Download - Paul Fallon Lawrence Berkeley National Laboratorybrown/EFES-2010/pdf/fallon.pdf · Paul Fallon Lawrence Berkeley National Laboratory Measurements of B(E2) transition rates in neutron

Transcript

Paul Fallon

Lawrence Berkeley National Laboratory

Measurements of B(E2) transition rates in neutron rich carbon isotopes, 16C-20C.

EFES-NSCL Workshop on

Perspectives on the modern shell model and related experimental topics.

MSU Feb 4-6, 2010

Marina Petri, R. M. Clark, M. Cromaz, S. Gros, H. B. Jeppesen,

I-Y. Lee, A. O. Macchiavelli, S. Paschalis

LBNL

K. Starosta, T. Baugher, D. Bazin, H. Crawford, A. Gade, Grinyer, S. McDaniel,

D. Miller, A. Ratkiewicz, P. Voss, K. Walsh, D. Weisshaar

NSCL/MSU

M. Wiedeking

LLNL

A. Dewald, M. Hackstein, W. Rother

Cologne

Energy Levels in a Woods Saxon Potential

A second distinct effect is due to

weakly bound levels

• low l levels (s, p) extended

wavefunctions (“halos”)

• Spatially extended valence particles

can have less influence on the core

(“decoupled”)

• Coupling to continuum statesA.Bohr and B.R. Mottelson, Nuclear Structure, vol. 1

In a well bound nucleus

• steady evolution of energy levels in a

1 body potential

• modified by 2-body NN interaction

(s.t, Tensor)

PHYSICAL REVIEW C 76, 054319 (2007)

Nilsson diagrams for light neutron-rich nuclei with weakly-bound neutrons

Ikuko Hamamoto

PHYSICAL REVIEW C 76, 054319 (2007)

Nilsson diagrams for light neutron-rich nuclei with weakly-bound neutrons

Ikuko Hamamoto

Carbon Nuclei

• N=8 closed p-shell (14C)

• N=16 dripline 22C (cf 24O)

• Occupation of n(s1/2) (A≥15)

• Weak binding (15,17,19C)

N > 8

g.s. large ns1/2 component

2+ dominant neutron excitation

B(E2) wavefunction; charge distribution; en(eff)

F.Rintaro. PhD Thesis (U.Tokyo 2002)Data from A. Ozawa, et al., NPA691, 599 (2001).

8 neutrons

Interaction cross sections for

carbon isotopes.

Oxygen Carbon

M.Staniou et al., PHYSICAL REVIEW C 78, 034315 (2008)

Disappearance of the N = 14 shell gap in the carbon isotopic chain

TBME Vpn

pp1/2 - nd5/2 attracts

pp1/2 - ns1/2 repels

Constant 2+

16C and 18O 2+ state - dominant neutron excitation

18O: B(E2) = 9.5(3) e2fm4

= 3.2 W.u.

16C: B(E2) = 4.15(73) e2fm4

= 1.73 W.u.

Core polarization ~ Z

B(E2)18O *(6/8)2 = 1.8 W.u

~ B(E2) 16C

N=10: 2n valence nuclei 16C and 18O

( ( 22

12 pds pn

Interaction matrix element V

in β between proton holes

and neutrons is ~ 1 MeV.

→ Consistent with p-1 and

(sd)4 value in 19F

Arima and Hamamoto, Ann.

Rev. Nucl. Sci. 21 (1971).

222 22)2( pEpUSDEUSDEB

3 e2fm4 from USD model 3.7 e2fm4 from 14C4.15 e2fm4 from 16C

( ( 2216

1 24.097.0;2 pdsC pn

94% 6%

15C d5/2s1/2 transition; derive en ~ 0.4

(assume “neutrons” only)

en ~ 0.4 16C B(E2;USD) ~ 3 e2fm4

proton admixture

The 16C B(E2) – “components”

Vint

2+

2+

( 2dsn

( 2pp

0+

B(E2) = 1/(2Ji+1) * | Mn*en + Mp*ep |2

B(E2)

…. from M.Wiedeking et al., PRL 100, 152501 (2008)

Effective Charges

• 16,18C B(E2) strong dependence on en(eff)

neutron excitation

• 14C B(E2) weak dependence on en(eff)

proton excitation

B(E2) “constrains” e(eff)n,p

S. Fujii et al. Phys. Lett. B 650 (2007) 9–14

14C expt 3.74(50)

B(E2) = 1/(2Ji+1) * | Mn*en + Mp*ep |2

• Effective charge – a measure of

coupling between valence particles

and core (binding)

• Model-space dependent

Isospin Dependence of Effective Charges(Bohr Mottelson Vol 2)

Carbon Isotopes (A)

en

Epol ~ Z/A

Sagawa et al PRC 70 (2004) 054316

16C: B(E2, 2+ → 0+)

16C Wiedeking et al16C Ong et al

16C Imai et al

B(E

2)

[e2fm

4]

12C 14C 16C 18C 20C

Ong

Wiedeking

Ong

Shell Model

H. Sagawa

Carbon Isotopes B(E2) Systematics

B(E2) = 1/(2Ji+1) * | Mn*en + Mp*ep |2

Elekes

Inelastic scattering on C, Pb

Lifetime measurement

B(E2) = 1/(2Ji+1) * | Mn*en + Mp*ep |2

Z. Elekes et al. PHYSICAL REVIEW C 79, 011302(R) (2009)

Carbon Isotopes (A)

en

A campaign of experiments (Feb 2009) to measure the lifetime of the

2+ state in 16,18,20C was carried out at the NSCL

Lifetimes were measured using the Recoil Distance Method with fast

RI beams (v ~0.4c)

2+ states were populated using the knockout reactions

Preliminary 16C 2+ Tau = 11.9 (1) ps

16C 2+ State Mean Lifetime

a)b)c)

C C C C C C

Carbon B(E2: 2+→ 0+) Systematics

(1)

(2)

(1) This work – M.Petri (LBNL)

(2) This Work – P.Voss (MSU)

20C Simulation Spectra: 22O-2p removal, 2+ lifetimes 10,15, 20 ps

10 ps

15 ps

20 ps

1620 keV

20C Spectra: 22O-2p

t = 10(3) ps (preliminary)

B(E2) ~ 7.2 +3.1/-1.7 e2fm4

Lifetime (ps)

2 for 30 and 140 degree detectors

30 degree detectors

140 degree detectors

20C 2+ State Mean Lifetime

data6ps

15ps10ps

a)b)c)

Carbon B(E2: 2+→ 0+) Systematics

x

xx

Shell Model: B.A.Brown

WBP interaction

“A-dependent” e(p,n)(1)

(2)

(1) This work – M.Petri (LBNL)

(2) This Work – P.Voss (MSU)

(3) This work – M.Petri (LBNL)

(3)

B(E2) = 1/(2Ji+1) * | Mn*en + Mp*ep |2

Z. Elekes et al. PHYSICAL REVIEW C 79, 011302(R) (2009)

This work

e(p)

15C (expt)

16C

18C

20C

B(E2) = |Mpep + Mnen|2 /(2Ji+1)

e(n) smooth dependence on A

16C (expt)

20C(Elekes)

18C (expt)

20C “expected”

p-sd shell model H.O wavefunctions WBP interaction (Alex Brown)

Sagawa PRC 70, 054316 (2004)

20C (LBL/MSU)

B(E

2)

[e2fm

4]

12C 14C 16C 18C 20C

Shell Model

H. Sagawa

Carbon Isotopes B(E2) Systematics

“↑ proton” “neutron” “↑ proton”

2+ state component

Proton ESPE (Z=6)

F.Rintaro. PhD Thesis (U.Tokyo 2002)

• Reduced p3/2-p1/2 gap

1-Proton Knockout Spectroscopic FactorsA+1N AC

Calculated

s (0+/2+

13% 21% 57%

Measured

s (0+/2+

10% 20%

( ( 22

12 pds pn

In 1-p knockout population of 2+

proceeds through the proton component

SF (2+/0+ = s (2+/0+ ~ 2* 5/2

Calculated amplitudes and occupations

(16C) ~ 0.2 ~5% proton occ.

( 18C ) ~ 0.3 ~8% proton occ.

( 20C ) ~ 0.5 ~23% proton occ.

20C 2+ is a mixed state

Neutron Contribution

Shell Model (A. Brown)M_p M_n

16C 1.54 9.2218C 1.9 11.1120C 3.33 11.65

( ( 22

12 pds pn

Seniority Scheme B(E2, n) = [n (2j+1-n)/(2(2j-1)]* B(E2, n=2)

Neutron shell closed at 14C (N=8) and 22C (N=16) 2j+1=8 (ns1/2+nd5/2)

16C M(E2, n=2) ~ 20C M(E2, n=6)

22C M(E2, n=8) ~ 0 (if N=16 closed) 0 (if N=16 broken)

20C M_n remains high

Oxygen Carbon

• Experiments with Fast beams

- most neutron-rich

• RDDS (DSAM lineshape?) lifetimes

• good energy resolution

• efficiency

GRETINA has efficiency and resolution

to extend experimental reach

Future … GRETINA

• GRETINA

• An array of highly segmented

Germanium Detectors

• Measure location and energy of

g-ray interactions

• Gamma-ray tracking

• 1p coverage

• Experiments in 2011

• Influence of weak binding

–Coupling to continuum, extended wavefunctions, …

• Transition rates can, in some circumstances, provide a way to isolate new effects of weak binding

• Extracted transition rates from 16C 20C (near dripline)

– Quantitative test of model(s) - require a consistent description from stable ”dripline” nuclei

• No evidence (here) for dramatic changes

– shell model appears to be able to track 2+ energies and B(E2)

– Mixed 2+ implies n-p coupling

Proton contributions important - measure proton spectroscopic factor: p1/2,3/2 (need to know this to understand (de)coupling)

Summary