Download - Modeling epidemics over Networks · 2019. 11. 29. · Questions Are there network ... ib s For early time and assuming no degree correlation with D'% !0 V % ' 0 ' Ã ' V ' D ' Ã

Transcript
  • First analysis ofdynamical processesover networks

    Will let us exercisesome of the ways ofthinking about theseprocesses

    Modeling epidemics over Networks

    1 / 72

    Modeling epidemics over NetworksQuestions

    Are there network properties that predict spread of infection?

    Are certain network types more resilient to infection than others?

    If we can intervene (vaccinate) are there nodes in the network that aremore effective to vaccinate?

    2 / 72

    Modeling epidemics over NetworksQuestions

    Are there network properties that predict spread of infection?

    Are certain network types more resilient to infection than others?

    If we can intervene (vaccinate) are there nodes in the network that aremore effective to vaccinate?

    We'll start by looking at spread over nonnetworked populations

    3 / 72

    Individuals in the population can bein two states

    An infected individual can infect anysusceptible individual they are incontact with

    If we start (   ) with somenumber of infected individuals (   ).How many infected individuals arethere at time  ?

    Susceptibility and infection (SI model)

    t = 0

    i0

    t4 / 72

    SI model

    , average number of contacts per individual in one time step

    , "rate" probability an I infects an S upon contact

    I(t) = β⟨k⟩ I(t)d

    dt

    S(t)

    N

    ⟨k⟩

    β

    5 / 72

    SI model

    , average number of contacts per individual in one time step

    , "rate" probability an I infects an S upon contact

    I(t) = β⟨k⟩ I(t)d

    dt

    S(t)

    N

    ⟨k⟩

    β

    = β⟨k⟩i(1 − i)di

    dt

    6 / 72

    Fraction of infected individuals inpopulation

    Characteristic time (   s.t. )

    SI model

    i(t) =i0e

    β⟨k⟩t

    1 − i0 + i0eβ⟨k⟩t

    t

    i(t) = 1/e ≈ .36

    τ =1

    β⟨k⟩7 / 72

    SIS modelInfection ends (recovery), individual becomes susceptible again

    8 / 72

    SIS model

      recovery rate

    = β⟨k⟩i(1 − i) − μidi

    dt

    μ

    9 / 72

    SIS model

    i(t) = (1 − )×μβ⟨k⟩

    Ce(β⟨k⟩−μ)t

    1+Ce(β⟨k⟩−μ)t

    10 / 72

    Endemic StatePathogen persists inpopulation aftersaturation

    SIS model

    R0 = > 1β⟨k⟩

    μ

    i(∞) = 1 − = 1 − 1/R0μ

    β⟨k⟩

    11 / 72

    Diseasefree StatePathogen disappearsfrom population

    SIS model

    R0 = < 1β⟨k⟩

    μ

    i(∞) = 0

    12 / 72

    SIS modelBasic Reproductive Number

    Characteristic Time

    R0 =β⟨k⟩

    μ

    τ =1

    μ(R0 − 1)

    13 / 72

    SIR modelIndividuals removed after infection (either death or immunity)

    14 / 72

    SIR model

    = β⟨k⟩i(1 − r − i) − μi

    = μi

    = −β⟨k⟩i(1 − r − i)

    didt

    drdt

    dsdt

    15 / 72

    Summary

    16 / 72

    Epidemic processes over networks (SI)Consider node   in network:

     average probability node   is susceptible at time 

     average probability node   is infected at time 

    i

    si(t) i t

    xi(t) i t

    17 / 72

    Epidemic processes over networks (SI)

    = −siβN

    ∑j=1

    aijxjdsi

    dt

    = siβN

    ∑j=1

    aijxjdxi

    dt

    18 / 72

    Epidemic processes over networks (SI)

    For large  , and early 

    = −siβN

    ∑j=1

    aijxjdsi

    dt

    = siβN

    ∑j=1

    aijxjdxi

    dt

    N t

    = βAxdx

    dt

    19 / 72

    Any quantity   over nodesin the graph can be writtenas

    Eigenvalue decomposition of A

    A = V TΛV

    xi

    x =N

    ∑r=1

    crvr

    20 / 72

    Eigenvalue decomposition of A

    Avr = λrvr

    λ1 ≥ λ2 ≥ ⋯ ≥ λN

    21 / 72

    Eigenvalue decomposition of Let's revisit centrality

    Then

    A

    x(t) = Atx(0) =N

    ∑r=1

    crAtvr

    x(t) =N

    ∑r=1

    crλtrvr = λ

    t1

    N

    ∑i=1

    cr( )t

    vr

    λr

    λ1

    22 / 72

    Eigenvalue decomposition of As   grows, first term dominates

    So set centrality   to be proportional to first eigenvector 

    A

    t

    x(t) = c1λt1v1

    x v1

    23 / 72

    Eigenvalue decomposition of As   grows, first term dominates

    So set centrality   to be proportional to first eigenvector 

    In which case   if   as desired

    A

    t

    x(t) = c1λt1v1

    x v1

    x = Ax x = v11λ1

    24 / 72

    Back to epidemics (SI) average probability each node is infected at time 

    Can write as

    x(t) t

    = βAxdx

    dt

    x(t) =N

    ∑r=1

    cr(t)vr

    25 / 72

    Back to epidemics (SI)

    = ∑Nr=1 vr

    = βA∑Nr=1 cr(t)vr = β∑

    Nr=1 λrcr(t)vr

    dxdt

    dcrdt

    26 / 72

    Back to epidemics (SI)

    Implying

    = ∑Nr=1 vr

    = βA∑Nr=1 cr(t)vr = β∑

    Nr=1 λrcr(t)vr

    dxdt

    dcrdt

    = βλrcrdcr

    dt

    27 / 72

    Back to epidemics (SI)

    Implying

    With solution

    = ∑Nr=1 vr

    = βA∑Nr=1 cr(t)vr = β∑

    Nr=1 λrcr(t)vr

    dxdt

    dcrdt

    = βλrcrdcr

    dt

    cr(t) = cr(0)eβλrt

    28 / 72

    Back to epidemics (SI)As before, first term dominates so

    Eigencentrality!

    x(t) ∼ eβλ1tv1

    29 / 72

    Back to epidemics (SIR)

    Similarily

    = βAx − μxdx

    dt

    x(t) ∼ e(βλ1−μ)t

    30 / 72

    Back to epidemics (SIR)

    Similarily

    Is there an epidemic? Not if 

    = βAx − μxdx

    dt

    x(t) ∼ e(βλ1−μ)t

    R0 = =β

    μ1λ1

    31 / 72

    Degree BlockApproximationAssume that allnodes of the samedegree arestatistically equivalent

    Degree distributions and epidemics

    32 / 72

    Degree BlockApproximationAssume that allnodes of the samedegree arestatistically equivalent

    Degree distributions and epidemics

    33 / 72

    Degree distributions and epidemicsSI model

    Fraction of nodes of degree   that are infected

    With   the fraction of infected neighbors for a node of degree 

    k

    ik =Ik

    Nk

    = β(1 − ik)kΘkdik

    dt

    Θk k

    34 / 72

    Degree distributions and epidemicsFor early time and assuming no degree correlation

    with

    = βki0 et/τ SIdik

    dt

    ⟨k⟩ − 1

    ⟨k⟩

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    35 / 72

    Degree distributions and epidemicsCharacteristic time

    For random networks 

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    ⟨k2⟩ = ⟨k⟩(⟨k⟩ + 1)

    τ SI =1

    β⟨k⟩

    36 / 72

    Degree distributions and epidemicsCharacteristic time

    For power law network     is finite, characteristic time is finite

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    γ ≥ 3 ⟨k2⟩

    37 / 72

    Degree distributions and epidemicsCharacteristic time

    For power law network     is finite, characteristic time is finite

    For power law  ,   does not converge as   socharacteristic time goes to 0

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    γ ≥ 3 ⟨k2⟩

    γ < 3 ⟨k2⟩ N → ∞

    38 / 72

    Degree distributions and epidemics

    39 / 72

    ImmunizationSuppose a fraction   of nodes is immunized (i.e. resistant)

    Rate of infection in SIR model changes from

    to

    g

    λ =β

    μ

    λ(1 − g)

    40 / 72

    ImmunizationWe can choose a fraction   such that rate of infection is below epidemicthreshold

    For a random network

    gc

    gc = 1 −μ

    β

    1

    ⟨k⟩ + 1

    41 / 72

    ImmunizationFor a powerlaw network

    For high   need to immunize almost the entire population

    gc = 1 −μ

    β

    ⟨k⟩

    ⟨k2⟩

    ⟨k2⟩

    42 / 72

    ImmunizationImmunization can be more effective if performed selectively.

    In power law contact networks, what is the effect of immunizing highdegree nodes?

    43 / 72

    ImmunizationImmunization can be more effective if performed selectively.

    In power law contact networks, what is the effect of immunizing highdegree nodes?

    First, how do you find them?

    Idea: choose individuals at random, ask them to nominate a neighbor incontact graph

    44 / 72

    What is the expected degree of thenominated neighbor?

    Immunization

    ∝ kpk

    45 / 72

    SummaryEpidemic as first example of dynamical process over networkRole of eigenvalue property in understanding epidemic spreadRole of degree distribution (specifically scale) in understandingspreadRole of highdegree nodes in robustness of networks to epidemics(immunization)

    46 / 72

    Network RobustnessWhat if we lose nodes in the network?

    47 / 72

    Nodes are uniformly at randomplaced in the intersections of aregular gridNodes in adjacent intersectionsare linkedKeep track of largest component

    PercolationLet's look at a simplified network growth model (related to ER)

    48 / 72

    As nodes are added to the graph

    What is the expected size of thelargest cluster?What is the average cluster size?

    PercolationLet's look at a simplified network growth model (related to ER)

    49 / 72

    PercolationThere is a critical threshold (percolation cluster   )pc

    50 / 72

    PercolationThere is a critical threshold (percolation cluster)

    Average cluster size

    Order parameter (   probability node is in large cluster)

    ⟨s⟩ ∼ |p − pc|−γp

    P∞

    P∞ ∼ (p − pc)βp

    51 / 72

    Model failure as the reverse process(nodes are removed)

    Critical Failure Threshold

    52 / 72

    Critical Failure ThresholdSimilar modeling strategy applied to general networks

    53 / 72

    Critical Failure ThresholdFirst question: is there a giant component?

    MolloyReed Criterion: Yes, if

    > 2⟨k2⟩

    ⟨k⟩

    54 / 72

    Critical Failure ThresholdFor ER: ⟨k2⟩ = ⟨k⟩(⟨k⟩ + 1)

    55 / 72

    Critical Failure ThresholdFor ER: 

    There is a large component if

    Good, coincides with what we know

    ⟨k2⟩ = ⟨k⟩(⟨k⟩ + 1)

    = ⟨k⟩ > 1⟨k2⟩

    ⟨k⟩

    56 / 72

    Critical Failure ThresholdSecond question: if we model failure as before, when does the giantcomponent disappear?

    fc = 1 −1

    − 1⟨k2⟩

    ⟨k⟩

    57 / 72

    Critical Failure ThresholdSecond question: if we model failure as before, when does the giantcomponent disappear?

    For ER:

    fc = 1 −1

    − 1⟨k2⟩

    ⟨k⟩

    fc = 1 −1

    ⟨k⟩

    58 / 72

    Critical Failure ThresholdFor power law networks

    59 / 72

    Critical Failure ThresholdFor power law networks

    60 / 72

    Robustness to AttacksWhat if node removal is targeted to hubs?

    61 / 72

    Robustness to AttacksWhat if node removal is targeted to hubs?

    fc = 2 + kmin(fc − 1)2−γ

    1−γ 2 − γ

    3 − γ

    3−γ

    1−γ

    62 / 72

    Robustness to Attacks

    63 / 72

    Designing RobustnessHubs  robustness to random attacks No hubs  robustness to targetedattacks

    64 / 72

    Designing RobustnessMaximize

    f totc = frandomc + f

    targetedc

    65 / 72

    Designing RobustnessMaximize

    Mixture of nodes

    fraction   of nodes have   degreeremaining   nodes have   degree

    f totc = frandomc + f

    targetedc

    r kmax1 − r kmin

    66 / 72

    Designing Robustness

    67 / 72

    Designing Robustness

    68 / 72

    Designing Robustness

    69 / 72

    Designing Robustness

    SummaryPercolation process to understand random failure 70 / 72

    SummaryPower law networks are robust to random failuresPower law networks are susceptible to targeted failuresProvable robustness to random and targeted failure using mixture ofnode degrees

    71 / 72

    Next timeDiffusion!!

    72 / 72

    Dynamical Processes over NetworksHéctor Corrada Bravo

    University of Maryland, College Park, USA CMSC828O 20191002

  • First analysis ofdynamical processesover networks

    Will let us exercisesome of the ways ofthinking about theseprocesses

    Modeling epidemics over Networks

    1 / 72

  • Modeling epidemics over NetworksQuestions

    Are there network properties that predict spread of infection?

    Are certain network types more resilient to infection than others?

    If we can intervene (vaccinate) are there nodes in the network that aremore effective to vaccinate?

    2 / 72

  • Modeling epidemics over NetworksQuestions

    Are there network properties that predict spread of infection?

    Are certain network types more resilient to infection than others?

    If we can intervene (vaccinate) are there nodes in the network that aremore effective to vaccinate?

    We'll start by looking at spread over nonnetworked populations

    3 / 72

  • Individuals in the population can bein two states

    An infected individual can infect anysusceptible individual they are incontact with

    If we start (   ) with somenumber of infected individuals (   ).How many infected individuals arethere at time  ?

    Susceptibility and infection (SI model)

    t = 0

    i0

    t4 / 72

  • SI model

    , average number of contacts per individual in one time step

    , "rate" probability an I infects an S upon contact

    I(t) = β⟨k⟩ I(t)d

    dt

    S(t)

    N

    ⟨k⟩

    β

    5 / 72

  • SI model

    , average number of contacts per individual in one time step

    , "rate" probability an I infects an S upon contact

    I(t) = β⟨k⟩ I(t)d

    dt

    S(t)

    N

    ⟨k⟩

    β

    = β⟨k⟩i(1 − i)di

    dt

    6 / 72

  • Fraction of infected individuals inpopulation

    Characteristic time (   s.t. )

    SI model

    i(t) =i0e

    β⟨k⟩t

    1 − i0 + i0eβ⟨k⟩t

    t

    i(t) = 1/e ≈ .36

    τ =1

    β⟨k⟩7 / 72

  • SIS modelInfection ends (recovery), individual becomes susceptible again

    8 / 72

  • SIS model

      recovery rate

    = β⟨k⟩i(1 − i) − μidi

    dt

    μ

    9 / 72

  • SIS model

    i(t) = (1 − )×μβ⟨k⟩

    Ce(β⟨k⟩−μ)t

    1+Ce(β⟨k⟩−μ)t

    10 / 72

  • Endemic StatePathogen persists inpopulation aftersaturation

    SIS model

    R0 = > 1β⟨k⟩

    μ

    i(∞) = 1 − = 1 − 1/R0μ

    β⟨k⟩

    11 / 72

  • Diseasefree StatePathogen disappearsfrom population

    SIS model

    R0 = < 1β⟨k⟩

    μ

    i(∞) = 0

    12 / 72

  • SIS modelBasic Reproductive Number

    Characteristic Time

    R0 =β⟨k⟩

    μ

    τ =1

    μ(R0 − 1)

    13 / 72

  • SIR modelIndividuals removed after infection (either death or immunity)

    14 / 72

  • SIR model

    = β⟨k⟩i(1 − r − i) − μi

    = μi

    = −β⟨k⟩i(1 − r − i)

    didt

    drdt

    dsdt

    15 / 72

  • Summary

    16 / 72

  • Epidemic processes over networks (SI)Consider node   in network:

     average probability node   is susceptible at time 

     average probability node   is infected at time 

    i

    si(t) i t

    xi(t) i t

    17 / 72

  • Epidemic processes over networks (SI)

    = −siβ

    N

    ∑j=1

    aijxjdsi

    dt

    = siβ

    N

    ∑j=1

    aijxjdxi

    dt

    18 / 72

  • Epidemic processes over networks (SI)

    For large  , and early 

    = −siβ

    N

    ∑j=1

    aijxjdsi

    dt

    = siβ

    N

    ∑j=1

    aijxjdxi

    dt

    N t

    = βAxdx

    dt

    19 / 72

  • Any quantity   over nodesin the graph can be writtenas

    Eigenvalue decomposition of A

    A = VT

    ΛV

    xi

    x =

    N

    ∑r=1

    crvr

    20 / 72

  • Eigenvalue decomposition of A

    Avr = λrvr

    λ1 ≥ λ2 ≥ ⋯ ≥ λN

    21 / 72

  • Eigenvalue decomposition of Let's revisit centrality

    Then

    A

    x(t) = Atx(0) =N

    ∑r=1

    crAtvr

    x(t) =N

    ∑r=1

    crλtrvr = λ

    t

    1

    N

    ∑i=1

    cr( )t

    vr

    λr

    λ1

    22 / 72

  • Eigenvalue decomposition of As   grows, first term dominates

    So set centrality   to be proportional to first eigenvector 

    A

    t

    x(t) = c1λt

    1v1

    x v1

    23 / 72

  • Eigenvalue decomposition of As   grows, first term dominates

    So set centrality   to be proportional to first eigenvector 

    In which case   if   as desired

    A

    t

    x(t) = c1λt

    1v1

    x v1

    x = Ax x = v11λ1

    24 / 72

  • Back to epidemics (SI) average probability each node is infected at time 

    Can write as

    x(t) t

    = βAxdx

    dt

    x(t) =N

    ∑r=1

    cr(t)vr

    25 / 72

  • Back to epidemics (SI)

    = ∑N

    r=1 vr

    = βA∑N

    r=1 cr(t)vr = β∑N

    r=1 λrcr(t)vr

    dxdt

    dcrdt

    26 / 72

  • Back to epidemics (SI)

    Implying

    = ∑N

    r=1 vr

    = βA∑N

    r=1 cr(t)vr = β∑N

    r=1 λrcr(t)vr

    dxdt

    dcrdt

    = βλrcrdcr

    dt

    27 / 72

  • Back to epidemics (SI)

    Implying

    With solution

    = ∑N

    r=1 vr

    = βA∑N

    r=1 cr(t)vr = β∑N

    r=1 λrcr(t)vr

    dxdt

    dcrdt

    = βλrcrdcr

    dt

    cr(t) = cr(0)eβλrt

    28 / 72

  • Back to epidemics (SI)As before, first term dominates so

    Eigencentrality!

    x(t) ∼ eβλ1tv1

    29 / 72

  • Back to epidemics (SIR)

    Similarily

    = βAx − μxdx

    dt

    x(t) ∼ e(βλ1−μ)t

    30 / 72

  • Back to epidemics (SIR)

    Similarily

    Is there an epidemic? Not if 

    = βAx − μxdx

    dt

    x(t) ∼ e(βλ1−μ)t

    R0 = =β

    μ1λ1

    31 / 72

  • Degree BlockApproximationAssume that allnodes of the samedegree arestatistically equivalent

    Degree distributions and epidemics

    32 / 72

  • Degree BlockApproximationAssume that allnodes of the samedegree arestatistically equivalent

    Degree distributions and epidemics

    33 / 72

  • Degree distributions and epidemicsSI model

    Fraction of nodes of degree   that are infected

    With   the fraction of infected neighbors for a node of degree 

    k

    ik =Ik

    Nk

    = β(1 − ik)kΘkdik

    dt

    Θk k

    34 / 72

  • Degree distributions and epidemicsFor early time and assuming no degree correlation

    with

    = βki0 et/τ SIdik

    dt

    ⟨k⟩ − 1

    ⟨k⟩

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    35 / 72

  • Degree distributions and epidemicsCharacteristic time

    For random networks 

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    ⟨k2⟩ = ⟨k⟩(⟨k⟩ + 1)

    τ SI =1

    β⟨k⟩

    36 / 72

  • Degree distributions and epidemicsCharacteristic time

    For power law network     is finite, characteristic time is finite

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    γ ≥ 3 ⟨k2⟩

    37 / 72

  • Degree distributions and epidemicsCharacteristic time

    For power law network     is finite, characteristic time is finite

    For power law  ,   does not converge as   socharacteristic time goes to 0

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    γ ≥ 3 ⟨k2⟩

    γ < 3 ⟨k2⟩ N → ∞

    38 / 72

  • Degree distributions and epidemics

    39 / 72

  • ImmunizationSuppose a fraction   of nodes is immunized (i.e. resistant)

    Rate of infection in SIR model changes from

    to

    g

    λ =β

    μ

    λ(1 − g)

    40 / 72

  • ImmunizationWe can choose a fraction   such that rate of infection is below epidemicthreshold

    For a random network

    gc

    gc = 1 −μ

    β

    1

    ⟨k⟩ + 1

    41 / 72

  • ImmunizationFor a powerlaw network

    For high   need to immunize almost the entire population

    gc = 1 −μ

    β

    ⟨k⟩

    ⟨k2⟩

    ⟨k2⟩

    42 / 72

  • ImmunizationImmunization can be more effective if performed selectively.

    In power law contact networks, what is the effect of immunizing highdegree nodes?

    43 / 72

  • ImmunizationImmunization can be more effective if performed selectively.

    In power law contact networks, what is the effect of immunizing highdegree nodes?

    First, how do you find them?

    Idea: choose individuals at random, ask them to nominate a neighbor incontact graph

    44 / 72

  • What is the expected degree of thenominated neighbor?

    Immunization

    ∝ kpk

    45 / 72

  • SummaryEpidemic as first example of dynamical process over networkRole of eigenvalue property in understanding epidemic spreadRole of degree distribution (specifically scale) in understandingspreadRole of highdegree nodes in robustness of networks to epidemics(immunization)

    46 / 72

  • Network RobustnessWhat if we lose nodes in the network?

    47 / 72

  • Nodes are uniformly at randomplaced in the intersections of aregular gridNodes in adjacent intersectionsare linkedKeep track of largest component

    PercolationLet's look at a simplified network growth model (related to ER)

    48 / 72

  • As nodes are added to the graph

    What is the expected size of thelargest cluster?What is the average cluster size?

    PercolationLet's look at a simplified network growth model (related to ER)

    49 / 72

  • PercolationThere is a critical threshold (percolation cluster   )pc

    50 / 72

  • PercolationThere is a critical threshold (percolation cluster)

    Average cluster size

    Order parameter (   probability node is in large cluster)

    ⟨s⟩ ∼ |p − pc|−γp

    P∞

    P∞ ∼ (p − pc)βp

    51 / 72

  • Model failure as the reverse process(nodes are removed)

    Critical Failure Threshold

    52 / 72

  • Critical Failure ThresholdSimilar modeling strategy applied to general networks

    53 / 72

  • Critical Failure ThresholdFirst question: is there a giant component?

    MolloyReed Criterion: Yes, if

    > 2⟨k2⟩

    ⟨k⟩

    54 / 72

  • Critical Failure ThresholdFor ER: ⟨k2⟩ = ⟨k⟩(⟨k⟩ + 1)

    55 / 72

  • Critical Failure ThresholdFor ER: 

    There is a large component if

    Good, coincides with what we know

    ⟨k2⟩ = ⟨k⟩(⟨k⟩ + 1)

    = ⟨k⟩ > 1⟨k2⟩

    ⟨k⟩

    56 / 72

  • Critical Failure ThresholdSecond question: if we model failure as before, when does the giantcomponent disappear?

    fc = 1 −1

    − 1⟨k2⟩

    ⟨k⟩

    57 / 72

  • Critical Failure ThresholdSecond question: if we model failure as before, when does the giantcomponent disappear?

    For ER:

    fc = 1 −1

    − 1⟨k2⟩

    ⟨k⟩

    fc = 1 −1

    ⟨k⟩

    58 / 72

  • Critical Failure ThresholdFor power law networks

    59 / 72

  • Critical Failure ThresholdFor power law networks

    60 / 72

  • Robustness to AttacksWhat if node removal is targeted to hubs?

    61 / 72

  • Robustness to AttacksWhat if node removal is targeted to hubs?

    fc = 2 + kmin(fc − 1)2−γ

    1−γ 2 − γ

    3 − γ

    3−γ

    1−γ

    62 / 72

  • Robustness to Attacks

    63 / 72

  • Designing RobustnessHubs  robustness to random attacks No hubs  robustness to targetedattacks

    64 / 72

  • Designing RobustnessMaximize

    f totc = frandomc + f

    targetedc

    65 / 72

  • Designing RobustnessMaximize

    Mixture of nodes

    fraction   of nodes have   degreeremaining   nodes have   degree

    f totc = frandomc + f

    targetedc

    r kmax1 − r kmin

    66 / 72

  • Designing Robustness

    67 / 72

  • Designing Robustness

    68 / 72

  • Designing Robustness

    69 / 72

  • Designing Robustness

    SummaryPercolation process to understand random failure 70 / 72

  • SummaryPower law networks are robust to random failuresPower law networks are susceptible to targeted failuresProvable robustness to random and targeted failure using mixture ofnode degrees

    71 / 72

  • Next timeDiffusion!!

    72 / 72