Download - The Effective Fragment Molecular Orbital Method

Transcript
Page 1: The Effective Fragment Molecular Orbital Method

The Effective Fragment Molecular OrbitalMethod

Casper Steinmann1 Dmitri G. Fedorov2 Jan H. Jensen1

1Department of Chemistry, University of Copenhagen, Denmark

2AIST, Umezono, Tsukuba, Ibaraki, Japan

September 14th, 2011

Page 2: The Effective Fragment Molecular Orbital Method

Outline

1 Motivation

2 The Fragment Molecular Orbital Method

3 The Effective Fragment Potential Method

4 The Effective Fragment Molecular Orbital Method

5 Results

2 / 45

Page 3: The Effective Fragment Molecular Orbital Method

Motivation

Treatment of Very Large Systems• We want quantum mechanics (QM) to do chemistry.

• We want the speed of force-fields (MM) to treat large systems.

Usually done via hybrid QM/MM methods

We propose a fragment based, on-the-fly parameterless polarizableforce-field.

• A merger between FMO and EFP.

• FMO: Faster FMO by the use of classical approximations

• EFP: Flexible EFP’s.

3 / 45

Page 4: The Effective Fragment Molecular Orbital Method

FMO

4 / 45

Page 5: The Effective Fragment Molecular Orbital Method

FMO2 Method

The two-body FMO2 method on a system of N fragments

EFMO =

N∑

I

EI +

N∑

I>J

(EIJ − EI − EJ ),

with fragment energies obtained as

EX = 〈ΨX |HX |ΨX〉

where

HX =∑

i∈X

−1

2∇2

i +

all∑

C

−ZC

|ri −RC |+∑

j>i

1

|ri − rj |+

all∑

K 6∈X

ρK(r′)

|ri − r′|dr′

+ ENRX

5 / 45

Page 6: The Effective Fragment Molecular Orbital Method

FMO2 MethodUsing a single Slater determinant to represent |ΨX〉, we obtain

fXφXk = ǫXk φX

k .

Here,fX = hX + V X + gX = hX + gX ,

where

V X =

all∑

C∈X

−ZC

|r1 −RC |+

all∑

K 6∈X

ρK(r′)

|r1 − r′|dr′

6 / 45

Page 7: The Effective Fragment Molecular Orbital Method

FMO2 Methodexpanding our molecular orbitals φ in a basis set

φXk =

µ

CXµkχµ

we obtain, the Fock matrix elements of V X

V Xµν = 〈µ|V X |ν〉 =

all∑

K 6∈X

uKµν +

all∑

K 6∈X

υKµν

which are given as

uKµν = 〈µ|

C∈K

−ZC

|r1 −RC ||ν〉,

andυKµν =

λσ∈K

DKλσ(µν|λσ).

7 / 45

Page 8: The Effective Fragment Molecular Orbital Method

FMO approximationsFMO2 formally scales as O(N2), wants to be O(N). We needdistance-based approximations:

RI,J = mini∈I,j∈J

|ri − rj |

rvdwi + rvdwj

• 1) Approximate ESP (Resppc):

uKµν =

λσ∈K

DKλσ(µν|λσ) →

C∈K

〈µ|QC

|r1 −RC ||ν〉

• 2) Approximate dimer interaction (Resdim):

EIJ ≈ EI+EJ+Tr(

DIuJ)

+Tr(

DJuI)

+∑∑

DIµνD

Jλσ(µν|λσ)

Usually, Resdim and Resppc are equal (2.0)

8 / 45

Page 9: The Effective Fragment Molecular Orbital Method

A couple of pictures to help

9 / 45

Page 10: The Effective Fragment Molecular Orbital Method

A couple of pictures to help

10 / 45

Page 11: The Effective Fragment Molecular Orbital Method

Covalent Bonds in FMOIn FMO, bonds are detatched instead of capped.

BDA|-BAA

11 / 45

Page 12: The Effective Fragment Molecular Orbital Method

HOP vs. AFOTwo methods in FMO: hybrid orbital projection (HOP) and adaptivefrozen orbitals (AFO)

Both modifies the Fock-operator

fX = hX + gX +∑

k

Bk|φ〉〈φ|

• HOP: External model system generated and used

• AFO: Generated on the fly automatically:

12 / 45

Page 13: The Effective Fragment Molecular Orbital Method

AFO

13 / 45

Page 14: The Effective Fragment Molecular Orbital Method

AFO

14 / 45

Page 15: The Effective Fragment Molecular Orbital Method

AFO

We shall return to AFO later ...

15 / 45

Page 16: The Effective Fragment Molecular Orbital Method

EFP

16 / 45

Page 17: The Effective Fragment Molecular Orbital Method

EFPEFP is an approximation to the RHF interaction energy, Eint

Eint = ERHF −∑

I

E0I ≈ EEFP

The EFP energy

EEFP =∑

I>J

∆EEFPIJ + Eind

total

∆EEFPIJ = Ees

IJ + (ExrIJ + Ect

IJ )

EesIJ using distributed multipoles.

Eindtotal using induced dipoles based on distributed polarizabilities.

17 / 45

Page 18: The Effective Fragment Molecular Orbital Method

EFPEFP is an approximation to the RHF interaction energy, Eint

Eint = ERHF −∑

I

E0I ≈ EEFP

The EFP energy

EEFP =∑

I>J

∆EEFPIJ + Eind

total

∆EEFPIJ = Ees

IJ + (ExrIJ + Ect

IJ )

EesIJ using distributed multipoles.

Eindtotal using induced dipoles based on distributed polarizabilities.

• The internal geometry is fixed.

17 / 45

Page 19: The Effective Fragment Molecular Orbital Method

EFPEFP is an approximation to the RHF interaction energy, Eint

Eint = ERHF −∑

I

E0I ≈ EEFP

The EFP energy

EEFP =∑

I>J

∆EEFPIJ + Eind

total

∆EEFPIJ = Ees

IJ + (ExrIJ + Ect

IJ )

EesIJ using distributed multipoles.

Eindtotal using induced dipoles based on distributed polarizabilities.

• The internal geometry is fixed.

• You need to construct the EFP’s before you can use them

17 / 45

Page 20: The Effective Fragment Molecular Orbital Method

EFMO

18 / 45

Page 21: The Effective Fragment Molecular Orbital Method

What is the EFMO method?

You start with FMO ...• Remove the ESP

Now you have N gas phase calculations.

Then you mix in some EFP• Use EFP to describe many-body interactions

19 / 45

Page 22: The Effective Fragment Molecular Orbital Method

EFMO RHF Energy

The two-body FMO2 method on a system of N fragments

EEFMO =∑

I

E0I −→ do MAKEFP

+

Resdim≥RI,J∑

IJ

(

E0IJ − E0

I − E0J − Eind

IJ

)

+

Resdim<RI,J∑

IJ

EesIJ

+ Eindtot ,

• QM: Gas phase RHF (and MP2) calculations

• MM: Interaction energies by Effective Fragment Potentials

* obtain E0I , q, µ and Ω and α from RHF via a fake MAKEFP run.

20 / 45

Page 23: The Effective Fragment Molecular Orbital Method

A couple of pictures to help

21 / 45

Page 24: The Effective Fragment Molecular Orbital Method

A couple of pictures to help

22 / 45

Page 25: The Effective Fragment Molecular Orbital Method

Correlation in EFMOCorrelation as in FMO

E = EEFMO + ECOR.

Here ECOR is

ECOR =

N∑

I

ECORI +

RI,J<Rcor∑

IJ

(

ECORIJ − ECOR

I − ECORJ

)

.

23 / 45

Page 26: The Effective Fragment Molecular Orbital Method

EFMO vs. EFP vs. FMO

EFMO vs. EFP• EFMO energy includes internal energy, i.e. total energy can be

obtained.

• Short range interactions are computed using QM.

we assume Eex and Ect are negligible when RI,J > Resdim.

EFMO vs. FMO• No ESP, i.e. one SCC iteration.

• Many-body interactions are entirely classical.

General EFMO considerations• Calculation of classical parameters on-the-fly.

• Every EFMO calculation requires re-evaluation of EFPparameters.

24 / 45

Page 27: The Effective Fragment Molecular Orbital Method

Rigorous Analysis of Small Water Clusters• Water trimer: Estimate lower bound to energy error

• Water pentamer: Estimate upper bound to energy error

25 / 45

Page 28: The Effective Fragment Molecular Orbital Method

Rigorous Analysis of Small Water TrimerKitaura-Morokuma energy analysis

∆3Eint 6-31G(d) 6-31++G(d)-1.9 kcal/mol -1.45 kcal/mol

Many-body terms ∆3Eind +∆3Exr +∆3Ect +∆3EMIX

26 / 45

Page 29: The Effective Fragment Molecular Orbital Method

Rigorous Analysis of Small Water TrimerKitaura-Morokuma energy analysis

∆3Eint 6-31G(d) 6-31++G(d)-1.9 kcal/mol -1.45 kcal/mol

Many-body terms ∆3Eind +∆3Exr +∆3Ect +∆3EMIX

∆3Eind 6-31G(d) 6-31++G(d)-0.9 kcal/mol -1.67 kcal/mol

EFMO error 1.0 kcal/mol -0.22 kcal/mol

26 / 45

Page 30: The Effective Fragment Molecular Orbital Method

Rigorous Analysis of Small Water TrimerKitaura-Morokuma energy analysis

∆3Eint 6-31G(d) 6-31++G(d)-1.9 kcal/mol -1.45 kcal/mol

Many-body terms ∆3Eind +∆3Exr +∆3Ect +∆3EMIX

∆3Eind 6-31G(d) 6-31++G(d)-0.9 kcal/mol -1.67 kcal/mol

EFMO error 1.0 kcal/mol -0.22 kcal/mol

26 / 45

Page 31: The Effective Fragment Molecular Orbital Method

Rigorous Analysis of Small Water TrimerKitaura-Morokuma energy analysis

∆3Eint 6-31G(d) 6-31++G(d)-1.9 kcal/mol -1.45 kcal/mol

Many-body terms ∆3Eind +∆3Exr +∆3Ect +∆3EMIX

∆3Eind 6-31G(d) 6-31++G(d)-0.9 kcal/mol -1.67 kcal/mol

EFMO error 1.0 kcal/mol -0.22 kcal/mol

6-31G(d):• Lower bound to the error in energy is ≈ 0.33 kcal/mol/HB

6-31++G(d):• Lower bound to the error in energy is ≈ -0.07 kcal/mol/HB

26 / 45

Page 32: The Effective Fragment Molecular Orbital Method

Rigorous Analysis of Small Water PentamerKitaura-Morokuma energy analysis

∆nEint 6-31G(d) 6-31++G(d)-6.10 kcal/mol -5.14 kcal/mol

Many-body terms ∆nEind +∆nEEX +∆nECT +∆nEMIX

27 / 45

Page 33: The Effective Fragment Molecular Orbital Method

Rigorous Analysis of Small Water PentamerKitaura-Morokuma energy analysis

∆nEint 6-31G(d) 6-31++G(d)-6.10 kcal/mol -5.14 kcal/mol

Many-body terms ∆nEind +∆nEEX +∆nECT +∆nEMIX

∆nEind 6-31G(d) 6-31++G(d)-1.97 kcal/mol -3.68 kcal/mol

EFMO error -4.13 kcal/mol -1.46 kcal/mol

27 / 45

Page 34: The Effective Fragment Molecular Orbital Method

Rigorous Analysis of Small Water PentamerKitaura-Morokuma energy analysis

∆nEint 6-31G(d) 6-31++G(d)-6.10 kcal/mol -5.14 kcal/mol

Many-body terms ∆nEind +∆nEEX +∆nECT +∆nEMIX

∆nEind 6-31G(d) 6-31++G(d)-1.97 kcal/mol -3.68 kcal/mol

EFMO error -4.13 kcal/mol -1.46 kcal/mol

6-31G(d):• Upper bound to the error in energy is ≈ 1.03 kcal/mol/HB

6-31++G(d):• Upper bound to the error in energy is ≈ 0.37 kcal/mol/HB

27 / 45

Page 35: The Effective Fragment Molecular Orbital Method

Rigorous analysis of Small Water Clusters6-31G(d):

• Lower bound to the error in energy is ≈ 0.33 kcal/mol/HB• Upper bound to the error in energy is ≈ 1.03 kcal/mol/HB

6-31++G(d):• Lower bound to the error in energy is ≈ -0.07 kcal/mol/HB• Upper bound to the error in energy is ≈ 0.37 kcal/mol/HB

28 / 45

Page 36: The Effective Fragment Molecular Orbital Method

20 water molecule clusters

6-31G(d) ∆E [kcal/mol/HB] [kcal/mol] Resdim = 2.0EFMO 0.53 15.8FMO2 -0.39 -11.6

6-31++G(d)EFMO -0.08 -2.5FMO2 -0.76 -21.8

29 / 45

Page 37: The Effective Fragment Molecular Orbital Method

EFMO Gradient

∂EEFMO

∂xI

=∑

I

∂xI

E0I

+

RI,J≤Rcut∑

I>J

(

∂xI

∆E0IJ −

∂xI

EindIJ

)

+

RI,J>Rcut∑

I>J

∂xI

EesIJ +

∂xI

Eindtotal + TM

xI

TMI is the contribution to the gradient on atom I due to torques

arising from nearby atoms.

30 / 45

Page 38: The Effective Fragment Molecular Orbital Method

EFMO Gradient• For water clusters, ∇XI

EEFMOa − EEFMO

n ≈ 10−4 Hartree / Bohr

31 / 45

Page 39: The Effective Fragment Molecular Orbital Method

EFMO Gradient• For water clusters, ∇XI

EEFMOa − EEFMO

n ≈ 10−4 Hartree / Bohr

"Those are not good gradients."

31 / 45

Page 40: The Effective Fragment Molecular Orbital Method

Wait until you see the covalently bonded systems then.

32 / 45

Page 41: The Effective Fragment Molecular Orbital Method

EFMO for Covalent Systems

Covalent systems pose a problem in EFMO because ...• ... Inherent close (and even overlapping) electrostatics.

• ... Inherent close position of polarizable points and nearbyelectrostatics.

33 / 45

Page 42: The Effective Fragment Molecular Orbital Method

Back to the drawing board

C1 C

H

H

H

H

C5

H

H

C C

H

HHH

HH

+

a) b) c)

34 / 45

Page 43: The Effective Fragment Molecular Orbital Method

Back to the drawing board• 1) The frozen orbital (during the SCF) is allowed to mix during

Foster-Boys localization.

35 / 45

Page 44: The Effective Fragment Molecular Orbital Method

Back to the drawing board• 1) The frozen orbital (during the SCF) is allowed to mix during

Foster-Boys localization.• 1) Crap. Errors ≈ 50 kcal/mol. FMO2: ≈ 5 kcal/mol

35 / 45

Page 45: The Effective Fragment Molecular Orbital Method

Back to the drawing board• 1) The frozen orbital (during the SCF) is allowed to mix during

Foster-Boys localization.• 1) Crap. Errors ≈ 50 kcal/mol. FMO2: ≈ 5 kcal/mol

• 2) The localized orbital is kept frozen, i.e. as it is during the SCF.

35 / 45

Page 46: The Effective Fragment Molecular Orbital Method

Back to the drawing board• 1) The frozen orbital (during the SCF) is allowed to mix during

Foster-Boys localization.• 1) Crap. Errors ≈ 50 kcal/mol. FMO2: ≈ 5 kcal/mol

• 2) The localized orbital is kept frozen, i.e. as it is during the SCF.• 2) Works, Errors grows with system size and are on-par with

FMO2. Requires much more screening.

35 / 45

Page 47: The Effective Fragment Molecular Orbital Method

Energies for Conformers of Polypeptides

k(R, α, β) = 1− exp(

−√

αβ|R|2)(

1 +√

αβ|R|2)

AM,X =1

N

N∑

I

∣EMI − EX

I

∣ .

0.1 0.2 0.3 0.4 0.5 0.6

2

4

6

8

10

12

AEFMO,X

[kca

l/mol

]

Peptide MAD for EFMO/2 vs. Screening Parameter

P1(RHF)P1(MP2)P2(RHF)P2(MP2)P3(RHF)P3(MP2)

36 / 45

Page 48: The Effective Fragment Molecular Orbital Method

Energies for Conformers of Polypeptides

k(R, α, β) = 1− exp(

−√

αβ|R|2)(

1 +√

αβ|R|2)

AM,X =1

N

N∑

I

∣EMI − EX

I

∣ .

P1 P2 P30

1

2

3

4

5

6

7

8

AM,X

[kca

l/mol

]

Peptide MAD for 2 Residues per Fragment

FMO2-RHF/HOPFMO2-MP2/HOPFMO2-RHF/AFOFMO2-MP2/AFOEFMO-RHFEFMO-MP2

37 / 45

Page 49: The Effective Fragment Molecular Orbital Method

Energies for Proteins

Table: Energy Error of EFMO and FMO2/AFO compared to ab initiocalculations on proteins using two residues per fragment.

Nres EFMO FMO2/AFO

Rcut = 2.0 Rcut = 2.0

RHF MP2 RHF MP2

1L2Y 20 3.2 -4.3 1.7 6.41UAO 10 1.8 1.5 0.4 1.4

• Timings: 5 times faster than FMO2.

• Requires lots of screening.

38 / 45

Page 50: The Effective Fragment Molecular Orbital Method

Back to the drawing board• The backbone is the main problem.

• Errors around 10−3(10−4) Hartree / Bohr

• Timings: 1.5 times faster than FMO2-MP2

39 / 45

Page 51: The Effective Fragment Molecular Orbital Method

Timings

5 10 15 20 25 30 35 40Total CPU count

5

10

15

20

25

30

35

40

Gain

-Fac

tor i

n CP

U w

allti

me

Gain-Factor in CPU walltime for increasing CPU count

EFMO, FMO2 40 / 45

Page 52: The Effective Fragment Molecular Orbital Method

Summary• Successful merger of the FMO and EFP method

• For molecular clusters, it performer pretty good.

• For systems with covalent bonds, work is needed.

• Faster than FMO2, roughly same accuracy.

41 / 45

Page 53: The Effective Fragment Molecular Orbital Method

Outlook• EFMO-PCM (meeting with Hui Li tomorrow)

• EFMO QM/MM (Based on FMO/FD)

• More EFP, less QM (Spencer Pruitt)

42 / 45

Page 54: The Effective Fragment Molecular Orbital Method

AcknowledgementsJan H. JensenDmitri G. Fedorov

Bad Boys of Quantum Chemistry:Anders ChristensenMikael W. Ibsen (FragIt)Luca De Vico (FragIt)Kasper Thofte

$$ - Insilico Rational Engineering of Novel Enzymes (IRENE)

43 / 45

Page 55: The Effective Fragment Molecular Orbital Method

Thank you for your attention

proteinsandwavefunctions.blogspot.com

44 / 45

Page 56: The Effective Fragment Molecular Orbital Method

Gradient Contribution

JK

I

dvdu

dw

IuvII

II

r

r1

2

dwmA = −dum

A − dvmA

dumA = wA (τmA · vA)+uA×wA (τmA ·wA)

dvmA = −wA (τmA · uA)+vA×wA (τmA ·wA)

45 / 45