Download - An Assessment of Source and dose-dependent Diabetes ...

Transcript

Journal of Clinical and Molecular EndocrinologyISSN 2572-5432

2021Vol. 6 No. 3 :42

1© Under License of Creative Commons Attribution 3.0 License | This article is available in: http://clinical-and-molecular-endocrinology.imedpub.

iMedPub Journalshttp://www.imedpub.com

DOI: 10.36648/2572-5432.6.3.42

Research Article

An Assessment of Source and dose-dependent Diabetes Ameliorating activity

of Ethanolic Extract of Nigella sativa on Alloxan-Induced Diabetic Rat Model

Dilruba Akter1, Chandni Akter Rokeya2, Md. Rafat Tahsin3*, Ehfazul Haque1, Arifa Sultana4, Shaila Kabir1, Abu Asad Choudhury1, Jakir Ahmed Chowdhury4, Md. Shah Amran1

1 DepartmentofPharmaceuticalChemistry,FacultyofPharmacy,UniversityofDhaka,Dhaka,Bangladesh

2 Department of Pharmacy, University ofAsiaPacific,Farmgate,Dhaka,Bangladesh

3 DepartmentofPharmaceuticalSciences, North South University, Dhaka, Bangladesh

4 Department of Pharmacy, University of Dhaka,Dhaka,Bangladesh

Corresponding author: Md.RafatTahsin

Tel : 01704592755

[email protected]

Citation:AkterD,RokeyaCA,TahsinMd.R,HaqueE,SultanaA,etal(2021).AnAssessmentofSourceanddose-dependentDiabetesAmelioratingactivityofEthanolicExtractofNigellasativaonAlloxan-InducedDiabeticRatModel.JClinMolEndocrinol.2021,6:3.42

IntroductionType 1 Diabetes mellitus (T1DM), is a chronic autoimmune diseasewhichhavestemmedasaleadingglobalhealthproblemandaffectspeopleofallages,gendersandraces[1].Accordingto an estimation, around 5%–10% of adults worldwide areafflicted by this disorder and this will increase 20%–69% inthenext20years [2,3].Respectively, theoutbreakofdiabetesamongthoseagedbetween20to79yearsmaybeexpectedtoincrease7.7%,constituting439millionbytheyear2030[4,5].Itiscausedbycompleteorpartialinsulindeficiencywhichresultsinhyperglycaemia[6].Thiselevationinbloodglucoselevelshasstimulatedtheproductionofreactiveoxygenspecies(ROS),which cause cellular damage that promote the progression of acute andchroniccomplicationsincludinghypoglycemia,ketoacidosis,nonketotic hyperosmolar coma, diabetic retinopathy,

nephropathy, autonomic neuropathy, microangiopathy, various organfailureandinfections[7-10].Moreover,Diabetesmellituscan also be conjoined with cardiovascular risk factors such ashypertension,dyslipidemiaandobesity[11].

Diabetescannotbemitigatedcompletelyratheritmustbekeptundertightmanagement[12].Thisintricatedconditionmightbecontrolledbychangingdiet,sedentarylifestylesandmedications[13]. The most commonly used medicine to control diabetesinclude insulin and its derivatives, glucagon-like peptide-1

AbstractMetabolicdisorderdiabetesresultsfromanalterationofthesecretionoractionofinsulin.Nigella sativaisatraditionallyusedspecimensinceancienttimes.Weaimed to investigate thehypoglycemicpotentialofethanolic extractofNigella sativaseedpowdersolutionbothinadoseandsource-dependentmanneraswellas to fathomout its safetyprofileso that thisplantcanbeused toamelioratediabetes.Diabeteswasinducedintheratmodelviaintraperitoneal injectionofalloxan(150mg/kg).EthanolicextractofT. Nigella sativawasadministeredtorats’belongedtodifferentgroups.BloodglucoselevelswereassessedperiodicallyandthesafetyprofileswereevaluatedthroughassessmentofSGOT,SGPT,creatinine,andlipidprofilesaftersacrificingtheanimals.IthasbeenevidencedthatNigella sativa possesses anti-diabetic activity. Furthermore, the extract is capable ofreversing the disturbed pathological state towards a healthy status. Besides,these therapeutic consequencespossessdose-dependentpotentiality (p>0.05),furtheranoteworthysourcedependent(p>0.01)responsewereexperienced.Itmayconferthattheinconsistencyassociatedwiththeremedialimpactsbetween2samedosesbelongedtotwodistinctsourcesareduetoaccuracyoflab-basedpreparation, geographic area of cultivation, and also the season of collection.Apart from that, the visual and statistical inspections have evidence that themedium and the high dose are imparting almost indistinguishable therapeuticeffects.Presumably,thereasonliesbeneaththereceptorsaturationissue.

Keywords: Nigellasativa,alloxan,hypoglycemiceffect,dosedependency,sourcedependency,safetyprofile

Received: April16,2021; Accepted: April30,2021;Published: May 07, 2021

2021Vol. 6 No. 3 :42

Journal of Clinical and Molecular EndocrinologyISSN 2572-5432

This article is available in: http://clinical-and-molecular-endocrinology.imedpub.2

receptor agonists, thiazolidinediones (TZDs), sulfonylureas,amylin analogues, biguanides, and glucosidase inhibitor [14-17].Currentmedicamentsforthetreatmentoftype2diabetesmellitus have detrimental effects, and sometimes, they arereported for being ineffective in patientwith chronic diabetes[18]. Furthermore, no medication can intensify both insulinsensitivityandsecretionsimultaneously.

Medicinal plants have attained wide attention from scientistsandhavebeendeemedtobeabeneficialadjuvantagentasanoral antidiabetic andhypolipidemic drug,mostly in developingcountries,duetotheirintegratedeffects,rareornosideeffectsand lower cost. [19,20]. Besides that, Nigella sativa has alsobeen thought to be safer among 1000 different antidiabeticmedicinal plants compared to oral antidiabetic drugs [21].Nigellasativaisanannualherbaceousplantspices,belongingtothe familyRanunculaceawhich canbe foundmostly inMiddleEasterncountries includingPakistan, India, Italy, IndonesiaandAfghanistan [22]. It ismost commonly known as “black seed”,“black cumin” or “kalajeera”. Different forms of Nigella sativalikeextract,oil,andpowderhavebeenemployedintraditionalmedicine to treat several illnesses such as fever, diarrhea,bronchitis, cough, hemorrhoids, gastrointestinal, hepatitis andtapeworm disease [23-25]. It is also known as an immunityenhancer. Nigella sativa extract has been demonstrated topossessimmunopotentiating[26],antioxidant[27],antitumoral[28],antidiabetic[32],anti-proliferative[30],antimicrobial[30],antiasthmatic[33],antihypertensive[32],antiparasitic[31],anti-fertility [33], hypolipidemic [29], anti-inflammatory [29], andanti-pyretic [29] activities. Screening for uniquephytochemicalconstituents from Nigella Sativa has earned researcher’sattention because of its ameliorative effects. The ameliorativeeffectsofNigellaSativaaremainlyconferredtothymoquinone,whichisoneofthemajorbioactivecompoundsthatwasunveiledtohaveadefensiveeffectagainstdiabetes[34].PreviousstudiesstatedthatthymoquinoneintroducedamarkeddecreaseinFastingBloodGlucoselevelandanoticeableincreaseininsulinlevelsinrats[35].Besidesthymoquinine,theothercompounds,namelythymol,thymohydroquinone, dithymoquinone, nigellone, alpha-hederin,flavonoids,alkaloids,volatile(0.40%–0.45%)andnon-volatile(32%–40%)oils,carbohydrates(31.0%–33.9%),protein(16.00%–20.85%),fibre (5.50–7.94%), tannins, saponins, minerals such as iron,potassium,magnesium, calcium, zinc and copper (1.79%–3.44%),vitaminAandC,niacin,pyridoxine,thiamine,folateandfattyacidswerealsofoundtohavetherapeuticproperties[36,37].Additionally,kalonjiwaspresentedtohavenocausticsideeffectsortoxicologicaleffectsinbothhumanandanimalmodels[38].

The modern drugs used in the management of diabetes isheavily overpriced, andalsoburdenandunreachable formasspopulation. The aim of our current study is to investigate theantidiabeticandhypolipidemiceffectofNigellasativainadoseandsourcedependentmanneraswellasrelativeadverseeffectsand safetyprofile studyon liver andkidney in alloxan-induceddiabeticratmodel.

Method MaterialsWeusedhighestanalyticalgradechemicalsinourcurrentstudy.Dried Nigella sativa seeds were bought from Allahrdan Shop,

Banasree,andDhaka.Humalyzer3000(Semi-AutomatedClinicalChemistry Analyzer of Medigroup Asia limited, Combodia)was employed to measure the blood parameters of rodents.Glucometer of Alere GI of Alere Inc, USA was instituted fromShahbag, Dhaka, Bangladesh. All blood parameter analyzingkitswere received fromPlasmatic Laboratory Product Limited.A chemical agent (alloxan)was purchased fromSigmaAldrich,Germany.

Extraction ProcedureFirstly,Nigellasativaseedswerethoroughlywashedanddriedinsunlightforfewdays.Afterwards,thedriedseedswerecrushedintopowder.Then,thedrypowderedmaterialsweresoakedinmethanolandkeptfor14dayswithoccasionalvigorousstirringand shaking. Subsequently, the extract was filtered by usingWhatmanNo.1Filterpaper.Toreducethevolumefromarotaryevaporator at low temperature andpressure thefiltrate liquidwastakenforthenextstep.

Experimental Design and Animal Handling Wisteralbinothirtyadultmaleratswereobtainedfromtheanimalunit,Jahangirnagar University, Department of Pharmacy, Dhaka, Bangladesh.Theywereincarceratedindividuallyinstainlesssteelcagesat12±1hlight/darkcycleunderthecontrolledtemperature(25◦C) in the Institute of Nutrition & Food Science, UniversityofDhaka. The ratswere givenwith a standard pellet diet andwateradlibitum.Beforeinitiatingtheanalysis,theratswereinhousedthereforacclimatization.Thebodyweightofeachrathasbeenweighedafterward.Theanimalsweredividedinto6groupswhereanevendivisionofrodentsaspertheirbodyweighthasbeentakenplace,andeachgroupincluded5rats.

Group1:NormalControl

Group2:DiabeticControl

Group3:LowDose(100mg/kgbodyweight)

Group4:MediumDose(400mg/kgbodyweight)

Group5:HighDose(750mg/kgbodyweight)

Group6:CommercialPreparation(400mg/kgbodyweight)

The rats were fed normal food and water twice daily in thefirst two weeks without initiating diabetes. A chemical agent,alloxan(150mg/kgbodyweight),wasinjectedintoallgroupsviaintraperitonealroutefordiabeticinductionexceptnormalcontrolgrouponthe14thday.After72hours,thebloodsugarlevelwasscrutinized.Ithasbeenobservedthatdiabeteswasincitedinallratsassociatedtogroups2-5andtreatmentwascommencedonthe18thday,whichwas continued for twenty-eightdays. Thebloodglucoselevelwasexaminedonceineveryweek.Thedosesweregivenbyoralrouteofadministration.

Statistical AnalysisThe discoveries of all study parameters associate to severalgroupsweredelineatedasmean±SD.“OneWayAnovaTest”of SPSS 16” software was used to explore the inter-groupdiscrepancies in results to trace the statistical significance.Here,thestatisticalsignificancelevelwassetata‘p’valueof

3

2021Vol. 6 No. 3 :42

Journal of Clinical and Molecular EndocrinologyISSN 2572-5432

© Under License of Creative Commons Attribution 3.0 License

p<0.05. On the other hand, high statistical significance wassetat'p'valueofp<0.01.Intermsofresults,theinter-groupdifferentiabilitywasthoughtstatisticallysignificantandhighlysignificantwhenthep-valuewasseenlessthan0.05and0.01respectively.

ResultsChange in body weightsThepre-treatment&posttreatmentbodyweight(gram)ofratsbelongedtodifferentgroupsareshowninFigure1

Change in blood glucose levelThebloodglucoselevel(mmol/dl)ofalltestgroupfromday1today42areexpressingbelowinmentionedgraphinFigure2.

Safety Profile Study (Liver function test)TheSGOTlevelofallratsbelongedto6groupsaredenotingtheconditionofliverisshowninbelowgraphFigure3.

The levelofSGPTofallratsthatbelongedto6groupsisexpressingtheconditionofliverareexpressingviatheblowshowngraphFigure4.

Safety Profile Study (Kidney functioning Test)ThebelowmentionedvaluesconcerningthelevelofCreatinine(md/dl)ofratsbelongedto6groupasarequirementofmeasuringthekidneyfunctioningtestarepresentinginFigure5

Safety Profile Study (Lipid Profile)The level of Total Cholesterol Level of all rats belonged to 6groupsareexpressinginbelowFigure6.

Safety Profile Study (Lipid Profile)ThelevelofHDLlevel(mg/dl)ofallratsbelongedto6groupsarepresentinginbelowdrawngraph,Figure7.

Safety Profile Study (Lipid Profile)ThebelowmentionvaluesregardingthelevelofLDLlevel(mg/dl)ofratsbelongedto6groupsarepresentinginbelow,Figure8.

Figure 1 Comparision between the average body weight (mean±standard deviation) of rats belong to 6 groups before starting theexperimentandjustbeforesacrifice.C =Control,A=Alloxan,A+L.D=Alloxan+LowDose,A+M.D=Alloxan+MediumDose,A+H.D=Alloxan+HighDose,A+C.P=Alloxan+Commercialpreparation

Figure 2 Bloodglucoselevelofsixgroupsfromdayzerotodayforty-two.Thedatawereexpressedasmean±standarddeviation.*Expressesthesignificantchange,**Expressingthehighsignificantchange.C=Control,A=Alloxan,A+L.D=Alloxan+LowDose,A+M.D=Alloxan+MediumDose,A+H.D=Alloxan+HighDose,A+C.P=Alloxan+Commercialpreparation

2021Vol. 6 No. 3 :42

Journal of Clinical and Molecular EndocrinologyISSN 2572-5432

This article is available in: http://clinical-and-molecular-endocrinology.imedpub.4

Figure 3 CamparisionofSGOTlevel(U/L)ofrats,belongedto6groupsatdayforty-twoaftersacrificeC=Control,A=Alloxan,A+L.D=Alloxan+LowDose,A+M.D=Alloxan+MediumDose,A+H.D=Alloxan+HighDose,A+C.P=Alloxan+Commercialpreparation.*Expressesthesignificantchange,**ExpressingtheHighhighsignificantchange.

Figure 4 CamparisionofSGPTlevel(U/L)ofrats,belongedto6groupsatdayforty-twoaftersacrifice.C=Control,A=Alloxan,A+L.D=Alloxan+LowDose,A+M.D=Alloxan+MediumDose,A+H.D=Alloxan+HighDose,A+C.P=Alloxan+Commercialpreparation.*Expressesthesignificantchange,**ExpressingtheHighhighsignificantchange.

Figure 5 CamparisionofCreatininelevel(mg/dl)ofrats,belongedto6groupsatdayforty-twoaftersacrifice.C=Control,A=Alloxan,A+L.D = Alloxan+Low Dose, A+M.D = Alloxan+Medium Dose, A+ H.D =Alloxan+High Dose, A+C.P = Alloxan+Commercialpreparation.*Expressesthesignificantchange,**ExpressingtheHighhighsignificantchange.

5

2021Vol. 6 No. 3 :42

Journal of Clinical and Molecular EndocrinologyISSN 2572-5432

© Under License of Creative Commons Attribution 3.0 License

Figure 6 CamparisionofTotalCholesterolLevel(mg/dl)ofrats,belongedto6groupsatdayforty-twoaftersacrifice.C=Control,A=Alloxan,A+L.D=Alloxan+LowDose,A+M.D=Alloxan+MediumDose,A+H.D=Alloxan+HighDose,A+C.P=Alloxan+Commercialpreparation.*Expressesthesignificantchange,**ExpressingtheHighhighsignificantchange.

Figure 7 CamparisionofHDLLevel(mg/dl)ofrats,belongedto6groupsatdayforty-twoaftersacrificeC=Control,A=Alloxan,A+L.D=Alloxan+LowDose,A+M.D=Alloxan+MediumDose,A+H.D=Alloxan+HighDose,A+C.P=Alloxan+Commercialpreparation.*Expressesthesignificantchange,**ExpressingtheHighhighsignificantchange.

Figure 8 ComparisionofLDLLevel(mg/dl)ofratsbelongto6groupsatdayforty-twobeforeaftersacrifice.C=Control,A=Alloxan,A+L.D=Alloxan+LowDose,A+M.D=Alloxan+MediumDose,A+H.D=Alloxan+HighDose,A+C.P=Alloxan+Commercialpreparation.*Expressesthesignificantchange,**ExpressingtheHighhighsignificantchange.

2021Vol. 6 No. 3 :42

Journal of Clinical and Molecular EndocrinologyISSN 2572-5432

This article is available in: http://clinical-and-molecular-endocrinology.imedpub.6

Figure 9 Camparision of Triglyceride Level (mg/dl) of rats, belonged to 6 groups at day forty-two after sacrifice. C = Control, A =Alloxan,A+L.D=Alloxan+LowDose,A+M.D=Alloxan+MediumDose,A+H.D=Alloxan+HighDose,A+C.P=Alloxan+Commercialpreparation.*Expressesthesignificantchange,**ExpressingtheHighhighsignificantchange.

Safety Profile Study (Lipid Profile)ThebelowmentionvaluesregardingthelevelofTriglyceridelevel(mg/dl)ofratsbelongedto6groupsaregivenbelowFigure9.

DiscussionBody Weight MeasurementTheBodyweightofratswasabatedineverysinglegroupwhencompared to negative control. Herein, the reduction of bodyweightwashighest indiabetic control group.On the contrary,intreatmentgroups,withtheaugmentationofdose,depletionwaslessened.Incommercialpreparationtreatedgroups,lowestreductioninbodyweightwasremarked.

Blood Glucose LevelDiabeticinducedratsencountered anincreasedbloodsugarlevelthanallothergroups.Therewasnosignificantreductioninthebloodglucose levelwasseenat lowdose.Whereas, thehighand medium dose produce significantly decline (p<0.05) inbloodglucoselevel.Furthermore,incommercialpreparation,a high statistically significant fall (p<0.01) in blood glucoselevelwasdetected. Yet, all the groupshave thepotentialityto lower the elevated blood sugar level in comparison todiabeticgrouprats.Conversely,thebloodglucoselevelofratsappertain togroup1 (NormalControlgroup)wasauditedtobenormal.

Liver and Kidney Functioning TestThediabeticinducedgroupratsexperiencedhighestlevelofSGOT,SGPTandCreatininethanallothergroups.Thismaybeduetodeleteriouseffectofalloxan.Ontheotherhand,itwasinspectedthat the SGOT, SGPT and Creatinine levels were significantlylowered (p<0.05) at medium and high dose respectively.Contrarily,atlowdoselevelnullsignificancewasobservedwhencomparedwithgroup2(p>0.05).Furthermore,SGOT,SGPTandCreatininelevelsweresharply(p<0.01)decreasedincommercialpreparationincomparisontodiabeticgroup.

Lipid ProfileTheseedsofNigellasativawerefruitfulinloweringtriglycerides,LDL-Candtotalcholesterol intheserumatalldose levels.Thereductionshowedstatisticallysignificantincaseofmediumandhighdoseandincaseofcommercialpreparationhighstatisticalsignificancewasobserved.HDL-Clevelincreasedatalldoselevelswhen compared to the diabetic induced group. There was nosignificantincreaseintheHDL-Clevelwasspottedatlowdose.However,asignificantincreasewasmarkedatmediumandhighdose and high statistical significancewas found in commercialpreparation.

From the above discussion, it can be expressed that thecommercialpreparationcanreducethebloodsugarlevelmoreadroitly than that of experimental lab-based preparations.Several reasonsmay be accountable for the lifted potentialityof commercial preparation for example: the season of seedcollection,orgeologicalareaofcultivationandalsocanbesomeerrors during preparations. Apart from that, the response ofrat’sbelongedtomediumandhighdosesresembletobealmostsimilar fromboth statistical and visual inspection. Itmay ariseduetoreceptorsaturation.

ConclusionEthanolic extract of Nigella sativa exhibit dose and source-dependent activity against diabetes. The commercialpreparation imparted the best effects than that of all othergroups.Mostlikely,severalreasonsfore.g;error-freelab-basedpreparations, geographical area of cultivation, or the seasonof seed collectionmay lie behind this deviation. Furthermore,itwasalso investigated that this seedextract can improve thealtered pathological condition of alloxan-induced diabetic rats.Fromtheviewpointofthesafetystudy,itcanbeterminatedthatthedosesofethanolicextractofNigellasativawerenottoxictotheratsanddidnotsignificantlyalter thepathological state inhealthyindividuals.Hence,ItmightthereforebepresumedthatethanolicextractofNigellasativacouldbeeffectivelyusedasanalternativetherapyinthepreventionandtreatmentofdiabetes

7

2021Vol. 6 No. 3 :42

Journal of Clinical and Molecular EndocrinologyISSN 2572-5432

© Under License of Creative Commons Attribution 3.0 License

Reference1. Rabinowe SL, Eisenbarth GS (1984) Type I diabetes mellitus: a

chronic autoimmune disease?. Pediatric Clinics of North America.31:531-43.

2. AlqurashiKA,AljabriKS,BokhariSA (2011)PrevalenceofdiabetesmellitusinaSaudicommunity.AnnalsofSaudimedicine.31:19-23.

3. AlotaibiA,PerryL,GholizadehL,Al-GanmiA(2017) IncidenceandprevalenceratesofdiabetesmellitusinSaudiArabia:Anoverview.Journalofepidemiologyandglobalhealth.7:211-8.

4. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of theprevalenceof diabetes for 2010and2030.Diabetes researchandclinicalpractice.87:4-14.

5. Alberti KG, Zimmet P, Shaw J (2007) International DiabetesFederation: a consensus on Type 2 diabetes prevention. DiabeticMedicine.24:451-63.

6. BastakiA(2005)Diabetesmellitusanditstreatment.InternationaljournalofDiabetesandMetabolism.13:111.

7. VanessaFiorentinoT,PriolettaA,ZuoP,FolliF(2013)Hyperglycemia-induced oxidative stress and its role in diabetes mellitus relatedcardiovascular diseases. Current pharmaceutical design. 19:5695-703.

8. AsmatU, Abad K, Ismail K (2016)Diabetesmellitus and oxidativestress—Aconcisereview.Saudipharmaceuticaljournal.24:547-53.

9. PieroMN.HypoglycemiceffectsofsomeKenyanplantstraditionallyused in management of diabetes mellitus in eastern province(Doctoraldissertation,Mscthesis,KenyattaUniversity).

10.AronsonD.(2008)Hyperglycemiaandthepathobiologyofdiabeticcomplications. Cardiovascular diabetology: Clinical, metabolic andinflammatoryfacets.45:1-6.

11.HamdanA,HajiIdrusR,MokhtarMH(2019)Effectsofnigellasativaon type-2 diabetes mellitus: a systematic review. Internationaljournalofenvironmentalresearchandpublichealth.16:4911.

12.JaberLA,HalapyH,FernetM,TummalapalliS,DiwakaranH.(1996)Evaluationofapharmaceuticalcaremodelondiabetesmanagement.AnnPharmacother,30:238–243.

13.Clement S (1995) Diabetes self-management education. DiabetesCare,18:1204–1214.

14.WolvertonD,BlairMM(2017)Fractureriskassociatedwithcommonmedications used in treating type 2 diabetes mellitus. AmericanJournalofHealth-SystemPharmacy.74:1143-51.

15.Bösenberg LH, Van Zyl DG (2008) The mechanism of action oforal antidiabetic drugs: a review of recent literature. Journal ofEndocrinology,MetabolismandDiabetesofSouthAfrica.13:80-8.

16.QaseemA,HumphreyLL,SweetDE,StarkeyM,ShekelleP. (2012)Oralpharmacologictreatmentoftype2diabetesmellitus:aclinicalpracticeguidelinefromtheAmericanCollegeofPhysicians.Annalsofinternalmedicine.156:218-31.

17. InzucchiSE,BergenstalRM,BuseJB,DiamantM,FerranniniE,etal.(2015)Managementofhyperglycemia in type2diabetes, 2015: apatient-centeredapproach:update toapositionstatementof theAmericanDiabetesAssociationandtheEuropeanAssociationfortheStudyofDiabetes.Diabetescare.38:140-9.

18.Cohen A, Horton ES (2007) Progress in the treatment of type 2diabetes: new pharmacologic approaches to improve glycemiccontrol.Currentmedicalresearchandopinion.23:905-17.

19.Derosa G, Putignano P, Bossi AC, Bonaventura A, Querci F et al.(2011)Exenatideorglimepirideaddedtometforminonmetaboliccontrol and on insulin resistance in type 2 diabetic patients.Europeanjournalofpharmacology.666:251-6.

20.Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF et al. (2013) Newperspectives on how to discover drugs from herbal medicines:CAM'soutstandingcontributiontomoderntherapeutics.Evidence-BasedComplementaryandAlternativeMedicine.

21.AhmadA,HusainA,MujeebM,KhanSA,NajmiAK,etal.(2013)Areview on therapeutic potential of Nigella sativa: Amiracle herb.AsianPacificjournaloftropicalbiomedicine.3:337-52.

22.Mathur ML, Gaur J, Sharma R, Haldiya KR (2011) AntidiabeticpropertiesofaspiceplantNigellasativa. JournalofEndocrinologyandMetabolism.1:1-8.

23.Ramadan,M.F. (2007)Nutritionalvalue, functionalpropertiesandnutraceutical applications of black cumin (Nigella sativa L.): Anoverview.Int.J.FoodSci.Technol.,42,1208–1218.

24.Ali, B.H, Blunden, G. (2003) Pharmacological and toxicologicalpropertiesofNigellasativa.Phytother.Res.17,299–305.

25.HoucherZ, BoudiafK, Benboubetra M, HoucherB. (2007) Effectsof methanolic extracts and commercial oil of Nigella sativa L. onbloodglucoseandantioxidantcapacity inalloxan-induceddiabeticrats. Pteridines. 18: 8–18.

26.Haq A, Lobo PI, Al-Tufail M, Rama NR, Al-Sedairy ST. (1999) Immunomodulatory effect of Nigella sativa proteinsfractionated by ion exchange chromatography. Int JImmunopharmacol. 21: 283–95.

27.Burits M, Bucar F. (2000). Antioxidant activity of Nigella sativaessentialoil.Phytotherapyresearch.14:323-8.

28.WorthenDR,GhoshehOA,CrooksPA.(1998)Theinvitroanti-tumoractivityofsomecrudeandpurifiedcomponentsofblackseed,NigellasativaL.Anticancerresearch.18:1527-32.

29.MeralI,YenerZ,KahramanT,MertN.(2001)EffectofNigellasativaon glucose concentration, lipid peroxidation, anti-oxidant defencesystemandliverdamageinexperimentally-induceddiabeticrabbits.JournalofVeterinaryMedicineSeriesA.48:593-9.

30.HannanA,SaleemS,ChaudharyS,BarkaatM,ArshadMU. (2008)Anti-bacterial activity of Nigella sativa against clinical isolatesof methicillin resistant Staphylococcus aureus. J Ayub Med CollAbbottabad.20:72-4.

31.Houghton PJ, Zarka R, de las Heras B, Hoult JR. (1995) Fixed oilof Nigella sativa and derived thymoquinone inhibit eicosanoidgeneration in leukocytesandmembrane lipidperoxidation.Plantamedica.61:33-6.

32.Farkhondeh T, Samarghandian S, Borji A. (2017) An overview oncardioprotective and anti-diabetic effects of thymoquinone. AsianPacificjournaloftropicalmedicine.10:849-54.

33.Keshri G, Singh MM, Lakshmi V, Kamboj VP (1995) Post-coitalcontraceptiveefficacyof theseedsofNigella sativa in rats. IndianJournalofPhysiologyandPharmacology.39:59.

34.KhaderM,EcklPM(2014)Thymoquinone:anemergingnaturaldrugwithawiderangeofmedicalapplications. Iranian journalofbasicmedicalsciences.7:950.

2021Vol. 6 No. 3 :42

Journal of Clinical and Molecular EndocrinologyISSN 2572-5432

This article is available in: http://clinical-and-molecular-endocrinology.imedpub.8

35. Abdelrazek H, Kilany OE, Muhammad MA, Tag HM, Abdelazim AM(2018)Blackseedthymoquinoneimprovedinsulinsecretion,hepaticglycogen storage, and oxidative stress in streptozotocin-induceddiabeticmalewistarrats.Oxidativemedicineandcellularlongevity.

36.Daryabeygi-Khotbehsara R, Golzarand M, Ghaffari MP, DjafarianK (2017) Nigella sativa improves glucose homeostasis and serumlipids in type 2 diabetes: A systematic review andmeta-analysis.Complementarytherapiesinmedicine.35:6-13.

37.Monnier L, Colette C, Dunseath GJ, Owens DR (2007) The loss ofpostprandial glycemic control precedes stepwise deterioration offastingwithworseningdiabetes.Diabetescare.30:263-9.

38.Yimer EM, Tuem KB, Karim A, Ur-Rehman N, Anwar F (2019)Nigella sativa L.(black cumin): a promising natural remedy forwide range of illnesses. Evidence-Based Complementary andAlternativeMedicine.