Download - Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Transcript
Page 1: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Influence of rotation in unforced MHDshearing box turbulence

Farrukh Nauman

Niels Bohr International AcademyNiels Bohr Institute

August 17th, 2016

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 2: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Unforced?

Most work:MHD + Linear shear + Forcing in Navier Stokes

This talk:MHD + Linear shear + Finite amplitude perturbations at t = 0

BUT shear ∼ forcing on all scales

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 3: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Transition to turbulence: Pipe flow

Osborne Reynolds 1883

Linearly stable.

Re = VL/ν.

Requirement for transitionShear + high Re −→ turbulence.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 4: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Transition to turbulence: pipe flow

Re < Recrit :Laminar.

Re ∼ Recrit :Coherent structures.

Re > Recrit :Featureless turbulence.

From: Willis+ 2008

Turbulence lifetimeLifetime ∼ exp |Re − Recrit|. Hof+ 2006

Recrit ∼ 2000.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 5: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Part 1: Non-Rotating MHD shear turbulence

with Eric Blackman.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 6: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Non-rotating MHD shear turbulence: Background

Questions:

Unforced: Is sustained growth in magnetic energy possible?(No: Hawley+ 1996)

2D, Yes: Mamatsashvili+ 2014

Forced: Can shear + non-helical forcing lead to large scale dynamo?(Yes: Yousef+ 2008)

See also work by: Bhattacharjee, Brandenburg, Cattaneo, Sridhar, Subramanian, Tobias, ...

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 7: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Non-rotating MHD shear turbulence: Background

Questions:

Unforced: Is sustained growth in magnetic energy possible?(No: Hawley+ 1996)

2D, Yes: Mamatsashvili+ 2014

Forced: Can shear + non-helical forcing lead to large scale dynamo?(Yes: Yousef+ 2008)

See also work by: Bhattacharjee, Brandenburg, Cattaneo, Sridhar, Subramanian, Tobias, ...

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 8: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Non-rotating hydrodynamic shear turbulence

ShearV = −Sxey + v

∂vx

∂t= ν∇2vx

∂vy

∂t= Svx + ν∇2vy

Stable up to infinite Re.(Romanov 1972)

Nonlinearly unstableRecrit ∼ 350.

x

y

Vy = −Sx

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 9: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Non-rotating hydrodynamic shear turbulence

Shear + Magnetic FieldsB =ZZB0 + b

∂vx

∂t=ZZZZ

B0∂bx

∂z+ ν∇2vx

∂vy

∂t=ZZZZ

B0∂by

∂z+ Svx + ν∇2vy

Nauman, Blackman (submitted)

0 500 1000 1500

10-10

10-8

10-6

10-4

10-2

0 500 1000 1500Time

10-10

10-8

10-6

10-4

10-2

Energy

KineticMagnetic

Rm=1000Rm=1200Rm=1500Rm=2000

Finite amplitude.δv ∼ SL

Rm = SL2/η,Re = SL2/ν.Vy = −Sx , S = L = 1

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 10: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Linear Stability

Shear + Magnetic Fields

Hawley+ 1996:B fields cannot sustain growth

Finite amplitude.

Nauman, Blackman (submitted)

0 500 1000 1500

10-10

10-8

10-6

10-4

10-2

0 500 1000 1500Time

10-10

10-8

10-6

10-4

10-2

Energy

KineticMagnetic

Rm=1000Rm=1200Rm=1500Rm=2000

Finite amplitude.δv ∼ SL

Rm = SL2/η,Re = SL2/ν.Vy = −Sx , S = L = 1

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 11: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Hawley+ 1996:

Ideal MHD + small resolution→ small effective Re,Rm!

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 12: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Non-rotating MHD shear turbulence

0 25 50 75 100

-0.5

0.0

0.5

0 25 50 75 100

-0.5

0.0

0.5

0 25 50 75 100

-0.5

0.0

0.5

-0.16

0.011

0.18 Vx

0 25 50 75 100

-0.5

0.0

0.5

0.00.0

0 25 50 75 100

-0.5

0.0

0.5

0.00.0

-0.29

0.014

0.32 Vy

0 25 50 75 100

-0.5

0.0

0.5

0.00.00.00.0

0 25 50 75 100

-0.5

0.0

0.5

0.00.00.00.0

-0.038

-0.0021

0.034 Bx

0 25 50 75 100

-0.5

0.0

0.5

0.00.00.00.0

0 25 50 75 100

-0.5

0.0

0.5

0.00.00.00.0

-0.045

-0.0018

0.041 By

1x2x1

Time (in shear times)

zz

Averagingxy ≡ 〈〉

〈V 2〉 〈B2〉 (except one run, next slide)

Velocity fields: smooth.

Magnetic fields: Bx rough, By smoother.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 13: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Non-rotating MHD shear turbulence

Averagingxy ≡ 〈〉

〈V 2〉 ∼ 〈B2〉

Velocity fields: smooth.

Magnetic fields: ∼ smooth.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 14: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Non-rotating MHD shear turbulence

x: Velocity and Magnetic field

0.1 1.0 10.0 100.0kz

10−8

10−6

10−4

10−2

100

Pow

er

Spectr

um

Vx 1x2x1

Bx 1x2x1

Vx 1x2x4

Bx 1x2x4

Vx 4x8x4

Bx 4x8x4

y: Velocity and Magnetic field

0.1 1.0 10.0 100.0kz

10−8

10−6

10−4

10−2

100

102

Pow

er

Spectr

um

Vy 1x2x1

By 1x2x1

Vy 1x2x4

By 1x2x4

Vy 4x8x4

By 4x8x4

Re = Rm = 10,000.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 15: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Non-rotating MHD shear turbulence: Conclusions

Rotation is NOT required to sustain 〈B2〉 if Rm > Rmcrit.

SYSTEM scale dynamo.

No clear forcing scale in the system.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 16: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Part 2: Rotating MHD shear turbulence

with Martin Pessah.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 17: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Rotating MHD shear turbulence: Background

Keplerian shear with zero net magnetic flux

(Pm = Rm/Re = ν/η)

Protoplanetary and CV disks: Pm 1.

Lab. experiments: Pm 1.

Previous work (Lz = 1): Pm < 1 turbulence not observed.Fromang+ 2007, Rempel+ 2010, Rincon+ 2011-16, Walker+ 2016

Lz = 4: Pm = 1 very short lived turbulence. Shi+ 2016

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 18: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Rotating MHD shear turbulence

Re = SL2/ν

Rm = SL2/η

S = L = 1

Lx = 1,Ly = 2,Lz = 4

64× 64× (64 ∗ Lz)

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 19: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Rotating MHD shear turbulence

Re = 10,000,Lx = 1,Ly = 2

Low Pm turbulenceLarge Lz −→ Pm < 1 turbulence possible.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 20: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Rotating MHD shear turbulence

Comparison with Walker+ 2016:

0 1000 2000 3000 4000 5000

10-8

10-6

10-4

10-2

100

0 1000 2000 3000 4000 5000Time ( S

-1)

10-8

10-6

10-4

10-2

100

Str

ess

ReynoldsMaxwell

2x4x12x4x22x4x42x4x8

Re = Rm = 10,000

Low Pm turbulenceLarge Lz −→ Pm < 1 turbulence possible.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 21: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Rotating MHD shear turbulence

x: Velocity and Magnetic field

0.1 1.0 10.0 100.0kz

10−10

10−8

10−6

10−4

10−2

Pow

er

Spectr

um

Vx Lz=4

Bx Lz=4

Vx Lz=8

Bx Lz=8

Vx Lz=12

Bx Lz=12

y: Velocity and Magnetic field

0.1 1.0 10.0 100.0kz

10−10

10−8

10−6

10−4

10−2

Pow

er

Spectr

um

Vy Lz=4

By Lz=4

Vy Lz=8

By Lz=8

Vy Lz=12

By Lz=12

Re = Rm = 10,000, Lx = 1,Ly = 2.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 22: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Rotating MHD shear turbulence: Conclusions

Turbulence is sustained with Pm 1 if Lz ≥ 4.

Bx very rough and intermediate scale - incoherent αΩ?

By oscillates on much longer time scales compared to V .

Stresses not very sensitive to Pm for Pm 1,consistent with net flux results by Meheut+ 2015.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 23: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Comparison: Influence of Rotation?

Non-Rotating: Nauman, Blackman (submitted)

Rotating: Nauman, Pessah (submitted)

V : Spatially smooth for both, but rotation introduces oscillations.Non-rotating: V ∼ sin kz, Rotating: V ∼ sin(κt + sin kz + phase)

Bx : rough in both cases, box scale in non-rotating - only intermediatescale in rotating.

By : smooth and oscillating in both cases.

Rotating: Vrms < Brms.

Non-rotating: Vrms > Brms.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 24: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Some speculations

Incoherence due to lack of scale separation in shearing boxes.High resolution global simulations might lead to different results.

Box scale velocity structures transitional,might disappear at higher Re and/or L.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 25: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Thank you!

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 26: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Numerical Simulations: Limitations

AGN disks:

Re ∼ 1015

Experiments: 104 − 106 PROMISE, Maryland, Princeton

Simulations: 4.5× 104 Meheut+ 2015, Walker+ 2016

Physical ResolutionAssume H = 1AU ∼ 1.5× 1013cm, and H/R ∼ 0.1.

Shearing Box: H/1000 ∼ 1010cmGlobal Disk: R/1000 ∼ H/100 ∼ 1011cm

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 27: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

Ω = Ωez

vφ = Ωr

r0

φ r0 −→∞ x

y

vy = −qΩx

Shear parameter:

q = −d ln Ω/d ln r

x = r − r0y = r0(φ− φ0)

Figure: Ω ∼ r−q. Centrifugal force + radial gravity = linear shear.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 28: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

The need for large amplitude in simulations

Re = L2S/ν, Modes = 1000

k ∂tv v · ∇v Re−1 ∇2v

Ωv v2k Re−1 k2 v

1 1 10−2 1 10−4 10−4 10−6

10 1 10−2 10 10−3 10−2 10−4

100 1 10−2 100 10−2 1 10−2

1000 1 10−2 1000 10−1 102 1

Ω = 1 = L, k = n/L (ignore 2π) Perturbations v in units of LΩ.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence

Page 29: Influence of rotation in unforced MHD shearing box …...Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence Non-rotating hydrodynamic shear turbulence Shear V =

The need for large amplitude in simulations

Re = L2S/ν, Modes = 1000

Re =104 Re =104

v = 1 v = 10−2

k ∂tv v · ∇v Re−1 ∇2v

Ωv v2k Re−1 k2 v

1 1 10−2 1 10−4 10−4 10−6

10 1 10−2 10 10−3 10−2 10−4

100 1 10−2 100 10−2 1 10−2

1000 1 10−2 1000 10−1 102 1

Ω = 1 = L, k = n/L (ignore 2π) Perturbations v in units of LΩ.

Farrukh Nauman (Niels Bohr Institute) Rotation in MHD shear turbulence