44)(

2

23

sss

sssF

101

Transformada inversa de Laplace:

tt eettf 232)(

1

1

2

113

12

12

)1)(2(

44)(

2

2

2

23

ssss

s

D

s

C

s

B

s

A

sss

sssF

102

En general, para polos reales múltiples:

sN

sDsF n

r pspspssD 21

n

nr

rr

r

ps

a

ps

a

ps

a

ps

b

ps

b

ps

bsF

3

3

2

2

1

11

1

1

1

1

1!

1

ps

r

j

j

jr pssFds

d

jb

ipsii pssFa

1

1

1

1

]))(([)!1(

1

]))(([!

1

]))(([

]))(([

11

1

1

1

11

1

ps

rr

r

ps

rj

j

jr

ps

rr

psr

r

pssFds

d

rb

pssFds

d

jb

pssFds

db

pssFb

103

Caso III – Polos complejos conjugados

ejemplo

))(( *asas

iaas

B

as

B

s

A

ss2,

)4(

4*

*

2

2

1

)2(

4

2

1

)2(

4

14

4

2

*

2

02

is

is

s

issB

issB

sA

conjugados complejos

*

11

2

11

asass

Transformada inversa de Laplace:

)2cos(1)( ttx

104

ejemplo

iaas

B

as

B

ss

s43,

256

4*

*

2

)4(8

1

43

4

)4(8

1

43

4

43

*

43

iis

sB

iis

sB

is

is

Transformada inversa de Laplace:

)cos(2)( teBtf t

245.0,4,3

,8

17),4(

8

1

BiB

)245.04cos(4

17)( 3 tetf t

donde

105

Se trata de repetir los métodos usados en los casos II y III,teniendo en cuenta que trabajamos con complejos.

Caso IV – factores complejos conjugados múltiples

2*))(( asas

106

Partial Fractions – General Case

In the solution of ODEs by the Laplace Transform

method, expressions of the form often occur.

Here P(s) and Q(s) are both polynomials.)(

)(

sP

sQ

These are easy to invert if they are written in partial

fraction form:

)()()()(

)(

2

2

1

1

n

n

s

a

s

a

s

a

sP

sQ

Here )())(()( 21 nssssP

107

Partial Fractions – Complex Roots

If 1 and 2 are a complex conjugate pair, then we can avoid complex numbers by combining these factors into a quadratic expression. Say 1 = -a+ib, 2= -a-ib, then:

Then

2221 )())(( basss

)()()()(

)(

3

322

n

n

s

a

s

a

bas

BsA

sP

sQ

108

Partial Fractions – Repeated Roots

If 1 = 2 then the partial fraction form is:

Etc, etc

)()()()()(

)(

3

32

1

2

1

1

n

n

s

a

s

a

s

a

s

a

sP

sQ

If 1 = 2 = 3 then the partial fraction form is:

)()()()()(

)(3

1

32

1

2

1

1

n

n

s

a

s

a

s

a

s

a

sP

sQ

109

Method 1 - Cover-up Rule

Basic idea:

• Multiply by a factor (s - i)

• Put s = i

• Evaluate ai

)()()()(

)(

2

2

1

1

n

n

s

a

s

a

s

a

sP

sQ

110

Cover-up Rule

Find the partial fraction form for:

The partial fraction form is:

)1(

1

ss

)1()1(

1

s

B

s

A

ss

111

Cover-up Rule

To calculate A, multipy by s and put s=0:

)1()1(

1 :

s

BsA

ss

101

1 :0Put AAs

112

Cover-up Rule

To calculate B, multipy by s+1 and put s=-1:

BAss

s )1(1

:)1(

101

1 :1Put

BBs

Thus the partial fraction form is:

)1(

11

)1(

1

ssss

113

Cover-up Rule

The above procedure can be carried out by “covering up”. For A use:

Now put s = 0, ignoring the covered up items:

)1()1(

1

s

B

s

A

ss

110

1

AA

114

Cover-up Rule

Similarly for B, “covering up” gives:

Now put s = -1, ignoring the covered up items:

11

1

BB

)1()1(

1

s

B

s

A

ss

115

Complex Cover-up Rule

Find the coefficients A, B, C in:

Find A using the standard cover-up idea:

)1()1()1)(1(

122

s

CBs

s

A

ss

)1()1()1)(1(

122

s

CBs

s

A

ss

116

Complex Cover-up Rule

Put s+1 = 0, that is s = -1:

2

1

)1)1((

12

AA

The coefficients B and C are more difficult to calculate. A modified version of the cover-up rule involves using complex factors

117

Complex Cover-up Rule

Multiply the whole equation by (s+i):

i)()1(

i)()1(

i)()1)(1(

122

ss

CBss

s

As

ss

i)(i)i)((

i)()1(

i)(i)i)()(1(

1

sss

CBss

s

A

ssss

118

Complex Cover-up Rule

Now put (s+i)=0, that is s = -i:

i)(i)(

)1(i))(1(

1

s

CBss

s

A

ss

i)2(

i)()0(

)1(i)2)(1i(

1

CB

i

A

After tidying up:

CB

i2

)1i(

119

Complex Cover-up Rule

Equate real and imaginary parts:

Final partial fraction:

2

1 ,

2

1 CB

)1()1()1)(1(

12

21

21

21

2

s

s

sss

120

Method 2 - Substitution of values

Basic idea

• Put s = bi for i=1,2,…,n. Here bi are convenient, easy to work with, numbers

• Obtain n equations in the n unknown ai

• Solve for ai

)()()()(

)(

2

2

1

1

ni

n

iii

i

b

a

b

a

b

a

bP

bQ

121

Substitution of values

Find the coefficients A, B, C in:

)1()1(

122

s

C

s

B

s

A

ss

)1()1(

122

s

C

s

B

s

A

ss

Put s=0:1

)10(

1

BB

Use cover-up for B :)( 2s

122

Substitution of values

Use cover-up for C:

)1()1(

122

s

C

s

B

s

A

ss

Put s=-1:1

)1(

12

CC

123

Substitution of values

We cannot use cover-up for A. So far we have:

)1(

11

)1(

122

sss

A

ss

One good way to calculate A is to substitute a convenient value for s. Say s =1:

)11(

1

1

1

1)11(1

122

A

12

11

2

1 AA

124

Substitution of values

Substitute back:

)1(

111

)1(

122

sssss

125

Example - substitution of values

Substitute values to work out A and B in:

)1()1(

1

s

B

s

A

ss

Put s=1: BABA

2

1

2

1

212

1

Put s=2: BABA

3

2

3

1

326

1

126

Example - substitution of values

Subtract two equations

1166

1 AB

B

Substitute back

)1(

11

)1(

1

ssss

127

Method 3 - Equate coefficients

Basic idea:

• Multiply whole equation by P(s)

• Equate coefficients of each power of s

• Solve resulting equations for ai

ii

nn

s

sPsP

sPasPasPasQ

)(

)( where

),(...)()()( 2211

128

Example - Equate coefficients

Calculate A and B in:

)1()1(

1

s

B

s

A

ss

Multiply by s(s+1): BssA )1(1

Equate coefficients:

BA0 :sFor

A1 :1For 1 ,1 BA

129

Example - Equate coefficients

Calculate A and B in:

Multiply by (s+1)(s2 +1):

)1)(()1(1 2 sCBssA

)1()1()1)(1(

122

s

CBs

s

A

ss

BA0 :sFor 2

Equate coefficients:

)()()(1 2 CAsCBsBA

0 :For CBs

2

1 ,

2

1 ,

2

1 CBA 1 :1For CA

130

Preferred method for partial fractions

Calculate as many coefficients as possible using the simple cover-up rule

Calculate the remaining coefficients by:

• Substituting values for s

• Using the complex cover-up method

• Equating coefficients

131

More on differential equations

ODE problem

Apply Laplace transform

)(011

1

1 tfyadt

dya

dt

yda

dt

ydn

n

nn

n

nn

n

bdt

ydb

dt

dyby

)0( ..., ,)0( ,)0(1

1

21

)()()()( sFsQsYsP

132

More on differential equations

Rearrange

)(

)(

)(

)()(

sP

sF

sP

sQsY

)(

)(

sP

sQ This term comes from the initial conditions. To invert, convert into partial fraction form, then use tables and useful rules

)(

)(

sP

sF This term comes from the right hand side of the ODE. To invert, convert into partial fraction form (if possible) then use tables. Otherwise use partial fractions on 1/P(s) , invert, and then apply the convolution theorem

133

Transfer function (optional extra)

System Input: f(t) Output: y(t)

If we forget about the initial transient in )(

)(

)(

)()(

sP

sF

sP

sQsY

Then

)(

1

)(

)(

)(

)()(

sPsF

sY

sP

sFsY

134

Transfer function (optional extra)

Thus the transfer function Can be written as:

inputL

outputL

sF

sY

sP

)(

)(

)(

1

)(

1

sP

If f(t)=(t) then F(s)=1 and

Thus the transfer function is the Laplace transform of the response of the system to an impulse (delta function)

)(

1)(

sPsY

135

Example (Laplace transform solution of an ODE)

Solve the following problem using the Laplace transform method:

Step 1. Define your transform

,sin10232

2

tydt

dy

dt

yd 0)0(,1)0(

dt

dyy

0

)()()( dttyetyLsY st

136

Example (Laplace transform solution of an ODE)

Step 2. Transform the ODE:

tLydt

dy

dt

ydL sin1023

2

2

tLyLdt

dyL

dt

ydL sin10}2{3

2

2

tLyLdt

dyL

dt

ydL sin10}{23

2

2

137

Example (Laplace transform solution of an ODE)

Use formulae from the tables

1

110)(2)0()(3

)0()0()(

2

2

ssYyssY

sydt

dysYs

Tidy up

1

10)0()3()0()(]23[

22

sys

dt

dysYss

138

Example (Laplace transform solution of an

ODE) Step 3. Use the initial conditions and solve for Y(s):

1

10)0()3()0()(]23[

22

sys

dt

dysYss

1

10)3()(]23[

22

sssYss

)1)(23(

10

23

3)(

222

sssss

ssY

139

Example (Laplace transform solution of an ODE)

Step 4. Find the partial fraction forms. First

21)2)(1(

3

23

32

s

B

s

A

ss

s

ss

s

Cover-up for A:

21)2)(1(

3

s

B

s

A

ss

s

Put s = -1:2

2)1(

3)1(

AA

140

Example (Laplace transform solution of an ODE)

Cover-up for B:

21)2)(1(

3

s

B

s

A

ss

s

Put s = -2:1

1)2(

3)2(

BB

Substitute back:

2

1

1

2

)2)(1(

3

ssss

s

141

Example (Laplace transform solution of an ODE)

Now work out the partial fraction form for:

Use cover-up for C

211)2)(1)(1(

1022

s

D

s

C

s

BAs

sss

211)2)(1)(1(

1022

s

D

s

C

s

BAs

sss

Put s = -1: 5)21(1)1(

102

CC

142

Example (Laplace transform solution of an ODE)

Use cover-up for D

211)2)(1)(1(

1022

s

D

s

C

s

BAs

sss

Put s = -2: 2)12(1)2(

102

DD

Result so far:

2

2

1

5

1)2)(1)(1(

1022

sss

BAs

sss

143

Example (Laplace transform solution of an ODE)

To find B, put s = 0 :

20

2

10

5

10

0

)20)(10)(10(

10

BA

1152

10 BB

144

Example (Laplace transform solution of an ODE)

To find A, put s = 1 :

21

2

11

5

11

11

)21)(11)(11(

10

A

3

2

2

5

2

1

322

10

A

33

415

3

52 AA

145

Example (Laplace transform solution of an

ODE) Substitute back:

2

2

1

5

1

13

)2)(1)(1(

1022

sss

s

sss

Combine both partial fractions:

)1)(23(

10

23

3)(

222

sssss

ssY

2

2

1

5

1

13

2

1

1

2)(

2 sss

s

sssY

146

Example (Laplace transform solution of an ODE)

Tidy up:

Step 5. Invert using tables. Look at each term separately:

2

3

1

7

1

1

13)(

22

ssss

ssY

ts

sL cos

121

ts

L sin1

12

1

tes

L

1

11 tes

L 21

2

1

147

Example (Laplace transform solution of an ODE)

Combine to invert Y(s):

2

13

1

17

1

1

13

2

3

1

7

1

1

13)}({)(

112

12

1

2211

sL

sL

sL

s

sL

ssss

sLsYLty

tt eettty 237sincos3)(

148

Inversion of typical terms in partial fractions

(I) Inversion of)( as

A

From tables: atAeas

AL

)(1

(II) Inversion ofnas

A

)(

)!1(

1

)(

1111

n

tAe

sLAe

s

ALe

as

AL

nat

nat

nat

n

149

Inversion of typical terms in partial fractions

(III) Inversion of22)( bas

BsA

221

221

)(

)()(

)( bas

asBBaAL

bas

BsAL

2222

122

1

)( bs

Bs

bs

BaALe

bas

BsAL at

221

221)(

bs

sBL

bs

bL

b

BaAe at

150

Inversion of typical terms in partial fractions

From tables:

btBbt

b

BaAe

bas

BsAL at cossin

)(

)( 221

151

Even more on Laplace transforms and ODE’s

The Laplace transform method gives the result:

)(

)(

)(

)()(

sP

sF

sP

sQsY

Here:

)())((

1

)(

1

21 nssssP

152

Even more on Laplace transforms and ODE’s

In the special case when f(t) is a polynomial, exponential, sine or cosine or a sum of such terms, then F(s) can be written in the partial fraction form:

Thus the partial fraction form for F(s)/P(s) will be:

kk

s

C

s

C

s

C

s

B

s

B

s

BsF

221

1

1

1

1

1

1

)()()()(

)()()(

)()()()(

)(

1

1

1

1

1

1

221

1

1

1

1

1

1

s

a

s

a

s

a

s

c

s

c

s

c

s

b

s

b

s

b

sP

sFkk

153

Even more on Laplace transforms and ODE’s

Thus the part of y(t) arising from the inverse of F(s)/P(s) will contain the following parts:

• The same kinds of functions as in the rhs f(t). (This part corresponds to the particular integral of Module 3)

• A sum of several exponentials of the form below(This part corresponds to the complementary function of Module 3)

ti

iea

154

Even more on Laplace transforms and ODE’s

The real part of all the i determine whether or not the system is stable:

• If any Re{i} are positive the solution will grow exponentially with time. That means the system is unstable.

• If all Re{i} are negative the solution will decay exponentially with time. That means the system is stable.

155

Even more on Laplace transforms and ODE’s

• If all Re{i} are zero the solution will oscillate with time. That means the system is stable – except for the case of resonance.

• The case of resonance occurs when one of the i is the same as one of the i. In this case terms like that below will occur: 2)( i

i

s

a

This leads to terms in the solution of the form below which correspond to weak instability. tite

156

Final example (summary of all methods)

 

Solve the following problem using the integrating factor method, the guessing method and the Laplace transform method:

tydt

dy with 1)0( y

157

Final example (summary of all methods)

(a) Integrating factor method (Module 1).

Compare with the standard form:

)()( tfytgdt

dy

In our case g(t)=1, thus the integrating factor is given by:

tedttg )(exp

158

Final example (summary of all methods)

Multiply the ODE by the integrating factor:

teyedt

dye ttt

Integrate:

teyedt

d tt

Use the product rule in reverse:

Cdtteye tt

159

Final example (summary of all methods)

Use integration by parts on the rhs:

Use the initial condition y(0)=1:

Divide by the integrating factor:

Cete

CdteteCdtteye

tt

tttt

tCety 1

2101 0 CCe

Substitute back: tety 21

160

(b) Guessing method (see Module 3).

Final example (summary of all methods)

Thus:

Step 1. Find the complementary function. Solve:

101

tCF Cey

Try y=Cet. This gives the characteristic equation:

0 ydt

dy

161

Final example (summary of all methods)

Step 2. Find the particular integral. Try

Equate coefficients:

Substitute in the ODE:

btayPI

bdt

dyPI

tbtab

1: term bt

10: term1 baab

tyPI 1

162

Final example (summary of all methods)

Step 3. Combine the particular integral and the complementary function. The general solution is:

CFPI yyy tCety 1

Step 4. Use the initial condition y(0)=1:

2011 0 CCe

Substitute back:tety 21

163

Final example (summary of all

methods) (c) Laplace Tranform method (see Module 5)

Step1. Define your transform:

Step 2. Transform the ODE:

0

)()()( dttyetyLsY st

2

1)()]0()([

ssYyssYtLy

dt

dyL

164

Final example (summary of all methods)

Tidy up:

Step 3. Use the initial condition y(0)=1 and solve for Y(s):

2

1)0()()1(

sysYs

2

11)()1(

ssYs

)1(

1

1

1)(

2

ssssY

165

Final example (summary of all methods)

Step 4. Put in partial fraction form. Find A,B,C for:

Use cover-up to find B:

)1()1(

122

s

C

s

B

s

A

ss

)1()1(

122

s

C

s

B

s

A

ss 1 0 Bs

166

Final example (summary of all methods)

Use cover-up to find C:

)1()1(

122

s

C

s

B

s

A

ss1 101 Css

At this stage we have:

)1(

11

)1(

122

sss

A

ss

Put s = 1 : 1)11(

1

1

1

1)11(1

122

AA

167

Final example(summary of all methods) Substitute back:

)1(

111

)1(

122

sssss

Combine all terms in Y(s):

)1(

1

1

1)(

2

ssssY

1

111

1

1)(

2

sssssY

1

211)(

2

ssssY

168

Final example (summary of all methods) Step 5. Invert using tables:

)1(

211)}({)(

211

sssLsYLty

tetty 21)(

)1(

12

11)( 1

211

sL

sL

sLty