Modeling epidemics over Networks · 2019. 11. 29. · Questions Are there network ... ib s For...

73
First analysis of dynamical processes over networks Will let us exercise some of the ways of thinking about these processes Modeling epidemics over Networks 1 / 72 Modeling epidemics over Networks Questions Are there network properties that predict spread of infection? Are certain network types more resilient to infection than others? If we can intervene (vaccinate) are there nodes in the network that are more effective to vaccinate? 2 / 72 Modeling epidemics over Networks Questions Are there network properties that predict spread of infection? Are certain network types more resilient to infection than others? If we can intervene (vaccinate) are there nodes in the network that are more effective to vaccinate? We'll start by looking at spread over nonnetworked populations 3 / 72 Individuals in the population can be in two states An infected individual can infect any susceptible individual they are in contact with If we start ( ) with some number of infected individuals ( ). How many infected individuals are there at time ? Susceptibility and infection (SI model) 4 / 72 SI model , average number of contacts per individual in one time step , "rate" probability an I infects an S upon contact 5 / 72 SI model , average number of contacts per individual in one time step , "rate" probability an I infects an S upon contact 6 / 72 Fraction of infected individuals in population Characteristic time ( s.t. ) SI model 7 / 72 SIS model Infection ends (recovery), individual becomes susceptible again 8 / 72 SIS model recovery rate 9 / 72 SIS model 10 / 72 Endemic State Pathogen persists in population after saturation SIS model 11 / 72 Diseasefree State Pathogen disappears from population SIS model 12 / 72 SIS model Basic Reproductive Number Characteristic Time 13 / 72 SIR model Individuals removed after infection (either death or immunity) 14 / 72 SIR model 15 / 72 Summary 16 / 72 Epidemic processes over networks (SI) Consider node in network: average probability node is susceptible at time average probability node is infected at time 17 / 72 Epidemic processes over networks (SI) 18 / 72 Epidemic processes over networks (SI) For large , and early 19 / 72 Any quantity over nodes in the graph can be written as Eigenvalue decomposition of 20 / 72 Eigenvalue decomposition of 21 / 72 Eigenvalue decomposition of Let's revisit centrality Then 22 / 72 Eigenvalue decomposition of As grows, first term dominates So set centrality to be proportional to first eigenvector 23 / 72 Eigenvalue decomposition of As grows, first term dominates So set centrality to be proportional to first eigenvector In which case if as desired 24 / 72 Back to epidemics (SI) average probability each node is infected at time Can write as 25 / 72 Back to epidemics (SI) 26 / 72 Back to epidemics (SI) Implying 27 / 72 Back to epidemics (SI) Implying With solution 28 / 72 Back to epidemics (SI) As before, first term dominates so Eigencentrality! 29 / 72 Back to epidemics (SIR) Similarily 30 / 72 Back to epidemics (SIR) Similarily Is there an epidemic? Not if 31 / 72 Degree Block Approximation Assume that all nodes of the same degree are statistically equivalent Degree distributions and epidemics 32 / 72 Degree Block Approximation Assume that all nodes of the same degree are statistically equivalent Degree distributions and epidemics 33 / 72 Degree distributions and epidemics SI model Fraction of nodes of degree that are infected With the fraction of infected neighbors for a node of degree 34 / 72 Degree distributions and epidemics For early time and assuming no degree correlation with 35 / 72 Degree distributions and epidemics Characteristic time For random networks 36 / 72 Degree distributions and epidemics Characteristic time For power law network is finite, characteristic time is finite 37 / 72 Degree distributions and epidemics Characteristic time For power law network is finite, characteristic time is finite For power law , does not converge as so characteristic time goes to 0 38 / 72 Degree distributions and epidemics 39 / 72 Immunization Suppose a fraction of nodes is immunized (i.e. resistant) Rate of infection in SIR model changes from to 40 / 72 Immunization We can choose a fraction such that rate of infection is below epidemic threshold For a random network 41 / 72 Immunization For a powerlaw network For high need to immunize almost the entire population 42 / 72 Immunization Immunization can be more effective if performed selectively. In power law contact networks, what is the effect of immunizing high degree nodes? 43 / 72 Immunization Immunization can be more effective if performed selectively. In power law contact networks, what is the effect of immunizing high degree nodes? First, how do you find them? Idea: choose individuals at random, ask them to nominate a neighbor in contact graph 44 / 72 What is the expected degree of the nominated neighbor? Immunization 45 / 72 Summary Epidemic as first example of dynamical process over network Role of eigenvalue property in understanding epidemic spread Role of degree distribution (specifically scale) in understanding spread Role of highdegree nodes in robustness of networks to epidemics (immunization) 46 / 72 Network Robustness What if we lose nodes in the network? 47 / 72 Nodes are uniformly at random placed in the intersections of a regular grid Nodes in adjacent intersections are linked Keep track of largest component Percolation Let's look at a simplified network growth model (related to ER) 48 / 72 As nodes are added to the graph What is the expected size of the largest cluster? What is the average cluster size? Percolation Let's look at a simplified network growth model (related to ER) 49 / 72 Percolation There is a critical threshold (percolation cluster ) 50 / 72 Percolation There is a critical threshold (percolation cluster) Average cluster size Order parameter ( probability node is in large cluster) 51 / 72 Model failure as the reverse process (nodes are removed) Critical Failure Threshold 52 / 72 Critical Failure Threshold Similar modeling strategy applied to general networks 53 / 72 Critical Failure Threshold First question: is there a giant component? MolloyReed Criterion: Yes, if 54 / 72 Critical Failure Threshold For ER: 55 / 72 Critical Failure Threshold For ER: There is a large component if Good, coincides with what we know 56 / 72 Critical Failure Threshold Second question: if we model failure as before, when does the giant component disappear? 57 / 72 Critical Failure Threshold Second question: if we model failure as before, when does the giant component disappear? For ER: 58 / 72 Critical Failure Threshold For power law networks 59 / 72 Critical Failure Threshold For power law networks 60 / 72 Robustness to Attacks What if node removal is targeted to hubs? 61 / 72 Robustness to Attacks What if node removal is targeted to hubs? 62 / 72 Robustness to Attacks 63 / 72 Designing Robustness Hubs robustness to random attacks No hubs robustness to targeted attacks 64 / 72 Designing Robustness Maximize 65 / 72 Designing Robustness Maximize Mixture of nodes fraction of nodes have degree remaining nodes have degree 66 / 72 Designing Robustness 67 / 72 Designing Robustness 68 / 72 Designing Robustness 69 / 72 Designing Robustness Summary Percolation process to understand random failure 70 / 72 Summary Power law networks are robust to random failures Power law networks are susceptible to targeted failures Provable robustness to random and targeted failure using mixture of node degrees 71 / 72 Next time Diffusion!! 72 / 72 Dynamical Processes over Networks Héctor Corrada Bravo University of Maryland, College Park, USA CMSC828O 20191002

Transcript of Modeling epidemics over Networks · 2019. 11. 29. · Questions Are there network ... ib s For...

  • First analysis ofdynamical processesover networks

    Will let us exercisesome of the ways ofthinking about theseprocesses

    Modeling epidemics over Networks

    1 / 72

    Modeling epidemics over NetworksQuestions

    Are there network properties that predict spread of infection?

    Are certain network types more resilient to infection than others?

    If we can intervene (vaccinate) are there nodes in the network that aremore effective to vaccinate?

    2 / 72

    Modeling epidemics over NetworksQuestions

    Are there network properties that predict spread of infection?

    Are certain network types more resilient to infection than others?

    If we can intervene (vaccinate) are there nodes in the network that aremore effective to vaccinate?

    We'll start by looking at spread over nonnetworked populations

    3 / 72

    Individuals in the population can bein two states

    An infected individual can infect anysusceptible individual they are incontact with

    If we start (   ) with somenumber of infected individuals (   ).How many infected individuals arethere at time  ?

    Susceptibility and infection (SI model)

    t = 0

    i0

    t4 / 72

    SI model

    , average number of contacts per individual in one time step

    , "rate" probability an I infects an S upon contact

    I(t) = β⟨k⟩ I(t)d

    dt

    S(t)

    N

    ⟨k⟩

    β

    5 / 72

    SI model

    , average number of contacts per individual in one time step

    , "rate" probability an I infects an S upon contact

    I(t) = β⟨k⟩ I(t)d

    dt

    S(t)

    N

    ⟨k⟩

    β

    = β⟨k⟩i(1 − i)di

    dt

    6 / 72

    Fraction of infected individuals inpopulation

    Characteristic time (   s.t. )

    SI model

    i(t) =i0e

    β⟨k⟩t

    1 − i0 + i0eβ⟨k⟩t

    t

    i(t) = 1/e ≈ .36

    τ =1

    β⟨k⟩7 / 72

    SIS modelInfection ends (recovery), individual becomes susceptible again

    8 / 72

    SIS model

      recovery rate

    = β⟨k⟩i(1 − i) − μidi

    dt

    μ

    9 / 72

    SIS model

    i(t) = (1 − )×μβ⟨k⟩

    Ce(β⟨k⟩−μ)t

    1+Ce(β⟨k⟩−μ)t

    10 / 72

    Endemic StatePathogen persists inpopulation aftersaturation

    SIS model

    R0 = > 1β⟨k⟩

    μ

    i(∞) = 1 − = 1 − 1/R0μ

    β⟨k⟩

    11 / 72

    Diseasefree StatePathogen disappearsfrom population

    SIS model

    R0 = < 1β⟨k⟩

    μ

    i(∞) = 0

    12 / 72

    SIS modelBasic Reproductive Number

    Characteristic Time

    R0 =β⟨k⟩

    μ

    τ =1

    μ(R0 − 1)

    13 / 72

    SIR modelIndividuals removed after infection (either death or immunity)

    14 / 72

    SIR model

    = β⟨k⟩i(1 − r − i) − μi

    = μi

    = −β⟨k⟩i(1 − r − i)

    didt

    drdt

    dsdt

    15 / 72

    Summary

    16 / 72

    Epidemic processes over networks (SI)Consider node   in network:

     average probability node   is susceptible at time 

     average probability node   is infected at time 

    i

    si(t) i t

    xi(t) i t

    17 / 72

    Epidemic processes over networks (SI)

    = −siβN

    ∑j=1

    aijxjdsi

    dt

    = siβN

    ∑j=1

    aijxjdxi

    dt

    18 / 72

    Epidemic processes over networks (SI)

    For large  , and early 

    = −siβN

    ∑j=1

    aijxjdsi

    dt

    = siβN

    ∑j=1

    aijxjdxi

    dt

    N t

    = βAxdx

    dt

    19 / 72

    Any quantity   over nodesin the graph can be writtenas

    Eigenvalue decomposition of A

    A = V TΛV

    xi

    x =N

    ∑r=1

    crvr

    20 / 72

    Eigenvalue decomposition of A

    Avr = λrvr

    λ1 ≥ λ2 ≥ ⋯ ≥ λN

    21 / 72

    Eigenvalue decomposition of Let's revisit centrality

    Then

    A

    x(t) = Atx(0) =N

    ∑r=1

    crAtvr

    x(t) =N

    ∑r=1

    crλtrvr = λ

    t1

    N

    ∑i=1

    cr( )t

    vr

    λr

    λ1

    22 / 72

    Eigenvalue decomposition of As   grows, first term dominates

    So set centrality   to be proportional to first eigenvector 

    A

    t

    x(t) = c1λt1v1

    x v1

    23 / 72

    Eigenvalue decomposition of As   grows, first term dominates

    So set centrality   to be proportional to first eigenvector 

    In which case   if   as desired

    A

    t

    x(t) = c1λt1v1

    x v1

    x = Ax x = v11λ1

    24 / 72

    Back to epidemics (SI) average probability each node is infected at time 

    Can write as

    x(t) t

    = βAxdx

    dt

    x(t) =N

    ∑r=1

    cr(t)vr

    25 / 72

    Back to epidemics (SI)

    = ∑Nr=1 vr

    = βA∑Nr=1 cr(t)vr = β∑

    Nr=1 λrcr(t)vr

    dxdt

    dcrdt

    26 / 72

    Back to epidemics (SI)

    Implying

    = ∑Nr=1 vr

    = βA∑Nr=1 cr(t)vr = β∑

    Nr=1 λrcr(t)vr

    dxdt

    dcrdt

    = βλrcrdcr

    dt

    27 / 72

    Back to epidemics (SI)

    Implying

    With solution

    = ∑Nr=1 vr

    = βA∑Nr=1 cr(t)vr = β∑

    Nr=1 λrcr(t)vr

    dxdt

    dcrdt

    = βλrcrdcr

    dt

    cr(t) = cr(0)eβλrt

    28 / 72

    Back to epidemics (SI)As before, first term dominates so

    Eigencentrality!

    x(t) ∼ eβλ1tv1

    29 / 72

    Back to epidemics (SIR)

    Similarily

    = βAx − μxdx

    dt

    x(t) ∼ e(βλ1−μ)t

    30 / 72

    Back to epidemics (SIR)

    Similarily

    Is there an epidemic? Not if 

    = βAx − μxdx

    dt

    x(t) ∼ e(βλ1−μ)t

    R0 = =β

    μ1λ1

    31 / 72

    Degree BlockApproximationAssume that allnodes of the samedegree arestatistically equivalent

    Degree distributions and epidemics

    32 / 72

    Degree BlockApproximationAssume that allnodes of the samedegree arestatistically equivalent

    Degree distributions and epidemics

    33 / 72

    Degree distributions and epidemicsSI model

    Fraction of nodes of degree   that are infected

    With   the fraction of infected neighbors for a node of degree 

    k

    ik =Ik

    Nk

    = β(1 − ik)kΘkdik

    dt

    Θk k

    34 / 72

    Degree distributions and epidemicsFor early time and assuming no degree correlation

    with

    = βki0 et/τ SIdik

    dt

    ⟨k⟩ − 1

    ⟨k⟩

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    35 / 72

    Degree distributions and epidemicsCharacteristic time

    For random networks 

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    ⟨k2⟩ = ⟨k⟩(⟨k⟩ + 1)

    τ SI =1

    β⟨k⟩

    36 / 72

    Degree distributions and epidemicsCharacteristic time

    For power law network     is finite, characteristic time is finite

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    γ ≥ 3 ⟨k2⟩

    37 / 72

    Degree distributions and epidemicsCharacteristic time

    For power law network     is finite, characteristic time is finite

    For power law  ,   does not converge as   socharacteristic time goes to 0

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    γ ≥ 3 ⟨k2⟩

    γ < 3 ⟨k2⟩ N → ∞

    38 / 72

    Degree distributions and epidemics

    39 / 72

    ImmunizationSuppose a fraction   of nodes is immunized (i.e. resistant)

    Rate of infection in SIR model changes from

    to

    g

    λ =β

    μ

    λ(1 − g)

    40 / 72

    ImmunizationWe can choose a fraction   such that rate of infection is below epidemicthreshold

    For a random network

    gc

    gc = 1 −μ

    β

    1

    ⟨k⟩ + 1

    41 / 72

    ImmunizationFor a powerlaw network

    For high   need to immunize almost the entire population

    gc = 1 −μ

    β

    ⟨k⟩

    ⟨k2⟩

    ⟨k2⟩

    42 / 72

    ImmunizationImmunization can be more effective if performed selectively.

    In power law contact networks, what is the effect of immunizing highdegree nodes?

    43 / 72

    ImmunizationImmunization can be more effective if performed selectively.

    In power law contact networks, what is the effect of immunizing highdegree nodes?

    First, how do you find them?

    Idea: choose individuals at random, ask them to nominate a neighbor incontact graph

    44 / 72

    What is the expected degree of thenominated neighbor?

    Immunization

    ∝ kpk

    45 / 72

    SummaryEpidemic as first example of dynamical process over networkRole of eigenvalue property in understanding epidemic spreadRole of degree distribution (specifically scale) in understandingspreadRole of highdegree nodes in robustness of networks to epidemics(immunization)

    46 / 72

    Network RobustnessWhat if we lose nodes in the network?

    47 / 72

    Nodes are uniformly at randomplaced in the intersections of aregular gridNodes in adjacent intersectionsare linkedKeep track of largest component

    PercolationLet's look at a simplified network growth model (related to ER)

    48 / 72

    As nodes are added to the graph

    What is the expected size of thelargest cluster?What is the average cluster size?

    PercolationLet's look at a simplified network growth model (related to ER)

    49 / 72

    PercolationThere is a critical threshold (percolation cluster   )pc

    50 / 72

    PercolationThere is a critical threshold (percolation cluster)

    Average cluster size

    Order parameter (   probability node is in large cluster)

    ⟨s⟩ ∼ |p − pc|−γp

    P∞

    P∞ ∼ (p − pc)βp

    51 / 72

    Model failure as the reverse process(nodes are removed)

    Critical Failure Threshold

    52 / 72

    Critical Failure ThresholdSimilar modeling strategy applied to general networks

    53 / 72

    Critical Failure ThresholdFirst question: is there a giant component?

    MolloyReed Criterion: Yes, if

    > 2⟨k2⟩

    ⟨k⟩

    54 / 72

    Critical Failure ThresholdFor ER: ⟨k2⟩ = ⟨k⟩(⟨k⟩ + 1)

    55 / 72

    Critical Failure ThresholdFor ER: 

    There is a large component if

    Good, coincides with what we know

    ⟨k2⟩ = ⟨k⟩(⟨k⟩ + 1)

    = ⟨k⟩ > 1⟨k2⟩

    ⟨k⟩

    56 / 72

    Critical Failure ThresholdSecond question: if we model failure as before, when does the giantcomponent disappear?

    fc = 1 −1

    − 1⟨k2⟩

    ⟨k⟩

    57 / 72

    Critical Failure ThresholdSecond question: if we model failure as before, when does the giantcomponent disappear?

    For ER:

    fc = 1 −1

    − 1⟨k2⟩

    ⟨k⟩

    fc = 1 −1

    ⟨k⟩

    58 / 72

    Critical Failure ThresholdFor power law networks

    59 / 72

    Critical Failure ThresholdFor power law networks

    60 / 72

    Robustness to AttacksWhat if node removal is targeted to hubs?

    61 / 72

    Robustness to AttacksWhat if node removal is targeted to hubs?

    fc = 2 + kmin(fc − 1)2−γ

    1−γ 2 − γ

    3 − γ

    3−γ

    1−γ

    62 / 72

    Robustness to Attacks

    63 / 72

    Designing RobustnessHubs  robustness to random attacks No hubs  robustness to targetedattacks

    64 / 72

    Designing RobustnessMaximize

    f totc = frandomc + f

    targetedc

    65 / 72

    Designing RobustnessMaximize

    Mixture of nodes

    fraction   of nodes have   degreeremaining   nodes have   degree

    f totc = frandomc + f

    targetedc

    r kmax1 − r kmin

    66 / 72

    Designing Robustness

    67 / 72

    Designing Robustness

    68 / 72

    Designing Robustness

    69 / 72

    Designing Robustness

    SummaryPercolation process to understand random failure 70 / 72

    SummaryPower law networks are robust to random failuresPower law networks are susceptible to targeted failuresProvable robustness to random and targeted failure using mixture ofnode degrees

    71 / 72

    Next timeDiffusion!!

    72 / 72

    Dynamical Processes over NetworksHéctor Corrada Bravo

    University of Maryland, College Park, USA CMSC828O 20191002

  • First analysis ofdynamical processesover networks

    Will let us exercisesome of the ways ofthinking about theseprocesses

    Modeling epidemics over Networks

    1 / 72

  • Modeling epidemics over NetworksQuestions

    Are there network properties that predict spread of infection?

    Are certain network types more resilient to infection than others?

    If we can intervene (vaccinate) are there nodes in the network that aremore effective to vaccinate?

    2 / 72

  • Modeling epidemics over NetworksQuestions

    Are there network properties that predict spread of infection?

    Are certain network types more resilient to infection than others?

    If we can intervene (vaccinate) are there nodes in the network that aremore effective to vaccinate?

    We'll start by looking at spread over nonnetworked populations

    3 / 72

  • Individuals in the population can bein two states

    An infected individual can infect anysusceptible individual they are incontact with

    If we start (   ) with somenumber of infected individuals (   ).How many infected individuals arethere at time  ?

    Susceptibility and infection (SI model)

    t = 0

    i0

    t4 / 72

  • SI model

    , average number of contacts per individual in one time step

    , "rate" probability an I infects an S upon contact

    I(t) = β⟨k⟩ I(t)d

    dt

    S(t)

    N

    ⟨k⟩

    β

    5 / 72

  • SI model

    , average number of contacts per individual in one time step

    , "rate" probability an I infects an S upon contact

    I(t) = β⟨k⟩ I(t)d

    dt

    S(t)

    N

    ⟨k⟩

    β

    = β⟨k⟩i(1 − i)di

    dt

    6 / 72

  • Fraction of infected individuals inpopulation

    Characteristic time (   s.t. )

    SI model

    i(t) =i0e

    β⟨k⟩t

    1 − i0 + i0eβ⟨k⟩t

    t

    i(t) = 1/e ≈ .36

    τ =1

    β⟨k⟩7 / 72

  • SIS modelInfection ends (recovery), individual becomes susceptible again

    8 / 72

  • SIS model

      recovery rate

    = β⟨k⟩i(1 − i) − μidi

    dt

    μ

    9 / 72

  • SIS model

    i(t) = (1 − )×μβ⟨k⟩

    Ce(β⟨k⟩−μ)t

    1+Ce(β⟨k⟩−μ)t

    10 / 72

  • Endemic StatePathogen persists inpopulation aftersaturation

    SIS model

    R0 = > 1β⟨k⟩

    μ

    i(∞) = 1 − = 1 − 1/R0μ

    β⟨k⟩

    11 / 72

  • Diseasefree StatePathogen disappearsfrom population

    SIS model

    R0 = < 1β⟨k⟩

    μ

    i(∞) = 0

    12 / 72

  • SIS modelBasic Reproductive Number

    Characteristic Time

    R0 =β⟨k⟩

    μ

    τ =1

    μ(R0 − 1)

    13 / 72

  • SIR modelIndividuals removed after infection (either death or immunity)

    14 / 72

  • SIR model

    = β⟨k⟩i(1 − r − i) − μi

    = μi

    = −β⟨k⟩i(1 − r − i)

    didt

    drdt

    dsdt

    15 / 72

  • Summary

    16 / 72

  • Epidemic processes over networks (SI)Consider node   in network:

     average probability node   is susceptible at time 

     average probability node   is infected at time 

    i

    si(t) i t

    xi(t) i t

    17 / 72

  • Epidemic processes over networks (SI)

    = −siβ

    N

    ∑j=1

    aijxjdsi

    dt

    = siβ

    N

    ∑j=1

    aijxjdxi

    dt

    18 / 72

  • Epidemic processes over networks (SI)

    For large  , and early 

    = −siβ

    N

    ∑j=1

    aijxjdsi

    dt

    = siβ

    N

    ∑j=1

    aijxjdxi

    dt

    N t

    = βAxdx

    dt

    19 / 72

  • Any quantity   over nodesin the graph can be writtenas

    Eigenvalue decomposition of A

    A = VT

    ΛV

    xi

    x =

    N

    ∑r=1

    crvr

    20 / 72

  • Eigenvalue decomposition of A

    Avr = λrvr

    λ1 ≥ λ2 ≥ ⋯ ≥ λN

    21 / 72

  • Eigenvalue decomposition of Let's revisit centrality

    Then

    A

    x(t) = Atx(0) =N

    ∑r=1

    crAtvr

    x(t) =N

    ∑r=1

    crλtrvr = λ

    t

    1

    N

    ∑i=1

    cr( )t

    vr

    λr

    λ1

    22 / 72

  • Eigenvalue decomposition of As   grows, first term dominates

    So set centrality   to be proportional to first eigenvector 

    A

    t

    x(t) = c1λt

    1v1

    x v1

    23 / 72

  • Eigenvalue decomposition of As   grows, first term dominates

    So set centrality   to be proportional to first eigenvector 

    In which case   if   as desired

    A

    t

    x(t) = c1λt

    1v1

    x v1

    x = Ax x = v11λ1

    24 / 72

  • Back to epidemics (SI) average probability each node is infected at time 

    Can write as

    x(t) t

    = βAxdx

    dt

    x(t) =N

    ∑r=1

    cr(t)vr

    25 / 72

  • Back to epidemics (SI)

    = ∑N

    r=1 vr

    = βA∑N

    r=1 cr(t)vr = β∑N

    r=1 λrcr(t)vr

    dxdt

    dcrdt

    26 / 72

  • Back to epidemics (SI)

    Implying

    = ∑N

    r=1 vr

    = βA∑N

    r=1 cr(t)vr = β∑N

    r=1 λrcr(t)vr

    dxdt

    dcrdt

    = βλrcrdcr

    dt

    27 / 72

  • Back to epidemics (SI)

    Implying

    With solution

    = ∑N

    r=1 vr

    = βA∑N

    r=1 cr(t)vr = β∑N

    r=1 λrcr(t)vr

    dxdt

    dcrdt

    = βλrcrdcr

    dt

    cr(t) = cr(0)eβλrt

    28 / 72

  • Back to epidemics (SI)As before, first term dominates so

    Eigencentrality!

    x(t) ∼ eβλ1tv1

    29 / 72

  • Back to epidemics (SIR)

    Similarily

    = βAx − μxdx

    dt

    x(t) ∼ e(βλ1−μ)t

    30 / 72

  • Back to epidemics (SIR)

    Similarily

    Is there an epidemic? Not if 

    = βAx − μxdx

    dt

    x(t) ∼ e(βλ1−μ)t

    R0 = =β

    μ1λ1

    31 / 72

  • Degree BlockApproximationAssume that allnodes of the samedegree arestatistically equivalent

    Degree distributions and epidemics

    32 / 72

  • Degree BlockApproximationAssume that allnodes of the samedegree arestatistically equivalent

    Degree distributions and epidemics

    33 / 72

  • Degree distributions and epidemicsSI model

    Fraction of nodes of degree   that are infected

    With   the fraction of infected neighbors for a node of degree 

    k

    ik =Ik

    Nk

    = β(1 − ik)kΘkdik

    dt

    Θk k

    34 / 72

  • Degree distributions and epidemicsFor early time and assuming no degree correlation

    with

    = βki0 et/τ SIdik

    dt

    ⟨k⟩ − 1

    ⟨k⟩

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    35 / 72

  • Degree distributions and epidemicsCharacteristic time

    For random networks 

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    ⟨k2⟩ = ⟨k⟩(⟨k⟩ + 1)

    τ SI =1

    β⟨k⟩

    36 / 72

  • Degree distributions and epidemicsCharacteristic time

    For power law network     is finite, characteristic time is finite

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    γ ≥ 3 ⟨k2⟩

    37 / 72

  • Degree distributions and epidemicsCharacteristic time

    For power law network     is finite, characteristic time is finite

    For power law  ,   does not converge as   socharacteristic time goes to 0

    τ SI =⟨k⟩

    β(⟨k2⟩ − ⟨k⟩)

    γ ≥ 3 ⟨k2⟩

    γ < 3 ⟨k2⟩ N → ∞

    38 / 72

  • Degree distributions and epidemics

    39 / 72

  • ImmunizationSuppose a fraction   of nodes is immunized (i.e. resistant)

    Rate of infection in SIR model changes from

    to

    g

    λ =β

    μ

    λ(1 − g)

    40 / 72

  • ImmunizationWe can choose a fraction   such that rate of infection is below epidemicthreshold

    For a random network

    gc

    gc = 1 −μ

    β

    1

    ⟨k⟩ + 1

    41 / 72

  • ImmunizationFor a powerlaw network

    For high   need to immunize almost the entire population

    gc = 1 −μ

    β

    ⟨k⟩

    ⟨k2⟩

    ⟨k2⟩

    42 / 72

  • ImmunizationImmunization can be more effective if performed selectively.

    In power law contact networks, what is the effect of immunizing highdegree nodes?

    43 / 72

  • ImmunizationImmunization can be more effective if performed selectively.

    In power law contact networks, what is the effect of immunizing highdegree nodes?

    First, how do you find them?

    Idea: choose individuals at random, ask them to nominate a neighbor incontact graph

    44 / 72

  • What is the expected degree of thenominated neighbor?

    Immunization

    ∝ kpk

    45 / 72

  • SummaryEpidemic as first example of dynamical process over networkRole of eigenvalue property in understanding epidemic spreadRole of degree distribution (specifically scale) in understandingspreadRole of highdegree nodes in robustness of networks to epidemics(immunization)

    46 / 72

  • Network RobustnessWhat if we lose nodes in the network?

    47 / 72

  • Nodes are uniformly at randomplaced in the intersections of aregular gridNodes in adjacent intersectionsare linkedKeep track of largest component

    PercolationLet's look at a simplified network growth model (related to ER)

    48 / 72

  • As nodes are added to the graph

    What is the expected size of thelargest cluster?What is the average cluster size?

    PercolationLet's look at a simplified network growth model (related to ER)

    49 / 72

  • PercolationThere is a critical threshold (percolation cluster   )pc

    50 / 72

  • PercolationThere is a critical threshold (percolation cluster)

    Average cluster size

    Order parameter (   probability node is in large cluster)

    ⟨s⟩ ∼ |p − pc|−γp

    P∞

    P∞ ∼ (p − pc)βp

    51 / 72

  • Model failure as the reverse process(nodes are removed)

    Critical Failure Threshold

    52 / 72

  • Critical Failure ThresholdSimilar modeling strategy applied to general networks

    53 / 72

  • Critical Failure ThresholdFirst question: is there a giant component?

    MolloyReed Criterion: Yes, if

    > 2⟨k2⟩

    ⟨k⟩

    54 / 72

  • Critical Failure ThresholdFor ER: ⟨k2⟩ = ⟨k⟩(⟨k⟩ + 1)

    55 / 72

  • Critical Failure ThresholdFor ER: 

    There is a large component if

    Good, coincides with what we know

    ⟨k2⟩ = ⟨k⟩(⟨k⟩ + 1)

    = ⟨k⟩ > 1⟨k2⟩

    ⟨k⟩

    56 / 72

  • Critical Failure ThresholdSecond question: if we model failure as before, when does the giantcomponent disappear?

    fc = 1 −1

    − 1⟨k2⟩

    ⟨k⟩

    57 / 72

  • Critical Failure ThresholdSecond question: if we model failure as before, when does the giantcomponent disappear?

    For ER:

    fc = 1 −1

    − 1⟨k2⟩

    ⟨k⟩

    fc = 1 −1

    ⟨k⟩

    58 / 72

  • Critical Failure ThresholdFor power law networks

    59 / 72

  • Critical Failure ThresholdFor power law networks

    60 / 72

  • Robustness to AttacksWhat if node removal is targeted to hubs?

    61 / 72

  • Robustness to AttacksWhat if node removal is targeted to hubs?

    fc = 2 + kmin(fc − 1)2−γ

    1−γ 2 − γ

    3 − γ

    3−γ

    1−γ

    62 / 72

  • Robustness to Attacks

    63 / 72

  • Designing RobustnessHubs  robustness to random attacks No hubs  robustness to targetedattacks

    64 / 72

  • Designing RobustnessMaximize

    f totc = frandomc + f

    targetedc

    65 / 72

  • Designing RobustnessMaximize

    Mixture of nodes

    fraction   of nodes have   degreeremaining   nodes have   degree

    f totc = frandomc + f

    targetedc

    r kmax1 − r kmin

    66 / 72

  • Designing Robustness

    67 / 72

  • Designing Robustness

    68 / 72

  • Designing Robustness

    69 / 72

  • Designing Robustness

    SummaryPercolation process to understand random failure 70 / 72

  • SummaryPower law networks are robust to random failuresPower law networks are susceptible to targeted failuresProvable robustness to random and targeted failure using mixture ofnode degrees

    71 / 72

  • Next timeDiffusion!!

    72 / 72