Download - The Notch Effects on the Fatigue Fracture Behaviour of ...nas1kosos.superscholar.kr/jkss/200318346.pdf · 랙길이 측정은 금속현미경을 피로시험기에 부착한 상태에서

Transcript
  • 46

    -

    (2003. 8. 7. / 2003. 9. 8. )

    The Notch Effects on the Fatigue Fracture Behaviour of Ferrite-

    Martensite Dual Phase Steel

    Young-Min Do

    Department of Automobile Engineering, Doowon Technical College

    (Received August 7, 2003 / Accepted September 8, 2003)

    Abstract : For the tensile tests of the F.E.M., microvoids are created by the boundary separation process at the martensite

    boundary or neighborhood and at inclusions within the ferrite, to grow to the ductile dimple fracture. For the case of the

    M.E.F., microvoids created at the discontinuities of the martensite phase which exists at the grain boundary of the primary

    ferrite are grown to coalescence with the cleavage cracks induced at the interior of the ferrite, which as a result show

    the discontinuous brittle fracture behavior.

    In spite of their similar tensile strengths, the fatigue limit and the notch sensitivity of the M.E.F. is superior to those of

    the F.E.M.. The M.E.F. is much more insensitive to notch than F.E.M. from the stress concentration factor( ).

    Key Words : Martensite Encapsulated islands of Ferrite(M.E.F.), Ferrite Encapsulated islands of Martensite(F.E.M.),

    notch, stress concentration factor, fatigue strength, fatigue limit

    1. 1)

    (ferrite) 2

    (martensite)

    ,

    1)

    . , .

    ,

    . (Mn, Si, Cr)

    2)

    ,

    3), 2

    4)

    . ,

    . ,

    [email protected]

    ,

    (fatigue damage)

    . ,

    (pin hole), , ,

    (fillet)

    .

    (stress concentration effect)

    ,

    .

    56)

    ,

    2

    .

  • -

    , 18 3, 2003 47

    2

    ,

    , 2

    .

    2.

    25mm

    SM20C, Table 1 .

    Fig. 1

    .

    2 3

    (M.E.F.

    ) 2

    (F.E.M.) . ,

    ,

    .

    Fig. 2

    , Table 2, 3

    .

    Table 1. Chemical composition of specimen.

    material Chemical composition (wt. %)

    C Si Mn P S

    SS41 0.19 0.20 0.53 0.029 0.042

    (a) F.E.M dual phase steel

    (b) M.E.F. dual phase steelFi g. 1. Heat treatment process of F.E.M. and M.E.F. dual

    phase steels.

    (a) F.E.M. Microstructure

    (b) M.E.F. MicrostructureFig. 2. Optical micrographs of dual phase steels.

    Table 2. Metallurgical properties of specimen materials.

    ferritegrain size

    ( m)

    martensitegrain size

    ( m)

    martensitevolumefraction

    (%)

    Hardness(Hv), 25gf

    ferrite martensite ratio

    F.E.M. 65 140 50.20 151 623 4.05

    M.E.F. 65 - 51.60 151 623 4.05

    Table 3. Mechanical properties of specimen materials.

    Tensilestrength(MPa)

    Yieldstrength(MPa)

    Young'smodulus(MPa)

    Elongation(%)

    Reductionof area

    (%)

    Poisson'sratio( )

    F.E.M. 726.77 406.60 1.98105

    10.21 22.78 0.2704

    M.E.F. 745.09 449.13 2.03105

    7.19 10.26 0.2770

    Fig. 3

    Peterson

    7) . =1.01

    ,

    =1.42, =1.97, V

    =3.2 .

    (cantilever type

    rotary bending fatigue test machine),

    20Hz,, R = -1,

    .

  • Journal of the KIIS, Vol. 18, No. 3, 200348

    (a) Smooth specimen

    (b) Arc groove specimen

    (c) Hole specimen

    (d) V groove specimen

    Fi g. 3. Shape and dimensions of fatigue test specimens.

    (Mitutoyo model MS) (Mitutoyo

    model PJ-300) .

    .

    (Seiwa model SM-600) .

    . , ,

    ,

    .

    3.

    3.1.

    Fig. 4 -

    ,

    . F.E.M.

    (microvoid)

    ,

    (a) F.E.M. dual phase steel

    (b) M.E.F. dual phase steel

    Fig. 4. Micrographs showing the crack initiation site formed

    during the tensile test (F : ferrite, M : martensite).

    . ,

    45o

    . M.E.F.

    2

  • -

    , 18 3, 2003 49

    . , , ,

    , 2

    . ,

    ,

    . , F.E.M. M.E.F.

    ,

    ,

    .

    .

    (a) F.E.M. dual phase steel

    (b) M.E.F. dual phase steel

    Fi g. 5. S.E.M. micrographs showing the fracture appearance with the corresponding microstructure formed during

    the tensile test.

    Fig. 5

    SEM

    . F.E.M. Fig. 4

    , (shear rupture)8)

    (dimple)

    . M.E.F. Fig. 4

    ,

    (cleavage crack)

    .

    .

    56 (325390

    m) .

    (screw dislocation) (cleavage

    step)9) (cleavage

    rupture)8)

    .

    Fig. 6 5

    105

    ,

    ,

    . F.E.M.

    ,

    . K

    striation

    . ,

    F.E.M. M.E.F.

    2

    .

    .

    M.E.F.

    K

    striation

    K

  • Journal of the KIIS, Vol. 18, No. 3, 200350

    (a) F.E.M. (b) M.E.F.

    Fi g. 6. Cracks of the dual phase steels propagated into the interior of the fatigue test specimen. (a : =306.52

    Mpa, b : :328.26MPa) (F : ferrite, M : martensite)

    , cleavage

    ,

    .

    M.E.F. ,

    2

    . 2

    ,

    .

    3.2.

    Fig. 7, 8 ( ) parameter

    F.E.M. M.E.F. (S-N

    ),

    .

    Fig. 7. S-N curves for F.E.M. dual phase steel

    Fig. 8. S-N curves for M.E.F. dual phase steel

    M.E.F. F.E.M.

    ,

    M.E.F.

    .

    2

    F.E.M. M.E.F.

    ,

    .

    Fig. 9 F.E.M., M.E.F.

    ,

    HT80, HT50

    10,11) .

  • -

    , 18 3, 2003 51

    ,

    HT80, HT50

    . , HT80

    M.E.F. =2.4

    HT80

    , F.E.M. =3.2

    HT80

    .

    HT80

    2

    ,

    ( 20 m) (Ni, Cr,

    Mo)

    HT80

    . ,

    HT80

    M.E.F.

    HT80

    .

    Fi g. 9. Relation between stress concentration factor and fatigue strength.

    Fig. 10. Relation between stress concentration factor and

    fatigue notch factor.

    Fig. 11. Crack length vs. number of cycles for F.E.M. and M.E.F. dual phase steels loaded with the fatigue strength at 5105 cycles.

    Fig. 10 F.E.M., M.E.F.

    ,

    HT80 HT50 .

    HT80, HT50

    .

    M.E.F.

    0.43, 0.52, 0.34

    F.E.M. 0.48, 0.52, 0.43

    . M.E.F.

    F.E.M. , =2.0

    M.E.F. F.E.M.

    .

    Fig. 11 F.E.M., M.E.F.

  • Journal of the KIIS, Vol. 18, No. 3, 200352

    . S-N 5

    105 .

    , F.E.M.

    M.E.F.

    . F.E.M.

    . M.E.F.

    ,

    Notch

    .

    F.E.M.

    M.E.F. . ,

    ,

    .

    .

    4.

    2

    F.E.M., M.E.F.

    , ,

    .

    1)

    F.E.M.

    , . ,

    M.E.F.

    2

    , .

    2)

    ,

    F.E.M. K

    . , M.E.F.

    K striation

    K cleavage

    .

    3)

    M.E.F. F.E.M.

    , =2.0

    M.E.F.

    .

    4) 5105 F.E.M., M.E.F.

    2

    F.E.M.

    M.E.F.

    ,

    .

    1) ,

    , , 20, 4, pp.

    288295, 1980.

    2) ,

    , , 1984.

    3) T. Kunio and H. Suzuki, Effect of Microduplex

    Structure Size on Tensile Fracture Behavior of

    Steels with Ferrite-Martensitic Structures, JSMS,

    Vol. 28, No. 309, pp. 478484, 1979.

    4) M. Saika and M. Shimizu, Effect of Micro-

    structure on Ductility and Fracture Mechanisms of

    Dual Phase Steels, JSME, Vol. 54, No. 507, pp.

    20342038, 1988.

    5) B.M. Wundt, Effect of Notches on Low-cycle

    Fatigue, A Literature Surbey, ASTM STP 490,

    pp. 1116, 1972.

    6) F.W. Smith, A.F. Emery and A.S. Kobayashi,

    Stress Intensity Factors for Semicircular Crack,

    J. Appl. mech., Trans. of ASME, E, Vol. 89, pp.

    950953, 1967.

    7) R.E. Peterson, Stress Concentration Design Fac-

    tors, John Willy & Sons, New York, pp. 48, 49,

    50, 104, 1965.

    8) A.S. Tetelman and A.J. McEvily, Fracture of

    Structural Materials, John Willy & Sons, New

  • -

    , 18 3, 2003 53

    York, p. 40, 1967.

    9) , , ,

    , , pp. 6165,

    1977.

    10) T. Okada, S. Hattori, S. Yamagishi, The Notch

    Effect on Corrosion-Fatigue Strength of High-

    Strength Steels, JSME, Vol. 52, No. 473, pp. 124

    130, 1986.

    11) T. Okada, S. Hattori, S. Yamagishi, Corrosion

    Fatigue of Notch Structural Steel Specimens in

    Seawater, JSMS, Vol. 36, No. 409, pp. 1097

    1103, 1987.

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /Unknown /Description >>> setdistillerparams> setpagedevice