1 Introduction 2 Basic IC fabrication processes 3...

Post on 15-Mar-2018

230 views 1 download

Transcript of 1 Introduction 2 Basic IC fabrication processes 3...

MDLNTHU

Outline

1 Introduction

2 Basic IC fabrication processes

3 Fabrication techniques for MEMS

4 Applications

5 Mechanics issues on MEMS

MDLNTHU

3. Fabrication Techniques for MEMS

3.2 Surface micromachining

3.3 LIGA process

3.1 Bulk micromachining

3.4 Hybrid micromachining

3.5 Thick micromachined structures

MDLNTHU

3.4 Hybrid micromachining

• Hybrid micromachining – the fabrication processes containing both surface and bulk micromachining technique

• Presently, more and more MEMS devices are fabricated through hybrid micromachining technique

Q. Zou, Z. Li, and L. Liu, J. of MEMS, 1996

MDLNTHU

C.-J. Kim, A.P. Pisano, and R.S. Muller, J. of MEMS, 1992

Micro Gripper

MDLNTHU

+ Fabrication processes

MDLNTHU

Resonant pressure transducer

surface micromachinedresonator

Surface micromachinedresonator

Bulk silicon etching

C.J. Welham, J.W. Gardner, and J. Greenwood, Transducer '95, 1995.

MDLNTHU

Capacitive type pressure transducer

J.T. Kung and H.-S. Lee, J. of MEMS, 1992.

MDLNTHU

Microphone

Q. Zou, Z. Li, and L. Liu, J. of MEMS, 1996

MDLNTHU

DRIE trench

define wet anisotropic etch mask

define sacrificial layer

define structure layer

Wet anisotropic under etching

Electorstatic lever actuator

H.-Y. Lin and W. Fang, ASME IMECE 2000.

MDLNTHU

Torque generatorFolded frame

define the structure layer

Remove the sacrificial layer

Wet anisotropic under etching

RIE trench

define wet under etching mask

define the sacrificial layer

Micro scanner

H.-Y. Lin and W. Fang, Transducer01, 2001

MDLNTHU

Surface device Bulk device

Micro scanner

Surface+ Bulk device

J. Hsieh and W. Fang, Transducer99, 1999

MDLNTHU

Define cavity and lower electrode

Pattern sacrificial layer

Pattern structural layer

Releasing structure and etching Si

Pattern top electrode (option)and then remove sacrificial layer

extending cavity

Deposit protection/isolation layer

+ Fabrication processes

MDLNTHU

DRIE (~10 μm)

DRIE trimming SixNy passivation

Bulk etching (~100 μm)

MUMPsprocess (~1 μm)

MOSBE Fabrication Platform

M. Wu, C. Lai, and W. Fang, IEEE MEMS’04, the Netherlands, 2004M. Wu, C. Lai, and W. Fang, JMM, 2005

MDLNTHU

• Increasing the stiffness of the thin poly-Si structures w/o changing the film thickness

MDLNTHU

A B

A

B

AB

y (d

efle

ctio

n)

x (beam length)

y (d

efle

ctio

n)

Def

lect

ion

(μm

)

A

B

Position along the beam length (μm)0 140

0

0

9

9

U-shape cantilever

Conventional cantilever

Passive component - Stiff beam

H.-Y. Lin and W. Fang, JMM., 2000

MDLNTHU

H.-Y. Lin and W. Fang, the ASME IMECE, Orlando, FL, 2000

Reinforced folded frame

Passive component - Flat mirror

H.-Y. Lin and W. Fang, Sensors and Actuators A, 2004

MDLNTHU

ρ : 93mm ρ : 41mm ρ : 153mm ρ : 179mm

X axis-Profile435μm

Y axis-Profile435μm

X axis-Profile435μm

Y axis-Profile435μm

MOSBE mirrorConventional mirror

H.-Y. Lin and W. Fang, the ASME IMECE, Orlando, FL, 2000

MDLNTHU

• Narrow trench-refilled poly-Si (depth ~ 20 μm)+ Double-ring reinforced rib on its boundary + Grid reinforced rib on its domain

M. Wu, C. Lai, and W. Fang, IEEE MEMS’04, the Netherlands, 2004

Passive component – Flat mirror

M. Wu, and W. Fang, JMM, 2005

MDLNTHU

• Four different type mirror

Rib-reinforced structure

+ Thin film mirror (ROC: 19 mm) + Single ring mirror (ROC: 64 mm)

+ Double ring mirror (ROC: 92 mm) + Double ring with grid (ROC: 150 mm)

MDLNTHU

Active component - Electrostatic actuator I

J. Hsieh and W. Fang, Transducers’99, Sendai Japan, 1999J. Hsieh and W. Fang, Sensors and Actuators A, 2000

Plate Torsional springDriving electrode

• META Engine : ((MMicroicro EElectrostatic lectrostatic TTorsionalorsional AActuator )ctuator )

MDLNTHU

• EDLA Engine : ((EElectrostaticallylectrostatically--DDrivenriven--LLeverage everage AActuator )ctuator )

Outputdisplacement

Electrode

Pivot

Lever

Max disp. > 15μm Driving voltage < 25 volt

H.-Y. Lin, H. Hu, and W. Fang, Transducers’01, Munich Germany, 2001

Active component - Electrostatic actuator II

MDLNTHU

• Vertical comb electrodes+ Comb thickness ~20um + Travel stoke ~20um

20um

Active component - Vertical comb actuator

M. Wu, and W. Fang, JMM, 2005

MDLNTHU

Active component - electrothermal actuator

W.-C. Chen, J. Hsieh, and W. Fang, IEEE MEMS’02, Las Vegas, NV, 2002W.-C. Chen, J. Hsieh, and W. Fang, Sensors and Actuators A, 2003

Move upward

Move downward

MDLNTHU

1000 10000 100000

-40

-35

-30

-25

-20

-15

-10

-5

Res

pons

e (d

B)

Frequency (Hz)

1.8 kHz 33 kHz

105 106 107 108 10930

31

32

33

34

35

reso

nant

freq

uenc

y (k

Hz)

number of cyclesNumber of cycles (million cycles)

0.1 1.0 10 100 1000

Frequency (kHz)

1.0 10 100R

eson

ant f

requ

ency

Res

pons

e (d

b)

MDLNTHU

Vertical comb actuatorRib-reinforced mirror and frame

Torsionalspring

Applications – 1 axis optical scanner

M. Wu, and W. Fang, IEEE MEMS, Masstricht, the Netherlands, 2004M. Wu, and W. Fang, JMM, 2005

MDLNTHU

Scanning test

M. Wu, and W. Fang, IEEE MEMS, Masstricht, the Netherlands, 2004

MDLNTHU

00.20.40.60.81

0 1 2 3 4 5 6

Frequency(kHz)

Am

plitu

de

Resonant frequency ~1.8 kHz

Dynamic measurement

• Dynamic test driven by AC

0

1

2

3

0 10 20 30 40 50

Voltage (V)A

ngle

(deg

ree)

• Static load-deflection test + out-of plane displacement

~12.03μm at 50V+ scanning angle ~ 2.8 degree

MDLNTHU

M. Wu, C. Lai, and W. Fang, IEEE MEMS’04, the Netherlands, 2004

Mirror (passive)

Driving electrodes (active)

Springs (passive)

Supporting frame (passive)

Applications - 2D Gimbal mirror

MDLNTHU

Scanning test

Outer axis: 7.1kHz

Inner axis: 4.1kHz

• Scanning images

MDLNTHU

• Scanning images

MDLNTHU

Dynamic measurement

• Dynamic test driven by AC • Static load-deflection test

MDLNTHU

H.-Y. Lin and W. Fang, IEEE Optical MEMS, Kauai, Hawaii, 2000H.-Y. Lin and W. Fang, the ASME IMECE, Orlando, FL, 2000

1 cm

Applications: optical scanner

EDLA engine

Mirror

Torsional spring

H.-Y. Lin and W. Fang, Sensors and Actuators A, 2004

MDLNTHU

Excitation frequency (kHz)

Op

tica

l sc

an

nin

g a

ng

le(d

eg

)

0

1

23

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Sine wave, ±18.5 VDC bias, 18.5 V1st torsional mode

4.2 kHz, 9.2 deg

2nd torsional mode17.7 kHz, 1.53 deg

• Measured frequency response